给水泵汽轮机直驱式电液伺服油动机的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在近十几年来,借于液压技术领域中应用成熟的容积控制系统和电机领域交流伺服电机广泛应用的背景下,出现了直接驱动容积控制电液伺服系统(Direct Drive Volume Control,简称DDVC)或称无阀电液伺服系统。电液伺服系统以其出力大,响应快,精度高等优点被广泛用于航天、国防以及各民用工业甚至日常生活中;交流伺服电动机则以其可靠性高,控制方便等优点在自动控制领域中具有广阔的发展前景。直驱式容积控制电液伺服系统综合了二者的优点,具有体积小,结构简单,节能高效,易于计算机控制等显著优点,被认为是液压控制的重要发展方向之一。
     通过查阅大量的国内外相关文献,国外尤其是美国和日本等国对此系统的研究已趋于成熟,目前已经将直驱式电液伺服系统应用在多个领域中,并取得了很大的经济效益。但系统动态特性不高的问题也使其应用场合受到限制。因此对直驱式容积控制电液伺服系统进行研究,对提高系统的性能与实际应用价值、拓展系统的应用前景具有重要的意义。
     本文分析了给水泵汽轮机传统阀控式调速方式的优缺点,通过与直驱式电液伺服系统作对比,阐述了直驱式电液伺服系统的原理、组成和优缺点,并对直驱式电液伺服系统进行了结构设计、理论分析和试验研究。
     本文对系统的吸排阀和锁阀组成的集成阀块、密闭油罐及直驱式系统的其它连接部件进行了结构设计。同时还建立交流伺服电机的数学模型,分析泵控非对称液压缸动力机构的原理并建立其数学模型,最终得出直驱式电液伺服系统的数学模型。讨论了各项参数对系统性能的影响,通过系统的开环频率特性分析了系统的稳定性及稳态误差,并在此基础上进行了系统计算机仿真研究。
     搭建了直驱式电液伺服系统的试验台,对系统进行了试验研究,从而验证了数学模型的正确性。采用PID控制策略可以改善系统的动态特性,使系统能够满足控制要求。
In the last decade, by the application of mature volume control systems and widely used AC servo motor areas, the direct drive volume control(Direct Drive Volume Control, referred to DDVC) electro-hydraulic servo system is came out, which also named electro-hydraulic servo system with no electro-hydraulic servo valve. Electro-hydraulic servo system has the high power, high intensity and fast response. It has been applied extensively in many fields such as space flight, national defense and some other industry fields. At present, AC servo system has perfect development and foreground in the field such as automation with good reliability and convenient control performance. The DDVC electro-hydraulic servo system is the outcome of them. It possesses many advantages such as smaller bulk, simpler construct, energy saving being prone to control with computer and some others, so the system is considered as one of the most important directions in the field of hydraulic-control.
     Having looked up related literatures and reference materials at home and abroad, especially in foreign countries such as the United States and Japan, their study of this system has become more mature, and now they have used the direct drive volume control electro-hydraulic servo system in many areas, and they already have a great economic benefits. But the weakness of dynamic performance restricts its further application. Therefore, it is great significant to study of the DDVC electro-hydraulic servo system to enhance the performance of the system.
     This paper analyzes the advantages and disadvantages of traditional valve control forms in the feed water pump turbine, and through comparison with the DDVC electro-hydraulic servo system, expounding the principles, composition, the advantages and disadvantages of DDVC electro-hydraulic servo system. Also, make a design, theoretical analysis and experimental studies on DDVC electro-hydraulic servo system.
     This paper designs the compositive valves which components of fill oil valves and lock valves, closed oil tank and device connector. At the same time, establishing the AC servo motor mathematical model, analyzing the principle of pump-controlled hydraulic unsymmetrical cylinders power machine and establishing the mathematical model. In addition, establish the mathematical model of the whole DDVC system. Last, analyzing the parameters that influence the system’s performance,through the frequency characteristics of open-loop system analyzing stability and the steady-state error, and simulating with computer.
     To build up a test-bed for DDVC electro-hydraulic servo system, taking the experiment in order to verify the correctness of the mathematical model. PID control strategy can be used to improve the system dynamic characteristics, enabling the system to meet the control requirements.
引文
1王丽珍.汽轮机数字式电液调节系统的研究.太原理工大学硕士论文. 2007: 3~7
    2王群慧,董庆云.汽动给水泵在热电厂的应用.区域供热. 2008, (4): 35~37
    3张春发,张燕,董丽娟,冷健.电动给水泵和汽动给水泵的经济性比较研究.电力科学与工程. 2006, (1): 31~33
    4苏文海.电液混合动力机构及其位置控制研究.哈尔滨工业大学硕士论文. 2003: 6~30
    5刘庆和.直接驱动容积控制液压传动原理(DDVC系统).哈尔滨工业大学. 2007, (10): 12~18
    6郭建宇,冯刚.无阀电液伺服系统.轻工机械. 2005, (4): 117~119
    7苏文海.电液混合动力机构及其位置控制研究.哈尔滨工业大学硕士论文. 2003: 6~30
    8张洪波.直驱式电液伺服系统理论分析及试验研究.哈尔滨工业大学硕士论文. 2004: 5~16
    9王世明,李天石.交流变频容积调速回路的特性与速度控制.机床与液压. 1999, (5): 22~23
    10杨明,于泳,王宏,徐殿国.适用于工业机器人的永磁同步电动机全数字化交流伺服系统.交流永磁同步伺服系统. 2004, (11): 37~39
    11刘庆和.电液伺服直接驱动装置.电液压技术资料简编, 1999: 1~3
    12姜继海,涂婉丽,曹健.火箭舵机用直驱式容积控制电液伺服系统的研究.流体传动与控制. 2005, (1): 13~15
    13 United States Paten, Patent Number: US4593792
    14 Shimoaki, Motoo. VVVF-controlled hydraulic elevator. Mitsubishi Electric Advance v61 Dec 1992: 13~15
    15 Beringer AG.. The frequency-controlled hydraulic drive. Elevator World, 1998, (2): 94~96
    16 Richard von Holzen. The frequency-controlled hydraulic drive. Lift conference of HeiBronn. 1998 1998. 12
    17 Sedrak, Daniel. Closed-loop electronic valving and the application of variable voltage variable frequency in hydraulics. Elevator world, 1999, 47(9): 66~72
    18 Leistritz A. G.. The frequency-controlled tension piston lift with hydraulic drive for both directions of travel and without a machine room.Lift conference of Heilbroom. 1998. 1998. 3
    19 Dieter Klitzke. Frequency controlled lift with counterweighted roped hydraulic system. Elevcon’98. 1998. 10
    20刘恩均,王占林,孙卫华.一种新型EHA及其仿真分析.液压气动与密封. 2005, (1): 14~16
    21 Masanori ITO, Noriki, HIROSE, Etsuro SHIMIZU. Main Engine Revolution Control for Ship with Direct Drive Volume Control System[J]. ISMETOKYO, 2000, (2): 629~632
    22 Alden, R. C-141 and C-130 power-by-wire flight control systems. Aerospace and Electronics Conference, 1991. NAECON 1991, Proceedings of the IEEE 1991 National, 20-24 May 1991, vol.2: 535~539.
    23 Hong Sun, T. George, C. Chiu. Nonlinear Observer Based Force Control of Electro-Hydraulic Actuators. Proceedings of the American Control Conference. San diego, California. 1999, (10): 764~768
    24 ITO, H. SATO, Y. Maeda. Direct Drive Volume Control of Hydraulic System and its Application to the Steering System of Ship[C]. Hayama: FLUCOME'97, (1): 445~450
    25姜继海,苏文海,刘庆和.直驱式容积控制电液伺服系统.军民两用技术与产品. 2003, (9): 43~45
    26张旭辉,刘永光,付永领.一种新颖超磁伸缩作动器的隔振模型.北京航空航天大学学报. 2007, 33(11): 1317~1320
    27付永领,徐步力,那波.一种新型无伺服阀电液伺服执行器.机床与液压. 2002, (7): 44~45
    28徐步力,付永领.一种新型电液作动系统.机床与液压. 2002, (5): 52~53
    29徐兵,欧阳小平,杨华勇.配置蓄能器的变频液压电梯节能控制系统.浙江大学学报(工学版). 2002, (9): 521~525
    30徐兵,杨华勇,冉隆林.采用蓄能器的新型液压电梯的节能控制系统.液压气动与密封. 2001, (2): 42~44
    31张健民,杨华勇等.变频调速液压电梯.起重运输机械. 1998, (4): 30~32
    32陈钢,杨华勇等.电机变频控制液压电梯系统的自校正自适应控制.浙江大学学报. 1997, (5): 662~667
    33 P. Vas. Electrical Machines and Drives, A Space-Vecter Theory Approach. Clarendon Press, 1992, (7): 132~156
    34 Chang sheng LI, Malik Elbuluk. A Solid Mode Observer for Sensorless Control of Permanent Magnet Synchronous Motors. IEEE, 2001, (C): 1273~1278
    35张兴政,马仁库,聂强. REXA电液执行器在汽轮机DEH系统中的应用.发电设备. 2003, (4): 58~60
    36余国城,陈继河,陈莺.液压系统集成块的设计与制造.起重运输机械. 1999 , (5): 14~16
    37吕杰.直驱式电液伺服系统的设计与特性研究.哈尔滨工业大学硕士论文. 2008: 8~22
    38王占林.非对称缸伺服系统的理论研究.机床与液压. 1987, (2): 36~41
    39贾铭新,曹诚明.液压传动与控制.哈尔滨工程大学出版社. 124~155.
    40黄方平.变频闭式液压动力系统的设计及应用研究.浙江大学硕士学位论文. 2005: 12~14
    41彭天好.变频泵控马达调速及其补偿特性研究.浙江大学博士学位论文. 2003: 31~33
    42李洪人.液压控制系统.国防工业出版社, 1990: 83~87
    43马纪明,付永领,李军,高波.一体化电动静液作动器(EHA)的设计与仿真分析.航空学报. 2005年01期
    44 Habibi, S. Goldenberg, A. Design of a new high-performance electro-hydraulic actuator. Mechatronics, IEEE/ASME Transactions on, Issue 2, June 2000, Volume 5: 158~164.
    45 Sadeghi, T. Lyons, A. Fault tolerant EHA architectures. Aerospace and Electronic Systems Magazine, IEEE, Issue 3, March 1992, Volume 7: 32~42
    46张晋格.自动控制原理.哈尔滨工业大学出版社, 2003.1
    47 Cominos, P. Munro, N. PID controllers: recent tuning methods and design to specification. Control Theory and Applications, IEE Proceedings Volume 149, Issue 1, Jan. 2002: 46~53.
    48 Moradi, M. H. New techniques for PID controller design. Control Applications, 2003. CCA 2003. Proceedings of 2003 IEEE Conference on Volume 1, 23~25 June 2003, vol.2: 903~908.
    49 Tong, J. L. Bobis, J. P. A model for designing digital PID controllers. Industrial Electronics, Control, Instrumentation, and Automation, 1992. 'Power Electronics and Motion Control. Proceedings of the 1992 International Conference on. 9~13 Nov. 1992. vol.3: 1157~1162.
    50 W. K. Ho, O. P. Gan, E. B. Tay and E. L. Ang. Performance and Gain and Phase Margins of Well-Known PID Tuning Formulas. IEEE Transactions on Control Systems Technology, 1996,4: 473~477
    51 Young-Hyun Moon, Heon-Su Ryu, Byoung-Kon Choi. Modified PID load-frequency control with the consideration of valve position limits. Power Engineering Society 1999
    52陆卫忠,刘文亮. C++ Bulider 6程序设计教程.科学出版社, 2005
    53张彦明.锅炉给水泵汽轮机调速控制系统的分析与介绍.天津电力技术, 2008, (3): 16~19

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700