一种新的电液泵控差动缸系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
降低液压系统能耗、噪声、减小废油处理对环境的污染,一直都是工程界研究的焦点。最为有效的方法是采用无节流损失的泵控技术,通过改变泵的转速或排量,使泵输出的流量和压力与负载要求完全匹配。在液压元件中,定量泵具有结构简单、工作可靠的优点,因此,在现代液压传动控制技术中,变转速定量泵控系统正日益受到人们的广泛重视,它融合了目前快速发展的电动机调速技术和液压技术的优点。
     在液压传动系统中,差动缸具有输出力大、单边滑动密封的效率及可靠性高、占用空间小、制造简单、成本低等优点,所以成为应用最为广泛的线性液压执行器。但差动缸由于两腔有效面积有差,致使差动缸两腔的进出口流量不相等,成为实现直接泵控技术必须解决的首要问题。为此,本文采用新的泵配流原理对叶片马达(泵)结构进行改造,利用Matlab/Simulink软件建立了新配流定量泵变转速控制差动缸闭式系统仿真模型。结果表明,实现了差动缸两腔流量的单泵直接补偿控制,简化了系统结构,节约了能量,提高了系统控制性能。其研究成果具有一定的理论意义和实用价值。
     本文主要进行了如下研究工作:
     1、通过查阅大量的国内外文献,总结了阀控、泵控差动缸技术的发展,分析了差动缸运动控制的本质非线性问题,即两腔有效面积的不相等所导致的差动缸进出口流量的不平衡。
     2、运用先进的系统控制仿真软件Matlab/Simulink进行了电液泵控差动缸系统仿真模型的构建。
     3、针对差动缸运动过程中所受到的不同工况进行了仿真研究,得出了与理论相符的仿真结果。
Hydraulic system to lower power consumption, noise, reduce the waste oil to deal with the pollution of the environment has always been the focus of the engineering study, the most effective way is to cut expenditure without the loss of the use of pump-control technology, by changing the pump speed or displacement, so that pump output flow and pressure requirements of an exact match with the load. In hydraulic components, the fix displacement pump is simple in structure , high reliability, etc.So, in the modern hydraulic control technology, variable speed pump control system are also a wide range of great importance. It combines the rapid development of current motor drives technology and hydraulic technology.
     In the hydraulic drive system, the differential cylinder with large output force, unilateral sliding sealing efficiency and high reliability, small footprint, manufacturing simply and low cost, So it is most widely used. However, the effective area of the two chambers of differential cylinder are difference, result in the flow to the import and export is unequal, it is a direct pump-control technology issues that must be addressed chiefly. To solve these problems, in this paper, a new electrohydraulic pump control differential cylinder systems that a novel distributing flow of fix displacement pump (ie. the transformation of the distributing structure of vane motor) variable speed closed circuit system is proposed. It utilizes a pump direct compensating control of flow, the simplification of system structure, energysaving and improving system performance.
     In this paper, research work carried out as follows: Firstly, through consult a large number of domestic and foreign literature, summed up the valve, pump control differential cylinder technology, an analysis of the differential nature of cylinder motion control nonlinear problems, ie the effective area of the two chambers is not equal to the difference caused by import and export flow. Secondly, the use of advanced control system simulation software Matlab / Simulink for creating the simulation model of electrohydraulic pump control differential cylinder system. Lastly, for the process of the differential cylinder by the different working conditions of simulation studies, drawn in line with the theoretical simulation results.
引文
[1]王占林.近代液压控制[M].北京:机械工业出版社,1997:100-200.
    [2]江木正夫,箫欣志.日本液压技术动向[J].液压气动与密封,2004,(1):11-14.
    [3]史维祥.流体传动及控制的现状及新发展[J].流体传动与控制,2003,(1):1-6.
    [4]张业建,李洪人.非对称缸系统液压缸两腔压力特性的研究[J].机床与液压,2000,(5): 63-64
    [5]王栋梁,李洪人,李春萍.非对称阀控制非对称缸系统的静态及动态特性分析[J].机床与液压,2003,(1):198-200
    [6]许宏光,陈斌,李尚义,等.阀控非对称液压缸的非线性及压力跃变的补偿[J].哈尔滨工业大学学报,1995,27(5):99-102
    [7]张晓宁,王岩,付永领.非对称液压缸对称性控制[J].北京航空航天大学学报,2007,33(11):1334-1339
    [8]路甬祥.对流体传动与控制技术的系统哲学思考[J].液压气动与密封,2005,(5):4-6
    [9]权龙.泵控缸电液技术研究现状、存在问题及创新解决方案[J].机械工程学报,2008,44(11):87-91
    [10]姜继海,苏文海,刘庆和.直驱式容积控制电液伺服系统[J].军民两用技术与产品,2003,(9):43-48
    [11] H.Murrenhoff.吴根茂译.液压控制技术发展趋势[J].工程设计,1997,(3):20-29
    [12] Monika Ivantysynova. Displacement Controlled Linear and Rotary Drives for Mobile Machines with Automatic Motion Control[C]. Copyright@2000 Society of Automotive Engineers.Inc:125-132.
    [13] Joerg Grabbel, Monika Ivantysynova. An Investigation of Swash Plate Control Concepts for Displacement Controlled Actuators[J]. International Journal of Fluid Power 6(2005)No.2:19-36
    [14] D.G.Feldmann, B.Kazmeier. Compact Electrohydraulic Actuator Powerpacks for Distributed Drives-Configuration, Controls and Systerm Performance[C]. Copyright@2002 National Fluid Power Association and Society of Automotive Engineers, Inc:683-689
    [15] Robert Rahmfeld, Monika Ivantysynova, Bastian Eggers. Active Vibration Damping for off-Road Vehicles Using Valveless Linear Actuators[C]. Copyright@2004 SAE International:1-12
    [16] Olaf Cochoy, Susan Hanke, Udo B.Carl. Concepts for position and load control for hybrid actuation in primary flight controls[J]. Aerospace Science and Technology 11(2007):194-201
    [17] Xu Bing, Yang Jian, Yang Huayong. Comparison of energy-saving on the speed control of the VVVF hydraulic elevator with and without the pressure accumulator[J]. Mechatronics 15(2005):1159-1174.
    [18]权龙,Neuber T, Helduser S.转速可调泵直接闭环控制差动缸伺服系统静特性[J].机械工程学报, 2002,38(3):144-148.
    [19]权龙,Neuber T, Helduser S.转速可调泵直接闭环控制差动缸伺服系统动特性[J].机械工程学报, 2003,38(2): 13-17.
    [20]陈伯时.高动态性能交流调速系统的发展与演变(Ⅰ)[J].电力电子, 2004,2(1): 33-36.
    [21]陈伯时.高动态性能交流调速系统的发展与演变(Ⅱ)[J].电力电子, 2004,2(3): 55-57
    [22]许晓华.永磁交流伺服电动机发展前景[J].伺服控制, 2005,(11): 29-31
    [23]祁琦.液压电机叶片泵能量转化效率的分析[D].兰州:兰州理工大学,2008.
    [24]薛定宇,陈阳泉.基于MATLAB/Simulink的系统仿真技术与应用[M].北京:清华大学出版社,2002:192-309
    [25]辛海涛,王少萍,焦宗夏.基于电动静液作动器虚拟试验仿真平台下的多学科建模技术[J].机床与液压,2008,36(10):122-126
    [26]陶永华,尹怡欣,葛芦生.新型PID控制及其应用[M].北京:机械工业出版社,1998:1-20.
    [27]高金源,夏洁.计算机控制系统[M].北京:清华大学出版社,2007:128-167.
    [28]黄方平.变频闭式液压动力系统的设计及应用研究[D].杭州:浙江大学,2005.
    [29]吴茂刚.矢量控制永磁同步电动机交流伺服系统的研究[D].杭州:浙江大学,2006.
    [30]高钟毓.机电控制工程[M].北京:清华大学出版社,2001:99-103.
    [31]张崇巍,李汉强.运动控制系统[M].武汉:武汉理工大学出版社,2002:68-176.
    [32]梅晓榕,柏桂珍,张卯瑞.自动控制元件及线路[M].北京:科学出版社,2005:133-137.
    [33]曹美忠.变速泵控差动缸特性分析与应用研究[D].太原:太原理工大学,2005.
    [34]黎克英,陆祥生.叶片式液压泵和马达[M].北京:机械工业出版社,1993:39-234.
    [35]王峥嵘.可压缩流体工作介质双作用叶片泵配流及瞬时流量的建模与仿真[D].兰州:兰州理工大学,2004.
    [36]盛敬超.液压流体力学[M].北京:机械工业出版社,1980:200-230.
    [37]林九如,孙德刚.双作用叶片泵减振槽几何尺寸优化设计[J].阜新矿业学院学报,1992,11(3):9-13.
    [38] S.Manco,N.Nervegna,M.Rundo. Modelling and Simulation of Variable Displacement Vane Pumps for IC Engine Lubrication[C]. Copyright@2004 SAE International:1-10.
    [39] Monika Ivantysynova, Changchun Huang, Seven-Kelana Christiansen. Computer Aided Valve Plate Design-An Effective Way to Reduce Noise[C]. Copyright@2004 SAE International.
    [40] Ganesh Kumaar Seeniraj, Monika Ivantysynova. Imapct of valve plate design on noise,volumetric efficiency and control effort in an axial piston pump[C]. Copyright@2006 by ASME:77-84.
    [41] JIANG Jihai. Direct drive variable speed electrohydraulic servo system to position control of a ship rudder[C]//4th IFK, Dresden, Germany, 2004:103-114.
    [42]杨文华.液控原理[M].北京:学术书刊出版社,1990:337-370.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700