直驱式永磁同步风力发电变流器若干关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着世界各国对风电产业的大力支持和研究,风力发电技术得到了迅猛发展,装机容量大大增加。由于永磁同步电机具有机械损耗小、运行效率高、维护成本低、无增速齿轮箱及可靠性高等优点,逐渐得到广泛应用。但是在直驱方案中,变流器作为风力所发电能回馈至电网的唯一通路,对其容量、可靠性、响应速度和并网特性等要求很高;变流器的设计、制造与试验也一直是直驱式永磁风力发电系统的瓶颈和难点问题,它对于整个系统的稳定、高效运行具有至关重要的意义。
     本文重点关注了直驱式永磁同步风力发电变流器的建模、限制功率控制、低电压穿越过程中的检测与不对称控制算法、永磁电机无速度传感器算法以及系统构建等关键问题,采用理论分析、仿真与实验验证的方法进行了相对深入与系统的研究:
     将全功率变流器的控制分为机侧变流器和网侧变流器两个部分进行建模与控制分析。对于机侧变流器的控制而言,为了避免在大风条件下运行时存在的电机超速运转及SVPWM过调制现象,在原有控制策略的基础上增加了限制功率及机端电压的PI调节器,设计了一种新型的机侧变流器控制策略,仿真及现场风场试验验证了算法的可靠性及有效性。对于网侧变流器的控制,建立了LCL型滤波器电压源变流器的数学模型,并设计了针对LCL型滤波的VSC控制算法,仿真及现场风场试验结果验证了算法的可行性。
     针对直驱风电变流器多电平化的发展需求,为了改善不平衡负载条件下三电平中点钳位型(NPC)电压型并网逆变器的输出电压波形,基于延时信号消除(DSC)算法对电压正负序分量进行分离,分别在正向负向旋转坐标系下进行控制。但是该方法在修正了电压波形的同时,将进一步增加输出电流的不对称性,这将加剧在空间矢量调制下三电平NPC电压型逆变器中点电位的波动。基于此分析了负序电流分量对中点电位波动的影响,找出了一个开关周期内控制冗余小矢量的作用时间对中点电位调整能力的边界,从而建立了中点电位控制的空间矢量调制算法。仿真结果表明该控制方案下,负序电压分量在负方向旋转的坐标系下得到控制,同时负序电流作用使得中点电位的波动加剧,但是在空间矢量中点电位调制下,中点电压波动得到抑制。
     为了实现永磁直驱式风电机组的低压穿越(LVRT)能力,查明了其关键技术在于:三相电网信息的快速准确提取、电压跌落期间的能量管理和网侧变流器在电网不对称条件下的运行与控制。为了实现对电网信息的快速准确提取,设计了基于级联DSC算法的软件锁相环技术;能量管理的主要措施是在直流侧安装制动单元,将LVTR期间无法送入电网的多余能量消耗掉;针对电网不对称电压跌落下的情况,设计了基于正负序双电流内环控制的控制策略、变流器保护策略以及无功补偿策略,通过风场现场实验验证LVRT技术的可行性和有效性。
     为了提高风电变流器的设计研发效率与匹配性,模拟实际风场的现场运行情况,搭建了兆瓦级直驱式风力发电模拟实验系统。首先建立了两套绕组间具有300相差的六相永磁同步电机的数学模型,同时鉴于系统的实际需要,提出了一种基于高阶非奇异终端滑模观测器的无传感器控制方法,仿真与实验结果表明算法的有效性。另外,采用脉动高频电压信号注入法,实现了六相永磁同步电机无传感器控制技术的零速启动,仿真结果验证了算法的有效性。
     设计了一套2MW级直驱式永磁风力发电全功率变流器系统。对该变流器系统的基本组成,参数选取,控制与保护功能的实现,以及现场测试与运行的情况进行了介绍与小结。
Nowadays, more and more countries support and develop their own wind power industry with great efforts, so there have been rapid advances in wind power technology, causing a considerable increase in the capacity of wind turbine installation. As the permanent magnet synchronous motor (PMSM) has such advantages as small mechanical loss, high efficiency, low maintenance cost and speedup-free gearbox, which match the special features of wind turbines well, it has become another important type of machine and gradually come into use subsequent to the application of a double fed induction wind turbine. However, the converter, according to the scheme of a directly driven wind turbine, is the only access to the power grid. Therefore, the converter must reach the high standard of performance and meet the requirements of its capacity, reliability, response speed and grid-connection. As far as the direct-drive wind power system is concerned, it is necessary to get over bottlenecks or difficult problems in the design, manufacture and test of the full-rate converter, which is of extreme importance to the stability of the entire system.
     This paper has made a deep research into the several key techniques related to the converter in the direct-drive wind generation system by use of theoretical analysis, simulation and experimental verification. The specific researches are described as following:
     To facilitate the analysis of modeling and control, the full power converter is divided into two parts:machine-side and grid-side converter. Firstly, for the machine-side converter, a novel control method has been proposed to avoid the phenomena of the motor driving over the speed limit and of SVPWM over-modulation that appear under strong-wind conditions. The method includes using two PI controllers to limit the power and voltage based on the original control strategy. Furthermore, the reliability and effectiveness of the algorithm has been tested in the wind field and simulation results. Secondly, for the grid-side converter, the analysis of performance of the LCL-style filter has led to the establishment of the mathematical model of VSC with LCL-style filter. The results of the experiments made in the wind field and simulation results show that the control technology is reliable and effective.
     With the further development of offshore wind power and a continuous increase both in the unit capacity of wind turbines and in the voltage of full-rate converters, there will certainly be a trend towards multi-level converters. In order to improve the waveform of output voltage of three-level neutral point clamped (NPC) voltage source converter (VSC) with unbalanced load, a delay signal cancelling (DSC) method has been used to distinguish and control the positive and negative sequence components. However, when the voltage waveform is modified, the imbalance of the current will be further raised. As a result, the neutral-point voltage will be oscillated seriously under the SVPWM. This paper deals with the impact of the negative sequence current on the neutral-point voltage oscillation, obtains the boundary condition in which to alter the unbalance by controlling small vectors of the redundant voltage, and presents the neutral-point control SVPWM method. Simulations demonstrate that the negative sequence voltage can be controlled while the negative sequence current intensifies the oscillation of the neutral-point voltage. But the oscillation can be suppressed by use of the integrated control strategy.
     To achieve the low-voltage fault ride-through (LVRT) capability for the permanent magnet direct-drive wind turbine, there is a great need for breakthroughs in three key techniques:the rapid and accurate extraction of three-phase power grid information, the energy management at the time of voltage drop, and the operation and control of grid-side converter under the asymmetric condition of power grid. To obtain the power grid information quickly and accurately, a DSC algorithm based on the software phase-locked loop (SPLL) technology is employed in this paper. To improve energy management, what needs to be done is to install a brake resistor in the DC-bus so as to consume the extra energy which cannot be transmitted to the power grid during the period of LVRT. To achieve the better performance under the condition of asymmetrical voltage drop of the power grid, this paper has worked out the double current loops method based on negative-sequence control strategy, the converter protection policy and the reactive power compensation strategy. The results of the experiments conducted in the wind field verify the feasibility and effectiveness of the LVRT technology.
     To improve the efficiency and matching of the designed wind power converter and simulate the real operation of the wind field, a M W-level wind power experimental platform needs to be built. First of all, there is need for establishing a mathematical model of the double three-phase PMSM with two sets of Y-connected three-phase symmetrical windings displaced in turn by30°. To obtain better control performance, a sensor-less control method based on non-singular high-order terminal sliding-mode observer is presented in the paper. The simulation and experiment results show that the system has good dynamic and static performances. Moreover, to solve the starting problem under the zero speed conditions, the fluctuating high frequency voltage signal injection method is employed for sensor-less control of dual three-phase PMSM, the simulation results show that the control technology is reliable and effective.
     A2MW-level directly-drive permanent magnet wind power converter system is designed successfully, and the basic compositions of the converter system are introduced, such as parameter selection, realization of control and protection, field testing and operation.
引文
[1]惠晶,方光辉.新能源转换与控制技[M].北京:机械工业出版社.2008.
    [2]Polinder H, de Haan S W R, Dubois M R, et al. Basic operation principles and electrical conversion system of wind turbines [J]. Energy and Power Engineering,2005,15(4):43-50.
    [3]马伟明,肖飞.风力发电变流器发展现状与展望[J].中国工程科学,13(1):11-20.
    [4]T. John. Wind energy-the facts [J]. Wind Energying,2009,33(3):305-307.
    [5]李建林,许洪华.风力发电中的电力电子变流技术[M].北京:机械工业出版社.2008
    [6]何东升,刘永强,王亚.并网型风力发电系统的研究[J].高电压技术,2008.34(1):142-147.
    [7]李辉,薛玉石,韩力.并网风力发电机系统的发展综述[J].微特电机,2009(5):55-60.
    [8]A. Arulampalam, G. Ramtharan, N. Jenkins. Trends in wind power technology and grid code requirement [C]. International Conference on Industrial and Information System.Sri Lanka,2007: 129-133.
    [9]施跃文,高辉,陈钟.特大型风力发电机组技术现状与发展趋势[J].神华科技,2009,7(2):34-38.
    [10]A. Grauers. Design of direct driven permanent-magnet generators for wind turbines [D].Sweden: Chalmers University of Technology,1996.
    [11]徐甫荣.中高压变频器主电路拓扑结构的分析比较[J].电气传动自动化,2003,25(4):5-12.
    [12]S. Lchikawa, M.Tomita, S. Doki. Sensorless control of permanent magnet synchronous motors using online parameter identification based on system identification theory [J]. IEEE Transactions on Industrial Electronics,2006,53(2):363-372.
    [13]杨恩星.低速永磁直驱风力发电变流器若干关键技术研究[D].杭州.浙江大学.2009.
    [14]A. Nabea, I. Takahashi, H. I. Akag. A new neutral-point clamped PWM inverter [J]. IEEE Trans. Ind. Applicat.,1981,17 (5):518-523.
    [15]M. Ferdowsi, A. Emadi. Estimative current mode control technique for DC-DC converters operating in discontinuous conduction mode [J]. IEEE Power Electronics Letters, Vol.2, no.1, March 2004:20-23.
    [16]江道灼,张振华.三相H桥级联静止同步补偿器的控制策略[J].高电压技术,2011,37:2024-2032.
    [17]王颢雄,马伟明,张狄林,等.利用矢量合成的三电平变流器SVPWM过调制技术[J].高电压技术,2011,37:234-240.
    [18]嵇保健,张广明,洪峰.复合型级联多电平双buck式逆变器[J].高电压技术,2011,37:1798-1805.
    [19]屠卿,瑞徐政,郑翔.模块化多电平换流器型直流输电内部环流机理分析[J].高电压技术,2010,36:547-554.
    [20]朱思国,欧阳红林,朱英浩.H桥级联型逆变器的迭代谐波消除方法[J].高电压技术,2011,37:318-324.
    [21]陈海荣,张静,屠卿瑞.电网电压不平衡时电压源换流器型直流输电的负序电压补偿控制[J].高电压技术,2011,37:2363-2370.
    [22]G. Saccomando, J. Svensson. Transient operation of grid-connected voltage source converter under unbalanced voltage condition[C]. Proceeding of IEEE PESC 2001. Anaheim, USA:the Institute of Electrical and Electronics Engineers, Inc,2001:2419-2424.
    [23]H. J. Jun, I. Y. Suh, B. Kim. A study on DVR control for unbalanced compensation[C]. Proceeding of IEEE APEC 2002. Dallas, USA:the Institute of Electrical and Electronics Engineers, Inc,2002: 1068-2424.
    [24]J. Clements, M. Julija, A. Thomas. International comparison of requirements for connection of wind turbines to power systems [J]. Wind Energying,2005,8(3):295-306.
    [25]M. Johan, W. H. Sjoerd Short circuit current of wind turbines with doubly fed induction generator [J]. IEEE Transactions on Energy Conversion,2007,22(1):174-180.
    [26]R. R. Manoj, M. Ned. A novel robust low voltage and fault ride through for wind turbine application operating in weak grids[C]. The 31st Annual Conference of the IEEE Industrial Electronics Society. USA,2005:2481-2486.
    [27]P. S. Flannery, G. Venkataramanan. Evaluation of voltage sag ride-through of a doubly fed induction generator wind turbine with series grid side converter [C]. IEEE Power Electronics Specialists Conference. USA,2007:1839-1845.
    [28]国家电网公司.风电场接入电力系统技术规定(修订版)[Z].2009.
    [29]J. F. Conroy, R. Watson. Low-voltage ride-through of a full converter wind turbine with permanent magnet generator [J]. IET Renewable Power Generation,2007,1(3):182-189.
    [30]胡书举,李建林,许洪华.变速恒频风电系统应对电网故障的保护电路分析[J].变流技术与电力牵引,2008,(1):45-50.
    [31]C. Abbey, G. Joos. Effect of low voltage ride through (LVRT) characteristic on voltage stability[C]. Power Engineering Society General Meeting. San Francisco, USA:IEEE,2005:1901-1907.
    [32]胡书举,李建林,许洪华.适用于直驱式风电系统的Crowbar电路[J].电力建设,2007,28(9):44-47.
    [33]S. Alepuz, S.Busquets-Monge, J. Bordonau, et al. Control strategies based on symmetrical components for grid-connected converters under voltage dip [J]. IEEE Trans, on Industrial Electronics,2009,56(6): 2162-2173.
    [34]张崇巍,张兴.PWM整流器及其控制[M].北京:机械工业出版社.2009.
    [35]R. Pascal, J. P. Louis. Regulation of a PWM rectifier in the unbalanced network state using a generalized model [J]. IEEE Trans. On Power Electronic,1996,11(3):495-502.
    [36]赵紫光,吴维宁,王伟.电网不对称故障下直驱风电机组低电压穿越技术[J].电力系统自动化,2009,33(21):87-91.
    [37]Hong-Seok Song, Kwanghee Nam. Dual current control scheme for PWM converter under unbalanced input voltage conditions[J]. IEEE Trans, on Industrial Electronics,1999,46(5):953-959.
    [38]孙素娟,赵紫龙,陈玮.电网不对称时直驱风电机组双电流环控制策略[J].水电自动化与大坝监测,2010,34(1):41-45.
    [39]张兴,季建强,张崇巍.基于内模控制的三相电压型PWM整流器不平衡控制策略研究[J].中国电机工程学报.2005,25(13):51-56.
    [40]周国梁,石新春,魏晓光,等.电压源换流器高压直流输电不平衡控制策略研究[J].中国电机工程学报,2008,28(22):137-143.
    [41]Timbus A, Liserre M, Teodorescu R, et al. Evaluation of current controllers for distributed power generation systems[J]. IEEE Trans, on Power Electronics,2009,24(3):654-664.
    [42]Hu, Yikang He. Multi-frequency proportional-resonant (MFPR) current controller for P WM VSC under unbalanced supply conditions[J]. Journal of Zhejiang University:Science,2007,8(10):1527-1531.
    [43]Jang J H, Sul S K, Ha J I. Sensorless drive of surface-mounted permanent-magnet motor by high-frequency signal injection based on magnetic saliency[J]. IEEE. Trans.on Industry Application, 2003,39(4):1031-1038.
    [44]Gheorghe D A, Cristian I P. Combined flux observer with signal injection enhancement for wide speed range sensorless direct torque control of IPMSM drives [J]. IEEE Trans, on Energy Conversion,2008, 23(2):393-402.
    [45]Chan T F, Wang W, Borsje P, etc. Sensorless permanent-magnet synchronous motor drive using a reduced-order rotor flux observer [J]. IET Electric Power Applications,2008,2(2):88-98.
    [46]Sakorn P, Somboon N. Stability and dynamic performance improvement of adaptive full-order observer for sensorless PMSM drive [J]. IEEE Trans. Power Electric,2012,27 (2):588-600.
    [47]Sang-M K, Woo Y H, Sung J K. Design of a new adaptive sliding mode observer for sensorless induction motor drive [J]. Electric Power Systems Research,2004,27 (2):588-600.
    [48]李冉,赵光宙,徐绍娟.基于扩展滑模观测器的永磁同步电动机无传感器控制[J].电工技术学报,2012,27(3):79-85.
    [49]鲁文其,黄文新,胡育文.永磁同步电动机新型滑模观测器无传感器控制[J].控制理论与应用,2009,26(4):429-432.
    [50]袁雷,沈建清,肖飞,陈明亮.插入式永磁低速同步电机非奇异终端滑模观测器设计[J].物理学报,2013,62(3):030501.
    [51]郑雪梅,李秋明,史宏宇等.用于永磁同步电机的一种非奇异高阶终端滑模观测器[J].控制理论与应用,2011,28(10):1467-1472.
    [52]史宏宇,冯勇.感应电机高阶终端滑模磁链观测器的研究[J].自动化学报,2012,38(2):288-294.
    [53]张晓光,赵克,孙力.永磁同步电动机混合非奇异终端滑模变结构控制[J].中国电机工程学报,2011,31(27):116-122.
    [54]Feng Y, Zhang J F, Yu X H, et al. Hybrid terminal sliding-mode observer design method for a permanent-magnet synchronous motor control system [J]. IEEE Trans, on Industry Electronic,2009,56(9): 3424-3431.
    [55]邓青宇,廖晓钟.一种基于定子磁场定向矢量控制的异步电机磁链观测模型[J].电工技术学报,2007,22(6):30-34.
    [56]D. A. Gheorghe, I. P. Cristian. Combined flux observer with signal injection enhancement for wide speed range sensorless direct torque control of IPMSM drives [J]. IEEE Transactions on Energy Conversion,2008,23(2):393-402.
    [57]敬华兵,廖力清.基于模型参考自适应方法的无速度传感器永磁同步电机控制[J].机车电传动,2007,1:33-36.
    [58]王成元,夏加宽,孙宜标.现代电机控制技术[M].北京:机械工业出版社,2008:182-186.
    [59]P. Sakorn, N. Somboon. Stability and dynamic performance improvement of adaptive full-order observer for sensorless PMSM drive [J]. IEEE Trans. Power Electric,2012,27 (2):588-600.
    [60]T. F. Chan, W.Wang, P. Borsje, et al. Sensorless permanent-magnet synchronous motor drive using a reduced-order rotor flux observer [J]. IET Electric Power Applications,2008,2(2):88-98.
    [61]王颢雄,肖飞,马伟明,等.基于滑模观测器与SPLL的PMSG无传感器控制[J].电机与控制学报.2011,15(1):49-54.
    [62]G Foo, M. F Rahman. Sensorless sliding-mode MTPA control of an IPMSM synchronous motor drive using a sliding-mode observer and HF signal injection [J]. IEEE Trans. Industry Electronic,2010,57 (4):1270-1278.
    [63]苏健勇,李铁才,杨贵杰.基于四阶混合滑模观测器的永磁同步电机无位置传感器控制[J].中国电机工程学报,2009,29(24):98-103.
    [64]I. H. Jung, T. Kozo, I. Sawa, et al. Sensorless rotor position estimation of an interior permanent-magnet motor from initial states [J]. IEEE Transactions on Industry Applications,2003,39(3):761-767.
    [65]A. Piippo, J.Salomaki, J.Luomi. Signal injection in sensorless PMSM drives equipped with inverter output filter [J]. IEEE Trans, on Industry Applications,2008,44(5):1614-1620.
    [66]G. D. Andreescu, C. I. Pitic, F. Blaabjerg. Combined flux observer with signal injection enhancement for wide speed range sensorless direct torque control of IPMSM drives [J]. IEEE Transaction on Energy Conversion,2008,23(2):393-402.
    [67]王灏雄.永磁直驱型风力发电系统中变流器的控制技术研究[D].杭州.浙江大学.2010.
    [68]陈明亮,肖飞,王颢雄,等.直驱型永磁同步风力发电机无传感器控制[J].电机与控制学报,2009,13(6):792-797.
    [69]Liserre M, Dell'Aquila, A. Stability improvements of an LCL-filter based three-phase active rectifier [C]. 33th IEEE in Power Electronics Specialists Conference,2002,1195-1201.
    [70]李欣然,郭希铮,王德伟,等.基于LCL滤波的大功率三相电压型PWM整流器[J].电工技术学报,2011,26(8):79-84.
    [71]孙蔚,伍小杰,戴鹏,等.基于LCL滤波器的电压源型PWM整流器控制策略综述[J].电工技术学报,2008,23(1):90-96.
    [72]Dixon J W, Ool B T. Indirect current control of a unity power factor sinusoidal current boost type three-phase rectifier [J]. IEEE Trans, on Industrial Electronics,1998,35(4):508-515.
    [73]毛鸿,沈琦,李华德.PWM整流器的电影控制策略研究[J].电气传动,2000,30(3):21-23.
    [74]王久和.电压型PWM整流器的非线性控制[M].北京:机械工业出版社.2008.
    [75]Tallam R M, Naik R, Nondah T A. A carrier-based PWM scheme for neutral-point voltage balancing in three-level inverters [J]. IEEE Trans, on Industry Applications,2005,41(6):1734-1743.
    [76]Busquets-Monge S, Bordonau J, Boroyevich D, et al. The nearest three virtual space vector PWM:a modulation for the comprehensive neutral-point balancing in the three-level NPC inverter [J]. IEEE Power Electronics Letters,2004,2(1):11-15.
    [77]Yazdani A, Iravani R A. Generalized state-space averaged model of the three-level NPC converter for systematic DC-voltage-balancer and current-controller design[J]. IEEE Trans. on Power Delivery,2005, 20(2):1105-1114.
    [78]胡存刚,王群京,李国丽,等.基于虚拟空间矢量的三电平NPC逆变器中点电压平衡控制方法[J]. 电工技术学报,2009,24(5):100-107.
    [79]朱连成.无锁相环电压全周期过零检测电路的仿真与设计[J].现代电子技术,2007(9):87-89.
    [80]Se-Kyo Chung. A Phase Tracking System for Three Phase Utility Interface Inverters [J]. IEEE Trans. On Power Electronics,2000,15(3):431-438.
    [81]Vikram Kaura, Vladimir Blasko. Operation of a phase locked loop system under distorted utility conditions [J]. IEEE Trans. On Industry Applications,1997,33(1):58-63.
    [82]S. K. Chung. Phase-locked loop for grid-connected three-phase power conversion systems [J]. IEE Proc-Electr. Power Appl.,2000,147(3):213-219.
    [83]Chong H. Ng, Li Ran. Unbalanced-Grid-Fault Ride-Through Control for a Wind Turbine Inverter [J]. IEEE Trans. On Industry Applications,2008,44(3):845-856.
    [84]Masoud K C, M. Reza I. A method for synchronization of power electronic converters in polluted and variable-frequency environments [J]. IEEE Trans. On Power Systems,2004,19(3):1263-1270.
    [85]Jovcic D. Phase locked loop system for FACTS [J]. IEEE Trans. on Power Systems,2003,18(3):1116-1122.
    [86]王颢雄,马伟明,肖飞,等.双dq变换软件锁相环的精确模型研究[J].电工技术学报,2011,26(7):237-241.
    [87]邓文浪,杨欣荣,朱建林.不平衡负载情况下基于双序dq坐标系双级矩阵变换器的闭环控制研究[J].中国电机工程学报,2006,26(9):70-75.
    [88]章玮,王宏胜,任远,等.不对称电网电压条件下三相并网型逆变器的控制电工技术学报,2010,25(12):103-110.
    [89]Bueno E J, Espinosa F J, Cobreces F, et al. SPLL design to flux oriented of a VSC interface for Wind power applications[C].31st Annual Conference of IEEE Industrial Electronics Society, Raleigh, USA, 2005:2451-2456.
    [90]Awad Hilmy, Svensson Jan, Bollen M J. tuning software phase-locked loop for series-connected converters [J]. IEEE Trans. on Power Delivery,2005,20(1):300-308.
    [91]张桂斌,徐政,王广柱.基于空间矢量的基波正序、负序分量及谐波分量的实时检测方法[J].中国电机工程学报,2001,21(10):1-5.
    [92]Abbey C, Joos G. Effect of low voltage ride through (LVRT) characteristic on voltage stability [C]. IEEE Power Engineering Society General Meeting,2005,2:1901-1907.
    [93]Lazarov V, Apostolov D. PWM inverter power transfer under unbalanced voltage conditions [C]. Proceedings of the First International Symposium Environment Identities and Mediterranean Area, Corte-Ajaccio, France,2006:254-259.
    [94]Magueed F A, Sannino A, Svensson J. Transient performance of voltage source converter under unbalanced voltage dips [C]. Proceedings of the 35th IEEE Annual Power Electronics Specialists Conference, Aachen, Germany,2004:1163-1168.
    [95]张兴,季建强,张崇巍,等.基于内模控制的三相电压型PWM整流器不平衡控制策略研究[J].中国电机工程学报,2005,25(13):51-56.
    [96]Saccomando G, Svensson J, Sanino A. Improving voltage disturbance rejection for variable-speed wind turbines [J]. IEEE Trans on Energy Conversion,2002,17(3):422-428.
    [97]赵紫龙,吴维宁,王伟.电网不对称故障下直驱风电机组低电压穿越技术[J].电力系统自动化,2009,33(21):87-91.
    [98]上海科梁公司.实时分布式仿真与测试[Z].上海科梁科技发展有限公司.2004.
    [99]徐小英,王林.RT-Lab快速控制原型在随动系统的应用[J].系统仿真学报,2006,18(4):1055-1057.
    [100]郑鹤玲.基于RT-LAB的光伏发电实时仿真系统研究[D].北京.北京交通大学.2010.
    [101]杨金波,杨贵杰,李铁才.双三相永磁同步电机的建模与矢量控制[J].电机与控制学报,2010,14(6):1-7.
    [102]唐仁远.现代永磁同步电机理论与设计[M].北京:机械工业出版社.2006.
    [103]Zhao Y F,.Lipo T A. Space vector PWM control of dual three-phase induction machine using vector space decomposition [J]. IEEE Trans. Industry Applications,1995,31(5):1100-1109
    [104]赵金良,杨贵杰,赵品志,等.基于SMO的PMSM磁极位置检测技术[J].哈尔滨工业大学学报.2010,42(1):682-686.
    [105]Feng Y, Yu X, Man Z. Non-singular adaptive terminal sliding mode control of rigid manipulators [J]. Automatica,2002,38(12):2159-2167.
    [106]Feng Y, Yu X, Man Z. Non-singular adaptive terminal sliding mode control of rigid manipulators [J]. Automatica,2002,38(12):2159-2167.
    [107]Harnefors L, Nee H P. A general algorithm for speed and position estimation of AC motors [J]. IEEE Transs. Industrial Electronics,2000,47(1):77-83.
    [108]秦峰,贺益康,刘毅,等.两种高频信号注入法的无传感器运行研究[J].中国电机工程学报,2005,25(5):116-121.
    [109]Pablo Garcia, Fernando Briz, Michael W. Degner, et al. Accuracy, nbandwidth, and stability limits of carrier-signal-injection-based sensorless control methods [J]. IEEE Transactions on Industry Applications,2007,43(5):990-1000.
    [110]Choi C H, Seok J K. Compensation of zero-current clamping effects in high-frequency-signal-injection-based sensorless PM motor drives [J]. IEEE Transactions on Industry Applications. 2007,43(5):1258-1265.
    [111]Nicola B, Silverio B, Jang J H, et al. Comparison of PM motor structures and sensorless control techniques for zero-speed rotor position detection [J]. IEEE Transactions on Power Electronics.2007, 22(6):2466-2475.
    [112]Rusong Wu, Gordon R. slemon. A permanent magnet motor drive without a shaft sensor [J]. IEEE Transactions on Industry Application,1991,27(5):1005-1011.
    [113]秦峰.基于电力电子系统集成概念的PMSM无传感器控制研究[D].杭州.浙江大学.2006.
    [114]Piippo A, Hinkkanen M, Luomi J. Analysis of an adaptive observer for sensorless control of interior permanent magnet synchronous motors [J]. IEEE Transactions on Industry Electronics,2008,55(2): 570-576.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700