风力发电机组控制策略优化与实验平台研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于风能的随机性、间歇性及波动性大等特点,风力发电领域依然有很多问题需要进一步深入研究。控制系统作为风力发电机组能否安全可靠运行的神经中枢,对实现其风能最大捕获、减缓机组疲劳载荷,延长其使用寿命等方面起着举足轻重的作用。同时,也是影响我国风力发电机组国产化进程的重要因素之一。该论文依托重庆市重点科技攻关项目“风电机组系统设计关键技术”(项目编号:CSTC2007AB3052),对风力发电机组的整机建模、控制策略优化、控制算法设计及实验平台构建等进行了深入研究,论文的主要内容及结果如下:
     第一章阐述了世界风力发电的发展趋势,讨论了中国风电产业面临的机遇与风险,指出了目前风力发电机组控制系统的研究现状和存在的问题,给出了论文的主要内容和结构。
     第二章研究了面向控制系统设计的风力发电机组整机模型。依据仿真系统中的“模块化”设计思想,将风力发电机组划分为气动、机械、电气和桨距系统四个主要功能模块,并详细介绍了它们的工作原理和运行特性。特别针对桨距系统提出运用不同的变桨速率限制及动态尾流补偿机制消除其大转动惯量、滞后等不利因素的影响。
     第三章提出一种综合性能的优化控制策略。其主要设计思想:在接近名义工作点之前就开始小范围的调整桨距角,同时配合转矩闭环控制来增加系统在名义工作点的可控性及减缓过渡区功率波动和瞬时载荷突变的范围,以寻求在最大风能捕获和最小机械载荷之间找到一个合适的平衡点。
     第四章,为实现对综合性能优化控制策略的最佳跟踪,设计了三控制器平滑过渡方案。由于过渡区的时变、非线性、强耦合等特征,传统的控制算法难以满足系统的静、动态性能指标。基于模糊神经网络的控制方法,具有无需依赖控制对象精确数学模型和能防止时变、参数扰动等因素的特性,本文在模糊控制器的基础上,设计了利用单个神经元在线调整模糊控制查询表的算法。并以1.5MW变速变桨距风力发电机组为被控对象进行仿真,仿真结果验证了所提控制策略及控制算法对风力发电机组整机性能优化是一种有效可行的方法。
     第五章,为实现风力与风力机之间的柔性连接,依据风洞设计原理,以轴流式通风机为源动力,自制风道作为气动通道,搭建了开放式风洞,创造了更加逼近自然条件下风力机运行的实验环境。又基于硬件在环仿真技术设计方法,构建了风力发电机组实验平台。在此基础上,为实现对风力机最大功率的跟踪要求,设计了控制系统的硬、软件结构。通过仿真与实测数据的对比,结果表明:设计的控制系统能较好的实现对最大功率的跟踪,亦很好的说明搭建的实验平台具有良好可靠性和可行性。
     第六章对论文进行总结,并对以后的研究进行了展望。
Since wind energy possess great randomness, intermittence and fluctuation, wind energy field still has various problems need to be solved. Control system, servers as the brain of wind turbine generator system (WTGS) for safe operation, plays a pivotal role in wind energy capture maximization, system fatigue load reduction, service life extension and etc. Meanwhile, it is one of the key factors for WTGS localization. The work of the dissertation is under the support of The Key Technology of Wind Turbine System Design, Chongqing Key Scientific and Technological Project (Project Number: CSTC2007AB3052). The dissertation conducted in-depth research of WTGS in overall modeling, control strategy optimization, control algorithm design, experimental platform setup and etc. The structural layout of the dissertation is summarized as follows:
     Chapter 1 described worldwide development tendency of wind power technology, discussed the opportunities and risks the wind industry in China has been facing, pointed out the research status and existent problems of WTGS control system, and delivered main content and structure of the dissertation.
     Chapter 2 investigated the entire model of WTGS facing control system design. Based on‘‘module’design concept, divided WTGS into aerodynamics, mechanics, electrics and pitch system four main functional modules, and introduced their working principles and operating characteristics in great detail. Specifically aiming pitch system, proposed applying different pitch rate limit and dynamic wake compensation mechanism to eliminate the influence of unfavorable factors, such as big inertia and delay.
     Chapter 3 forwarded a synthetic performance optimization control strategy. Its main design methodology is to adjust pitch angle in small range before approaching nominal operating point, meanwhile, coordinate with closed-loop torque control to enhance system controllability at nominal operating point and to reduce power fluctuation and transient load jump range, targeted to find balance between maximum wind energy capture and minimum mechanical load.
     Chapter 4 devised the three controller’s smooth transition scheme to fulfill optimum tracking of synthetic performance optimized control strategy. Due to the time-varying, nonlinearity and strong coupling features of the transition region, traditional control methods cannot meet system static and dynamic performance benchmark. The control method, which is based on fuzzy neural network, can be independent of target accurate mathematic model and prevent time-varying, parametric perturbation and other factors. On the basis of fussy controller, an algorithm which can online adjust fuzzy control request form by using single neuron is presented. Applying the algorithm to simulate a 1.5MW variable-speed variable-pitch WTGS validated suggested control strategy and control algorithm and shows it is a feasible method for WTGS overall performance optimization.
     Chapter 5, according to wind tunnel design principle, using axial flow fans as original power and self-made wind duct as tunnel, established open type wind tunnel. The wind tunnel is to realize flexible connection between wind and wind turbine and create more realistic wind turbine operation circumstances. Furthermore, a wind turbine experimental platform has been setup based on hardware-in-the-loop simulation technology design method. To satisfy the tracking requirement for maximum wind turbine power output, the hardware and software structure have been designed as well. Through comparison between simulation and experiment, the results revealed: Designed control system can effectively track the maximum power, and thereby the established experimental platform is reliable and feasible.
     Chapter 6 summarized the dissertation and prospected for the future research work.
引文
[1]王星光.风能在中国古代农业中的利用[J].农业考古,2007,(4):132-153.
    [2]包能胜,陈庆新,姜桐.柔性风力机系统模型参数辨识[J].太阳能学报,1997 18(4):390-394.
    [3] Rohit Tirumala, Ned Mohan. Dynamic Simulation and Comparison of slip Ring Induction Generators Used for Wind Energy Generation [C]. IPEC-Tokyo 2000,1597-1602.
    [4] Mishra Y, Mishra S, Trippathy M, et al. Improving Stability of a DFIG-Based Wind Power System With Tuned Damping Controller[J]. IEEE TRANSACTIONS ON ENERGY CONVERSION,2009,24(3):650-660.
    [5] Tapia G, Santamaria G, Telleria M,et al. Methodology for Smooth Connection of Doubly Fed Induction Generators to the Grid[J]. IEEE TRANSACTIONS ON ENERGY CONVERSION, 2009,24(4):959-971.
    [6]谷兴凯,范高峰,王晓蓉,等.风电功率预测技术综述[J].电网技术,2007,31(S2):335-338.
    [7]陈严,欧阳高飞,叶枝全.大型水平轴风力机传动系统的动力学研究[J].太阳能学报,2003,24(5): 729-734.
    [8]江泽民.对中国能源问题的思考[J].上海交通大学学报,2008,3:1-5,31-33.
    [9]金鑫.风力发电机组系统建模与仿真研究[D].重庆大学,2007.
    [10]叶杭冶.风力发电机组的控制技术[M].北京:机械工业出版社.2007.
    [11] S.E.Thor, P.Weis Taylor. Long-term research and development needs for wind energy for the time frame 2000 to 2020[C]. International Energy Agency Implementing Agreement for Co-operation in the Research and Development of Wind Turbine Systems in Wind Energy, 2002,73-75.
    [12]施鹏飞.风力发电的进展和趋势[J].中国电力,2002,35(9):86-90.
    [13]施鹏飞.从世界发展趋势展望我国风力发电前景[J].中国电力,2003,36(9):54-62.
    [14]孙元章,吴俊,李国杰.风力发电对电力系统的影响[J].电网技术,2007,31(20):55-62.
    [15]姚骏,廖勇,庄凯.永磁直驱式风电机组的双PWM变换协调控制策略[J].电力系统自动化,2008,32(20):88-92.
    [16]陈杰,陈冉,陈志辉,等.定桨距风力发电机组的主动失速控制.电力系统自动化,2010,32(2):98-103.
    [17]刘其辉,贺益康,张建华.并网型交流励磁变速恒频风力发电系统控制研究[J].中国电机工程学报,2006,26(23):109-114.
    [18]贾要勤,曹秉刚,杨仲庆.风力发电的MPPT快速响应控制方法[J].太阳能学报,2004,25(2):171-176.
    [19]纪志成,朱芸,孟涛.风能转换系统的MPPT变增益极值搜索控制[J].电机与控制学报,2009,13(3):414-419.
    [20] Quincy Wang, Liuchen Chang. An intelligent maximum power extraction algorithm forinverter-based variable speed wind turbine systems[A].IEEE Transactions on Power Electronics[C],2004,19(5):1242-1249.
    [21] Bhowmik S, Spec R, Enslin J R. Performance optimization for doubly fed wind turbine generation systems[A].IEEE Trans on IA[C],1999,35(4):949-958.
    [22] Datta R, Ranganathan V T. A method of tracking the peak power points for a variablespeed wind energy conversion system[J].IEEE Transaction on Energy Conversion,2003,18(1):163-168.
    [23] De Battaioto H, Mzntz R J. Dynamical variable structure controller for power regulation of wind energy conversion systems[J]. IEEE Transaction on Energy Conversion,2004,19(4):756-763.
    [24] Battista H D. Dynamical sliding mode power control of wind driven induction generat--ors[J].IEEE Trans.EC,2000,15(4):451-457.
    [25] Mantz R J, Battista H D. Dynamical variable structure controller for power regulation of wind energy conversion systems[J]. IEEE Trans.EC.2004,19(4):756-763.
    [26] Sun Yaoji, Kang Longyun, Shi Weixiang,et al. Robust sliding mode control of variablespeed wind power system[A]. Power Electronics and Motion Control Conference[C], 2004,3:1712-1716.
    [27] Lee D C, Lee G M, Lee K D. DC-bus voltage control of three-phase AC/DC PWM converters using feedback linearization[J].IEEE Transactions on Industry Applications, 2000,36(3):826-833.
    [28] Savaresi S M. Exact feedback linerazation of a fifth order model of synchronous generators[J]. IEEE Proceedings of Control Theory and Applications,1999,146(1):53-57.
    [29] Torres E, Garcia-Sanz M. Experimental results of the variable speed direct drive multi-pole synchronous wind turbine TWT1650 [J].Wind Energy, 2004,7(9):109-118.
    [30]王志国.风力发电机组性能分析的模糊综合评判方法[J].太阳能学报,2004,25:177-181.
    [31]刘新海,于书芳.模糊控制在大型风力发电机组控制中的应用[J].自动化仪表,2004,25(5):13-17.
    [32]张新燕,王维庆,程静.用BP网络进行变速风力发电机组分析[J].重庆大学学报,2005,28(11):66-68.
    [33]杨秀媛,肖扬,陈树勇.风电场风速和发电功率预测研究[J].中国电机工程学报,2005,25(11):1-5.
    [34]贾要勤.风力发电试验用模拟风力机[J].太阳能学报,2004,25(6):735-739.
    [35] Kenneth Thoms, Heige Aagaard Madsen Peration. A new simulation method for turbine in wake applied to extreme response during operation[J].Wind Energy,2007,6(8):35-47.
    [36]马洪飞,张薇,李伟伟.基于直流电机的风力机模拟技术研究[J].太阳能学报,2007,28(11):1278-1283.
    [37]张迎飞,袁越,陈小虎.风力机参数的可辨识分析[J].电力系统自动化,2009,33(6):86-89.
    [38]蒋华庆,柴建云,曹冬宇.基于dSPACE的大型风电机组系统控制器测试平台的研制[J].电机与控制应用,2007,34(11):47-50.
    [39]颜南明,张羽南,刘春光等. MATLAB环境下的分布式硬件在环仿真技术研究[J].系统仿真学报,2010,22(8):1866-1889.
    [40]李兴国,何玉林,金鑫.风力发电机组系统建模与仿真[J].重庆大学学报,2008,31(8):1226-1230.
    [41]苏勋文,米增强,陈盈今,等.基于运行数据的风电机组建模方法[J].电力系统保护与控制,2010,38(9):50-55.
    [42]李晶,王伟胜,宋家华.变速恒频风力发电机组的建模与仿真[J].电网技术,2003,27(9):14-17.
    [43] Ekanayake, J.B. Holdsworth, L. etc. Dynamic modeling of doubly fed induction generator Wind Turbines[J]. IEEE Transactions on Power Systems ,2003,18(2):803-809.
    [44]刘雄,陈严,叶枝全.水平轴风力机气动性能计算模型[J].太阳能学报, 2005, 26(6):792-800.
    [45] Moriarty P J, Hansen A C. AeroDyn Theory Manual[EB/OL].http:/wind nrel.gov/design codes/simulators/.
    [46]耿华,杨耕.变速变桨距风电系统的功率水平控制[J].中国电机工程学报,2008,28(25):130-137.
    [47] M.Machmoum, F. Poitier, et al. Dynamic Performances of a Doubly-fed Induction Machine for a Variable-speed Wind Energy Generation[J]. International Conference on Power System Technology. 2002, 12(4): 2431– 2436.
    [48]王生铁,张润和,田立欣.小型风力发电系统最大功率控制扰动法及状态平均建模与分析[J]太阳能学报,2006,27(8):828-834.
    [49] B.Boukhezzar, H.Siguer didjane. Nonlinear control with wind estimation of a DFIG variable speed wind turbine for power capture optimization[J]. Energy Conversion and Management. 2009,50(4):885-892.
    [50] Luo Changling, Banakar H, Shen Baike, et al. Strategies to smooth wind power fluctuations ofwind turbine generator[J].IEEE Trans. On Energy Conversion,2007,22(2):341-349.
    [51]曾志勇,往清灵,冯婧。变速恒频双馈风力发电负载并网控制[J]。电力系统保护与控制,2009,37(15):33-37.
    [52] Teodorescu R, Blaabjerg F. Flexible control of small wind turbines with grid failure detection operating in stand-alone and grid-connected mode[J]. IEEE Transactions on Power Electronics,2004,19(5):1323-1332.
    [53]吴学光,张学成等.异步风力发电系统动态稳定性分析的数学模型及其应用[J].电网技术, 1998, 22(6):68-72.
    [54] P.Schaak, T.G. van Engelen, E.L. van der Hooft,et al. Ontwikkeling van een gereedschap voor het ontwerpen van wind turbine regelingen[A]. Technical Report (ECN-C–03-133)[C]. ECN Petten,2004,9-35.
    [55]沈辉.精通SIMULINK系统仿真与控制[M].北京大学出版社. 2003.
    [56]薛定宇,陈阳泉.基于MATLAB/SIMULINK的系统仿真技术与应用[M]..北京:清华大学出版社,2006,77-92.
    [57] Veer P S, Buterfield S. Extreme load estimation for wind turbine: issues and opportunities for improved practice[C].Technical Report AIAA-2001-0044,Sandia National Laboratories,USA,2001.
    [58] Cutululis N A, Bindner H, Munteanu I, et al. Model for assessing power fluctuations from large wind farms[C]. Proceedings of the 2007 European Wind Energy Conference and Exhibition,2007, 1-9.
    [59] Burton T, Sharp D, Jenkins N, et al. Wind energy handbook[M].NewYork: John Wiley&Sons,2001.
    [60] S?renson P, Cutuluis N A, Hjerrild J, ea al. Power fluctuation form large offshore wind farms[C].Proceedings of the Nordic Wind Power Conference,2006.
    [61] Saad-Saoud Z, Jenkins N. Models for predicting flicker induced by large wind turbine[J].IEEE Transactions on Energy Conversion,1999,14(3):743-748.
    [62] Corbet D.C,Morgan C.A. Passive control of horizontal axis wind turbine[C]. Proceeding of the 13th BWEA Conference,1991,131-136.
    [63] Joose P.A, Kraan I. Development of a tentortube for blade tip mechanisms[C]. Proceeding of the 14th European Wind Energy Conference,1997,638-641.
    [64] Ji-Hong Liu, Da-Ping Xu, Xi-Yun Yang. Multi-objective power control of a variable speed wind turbine based Hinfinity on theory[C]. IEEE international Conference on Machine Learning and Cybernetics (ICMLC),2008,2036-2041.
    [65]杨俊华,吴捷,杨金明等.风力发电系统中的最优控制策略综述[J].微特电机,2004,(3):39-42.
    [66] Boukhezzar B, Lupua L, Siguerdidjane H,et al.Multivariable control strategy for variable speed variable pitch wind turbines[J].RENEWABLE ENERGY.2007,32(8):1273-1287.
    [67]刘其辉,贺益康,张建华.交流励磁变速恒频风力发电机的最优功率控制[J].太阳能学报,2006,27(10):1014-1020.
    [68] A. M. Knight, G. E. Peters, Simple Wind Energy Controller for an Expanded Operating Range[J]. IEEE Trans Energy Conversion,2005,20(2):459-466.
    [69] Datta R, Ranganathan V T. A method of tracking the peak power points for a variablespeed wind energy conversion systems[J].IEEE Transactions on Energy Conversion,2003,18(1):l63-l68.
    [70]吴国祥,黄建明,陈国呈,等.变速恒频双馈风力发电运行综合控制策略[J].电机与控制学报,2008,12(4):435-441.
    [71]朱卫平,王秀丽,王锡凡.变速变频风力发电系统最优风能捕获运行方式[J].电力系统自动化,2009,33(11):94-98.
    [72]曹军,张榕林,林国庆等.变速恒频双馈电机风电场电压控制策略[J].电力系统自动化,2009,33(4):87-91.
    [73]廖勇,何金波,姚骏,等.基于变桨距和转矩动态控制的直驱永磁同步风力发电机功率平滑控制[J].中国电机工程学报,2009,29(18):71-77.
    [74]卞松江,吕晓美,相会杰.交流励磁变速恒频风力发电系统控制策略的仿真研究[J].中国电机工程学报.2005,25(16):57-62.
    [75] Muyeen S M,Takahashi R,Murata T, et al. A Variable Speed Wind Turbine Control Strategy to Meet Wind Farm Grid Code Requirements[J].IEEE TRANSACTIONS ON POWER SYSTEMS,2010,25(1):331-340.
    [76] SCHINAS N A,VOVOS N A,GIANNAKOPOULOS G B.An autonomous system supplied only by a pitch controlled variable speed wind turbine[J].IEEE Trans on Energy Conversion,2007,22(2):325-331.
    [77]姚兴佳,温和熙,邓英.变速恒频风力发电系统变桨距智能控制[J].沈阳工业大学学报,2008,30(2):159-163.
    [78] Lotfi Krichen, Bruno Francois and Abderrazak Ouali. A fuzzy logic supervisor for active and reactive power control of a fixed speed wind energy conversion system[J].Electric Power Systems Research,2008,78(3):481-424.
    [79] T.Takagi, M.Sugeno. Fuzzy identification of systems an its application to modeling and control[J].IEEE Trans.On SMC,1995,1(15):115-132.
    [80]林勇刚,李伟,陈晓波等.大型风力发电机组独立桨叶控制系统[J].太阳能学报,2005,26(6):780-786.
    [81] Anca Hansn, Florin Iov, Poul Sorensen,et al. Overall control strategy of variable speed doubly-fed induction generator wind turbine[C].Nordic wind power conference,G?teborg,Sweden,2004.
    [82]邢钢,郭威.风力发电机组变桨距控制方法研究[J].农业工程学报,2008,24(5):181-185.
    [83] Bossanyi E A. The design of closed loop controllers for wind turbines[J].Wind Energy,2000,(3):149-163.
    [84]宋新甫,梁波.基于模糊自适应PID的风力发电系统变桨距控制[J].电力系统保护与控制,2009,37(16):50-55.
    [85] Irfan Guney, Yukset Oguz, Fusun Serteller. Dynamic behavior model of permanent magnet synchronous motor fed by PWM inverter and fuzzy logic controller for stator phase current, flux and torque control of PMSM [C]. IEEE Proceeding from Electric Machines and Drives Conference, 2001, 12-17: 479-485.
    [86]周长发.科学与工程数值算法[M].北京:清华大学出版社,2002.
    [87]姚兴佳,张雅楠,郭庆鼎,等.大型风电机组三维模糊控制器设计与仿真[J].中国电机工程学报.2009,29(26):112-117.
    [88]刘军.基于FNN的无刷直流电机控制装置及稳速技术的研究[D].西南大学,2007.
    [89]薛定宇,陈阳泉.基于MATLAB/SIMULINK的系统仿真技术与应用[M].北京:清华大学出版社, 2006, 151-186.
    [90] Lee Donghoon, Multi-flexible-body Analysis for Application to Wind Turbine Control Design[D].Doctoral Thesis. Georgia Institute of Technology, 2003.
    [91] R I Rawlinson-Smith, Load calculations for a Generie1.5MW Wind Turbine to IECⅡA Conditions[R], January 2004.
    [92] Rolf Hoffmann. A comparison of control concepts for Wind Turbines in terms of energy capture[J]. Doctor thesis. Technology University Darmstadt, 2002.
    [93] Yao Xingjia, Wang Xiaodong, Xing Zuoxia, et al. Individual pitch control for variable speed turbine blade load mitigation[C].IEEE international Conference on Sustainable Energy Technogies,2008,pp.769-772.
    [94]孔屹刚,王志新.大型风电机组模糊滑模鲁棒控制器设计与仿真[J].中国电机工程学报,2008,28(14):136-141.
    [95]王东风,贾增周,孙剑等.变桨距风力发电系统的滑模变结构控制[J].华北电力大学学报,2008,35(1):1-4.
    [96] A. Z. Mohamed, M. N. Eskander, F. A. Ghali. Fuzzy logic control based maximum power tracking of a wind energy system[J], Renewable energy, Vol.23, No2, 2001.
    [97] Xiao Yunqi, Xu Daping, LüYuegang. The maximal wind-energy tracing control of variable-speed constant-frequency wind generation system based on fuzzy logic[C].Proceeding of the 26th Chinese Control Conference,China,2007:294-298.
    [98] GL风能有限公司联合风能委员会.风力发电机验证标准[M].德国风能船级出版社, 2003版.
    [99]张雏智,李方洲,张晖等.小型水平轴风力发电机风洞试验[J].风力发电,2004,20(1):24-30.
    [100]伍荣林,王振宇.风洞设计原理[M].北京:北京航空学院出版社,1985.
    [101]贺德馨等.风工程与工业控制动力学[M].北京:国防工业出版社,2006,64-76.
    [102]林勇刚,徐立,李伟等.电液比例变桨距风力机半物理仿真试验台[J],中国机械工程, 2005, 16(8):33-39.
    [103]叶杭冶,李伟,林勇刚,等.基于半物理仿真的变速恒频独立变桨距控制[J].机床与液压,2009,37(1):90-93.
    [104] Robert Paku, Cristian Popa, Mircea Boja, Richard Marschalko,“Appropriate Control Methods for PWM ac-to-dc Converters Applied in Active Line-Conditioning,”Technical University, Cluj, Romania,2006, pp.573-579.
    [105] Ince Kayhan, Weiss Helmut, Arslan Seyit . Practical Efficiency Improvement at Electric Power Conversion System for Small Wind Turbines[C]. 16th Int. Conference on Electrical Drives and Power Electronics Slovakia,2007.
    [106] D. C. Lu, K. W. Cheng, Y. S. Lee, A single-switch continuous conduction-mode boost converter with reduced reverse-recovery and switching losses[J], IEEE Trans. Ind. Electron., 2003,50(4):767-776.
    [107]王小茹,丁亚,李鹏.程序设计实例解析丛书Visual C++6.0实例解析[M].北京:北京大学出版社,2000.
    [108] Kalantar M. Dynamic behavior of a stand-alone hybrid power generation system of wind turbine, microturbine, solar array and battery storage[J].Applied Energy,2010,87(10) 3051-3064.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700