基于双PWM变换器的直驱型风力发电系统全功率并网变流技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
风能作为绿色无污染的可再生能源具有良好的发展前景,目前世界各国都日益重视风能的开发和利用。随着风电产业的迅速发展,直驱型风力发电系统以其诸多优点引起了广泛关注,成为当前研究热点之一,而全功率变流器控制技术是直驱型风力发电系统的核心技术。
     本文以双PWM变换器为研究对象,围绕永磁直驱型风力发电系统全功率变流技术展开研究。
     首先对永磁直驱同步发电机(PMSG)进行了探讨,包括变速恒频技术的特点、PMSG风力发电系统变换器的拓扑结构,并以基于双PWM变换器拓扑结构的PMSG风力发电系统的变流技术作为本论文研究的核心。
     其次基于双PWM变换器的永磁直驱同步风力发电系统的工作原理,分析了永磁直驱同步电机系统的数学模型,包括风力机模型、轴系数学模型、全功率变流器的数学模型。
     然后针对永磁直驱同步电机的双PWM变换器,基于矢量控制技术分析研究了相应的控制策略,重点分析了零d轴电流矢量控制策略和电压定向矢量控制策略,并通过仿真验证了这两种控制策略的有效性。
     最后,对在电网电压发生跌落故障时直驱型风力发电机网侧变流器的动态运行情况进行了详细的分析,并运用仿真模拟电网电压跌落故障时直驱风力发电统的运行状态,以及分析如果不采取措施可能对风力发电系统所造成的损害。在介绍低电压穿越概念的基础上,分析了一种基于耗能Crowbar加卸荷电路的低电压保护方案,在此基础上设计了一种加卸荷电路的网侧控制策略,通过仿真结果验证了这种方法有效可靠,能够帮助永磁直驱风电机组在电网发生电压跌落故障时实现低电压穿越。
As a kind of pollution-free and green renewable energy, wind power has a very promising future, many countries attach great importance to the development and use of wind energy, As wind power industry develops rapidly, direct-driven wind power system attracted wide attention for many advantages, it is now one of the current research focus, while the full-scale power converter control technology is the core technology of direct-driven wind power generation system.
     This dissertation researches on full-scale grid-connected power conversion technology for direct-driven wind generation system based on back-to-back PWM converter.
     Firstly, the direct-driven wind turbine with permanent magnet synchronous generator(PMSG) is discussed, which includes the feature of variable speed constant frequency, the topological structure of D-PMSG wind turbine systems converter, base on the topological structure of back-to-back PWM convertor. The power conversion technology for D-PMSG base on the topological structure of back-to-back PWM convertor is built as the core of this dissertation;
     Secondly, the mathematical model of D-PMSG wind turbine systems, which includes the model of wind turbine, the mathematical model of shaft-line, the model of full-scale power convertor is analyzed through the research on the principle of D-PMSG wind turbine systems based on back-to-back PWM convertor;
     Thirdly, aims at the back-to-back PWM convertor of D-PMSG and reposes on the technique of vector control, mainly analyzes on the control principle of the zero d-axis current vector in the motor-side and the voltage-oriented vector control principle for the grid-side. The validity of these two control methods is confirmed through the Matlab/Simulink simulation;
     Finally, the operational aspect of the converter of directly-driven wind generation system when grid voltage dips is analyzed in detail, then the running state of the D-PMSG when grid voltage dips is simulated by Matlab/Simulink, describes the possible damages of the system if we don't take any effective measures. After introducing the concept of LVRT, a method of adding a damping load to protect the system based on power dissipative crowbar is analyzed, and the related module of control methods is designed, this method is confirmed effective and reliable through the Matlab/Simulink simulation, it can help the D-PMSG to ride through the low voltage during the breakdown time.
引文
[1]世界可再生能源政策委员会, 《世界可再生能源发展展望2010》[R].2011.
    [2]易跃春.风力发电现状发展前景以及市场分析[J].国际电力,2004,(10):54-59.
    [3]迟永宁.大型风电场接入电网的稳定性问题研究[D].中国电力科学研究院博士学位论文.2006.
    [4]全球风能协会,《Global Wind Report 2010》 [R].2011.
    [5]全球风能协会,《GLOBAL WIND STATISTICS 2010》 [R].2011.
    [6]何祚庥,王亦楠.风力发电是我国能源和电力可持续发展战略的最现实选择.上海电力,2005,(1):8-18.
    [7]国际新能源网.我国风能资源详查评估取得了重要成果[EB/OL].(2010-01-11)[2011-04-20]http://newenergy.in-en.com/html/newenerg v-1145114592550006.html
    [8]中国可再生能源学会风能专业委员会,((2010年中国风电装机容量统计》[R].2011.
    [9]中国农机工业协会风能设备分会,《2009-2010年国内外风电产业发展报告》[R].2010.
    [10]中国风电材料设备网.2010年我国风电产业发展回顾与展望[EB/OL].(2011-02-25)[2011-04-25]http://www.cnwpem.com/web.php?wid=22 &cid=8600&page=1
    [11]李杰.直驱式风力发电变流系统拓扑及控制策略研究[D].上海大学博士学位论文,2009:13.
    [12]S F Pinto, L Aparicio, P Esteves. Direct Controlled Matrix Converters in Variable Speed Wind Energy Generation Systems. Power Engineering, Energy and Electrical Drives,2007. POWERENG 2007. International Conference on.12-14 April 2007 Page(s):654-659.
    [13]金玉洁,毛承雄,王丹等.直驱式风力发电系统的应用分析[J].能源工程,2006,(3):29-33.
    [14]陈瑶.直驱型风力发电系统全功率并网变流技术的研究[D].北京交通大学博士学位论文.2008:7-8.
    [15]X D Huang, T Nergaard, J S Lai. A DSP based controller for high-Power interleaved boost converters.18th, Annual-IEEE Applied Power Electronics conference and Exposition, Miami Beach, FL, United States,2003,1:327-333.
    [16]P Andreassen, T M Undeland. Digital control techniques for current mode control of interleaved quasi square wave converter.36th IEEE Power Electronics specialists conference,2005:910-914.
    [17]尹明,李庚银,张建成,等.直驱式永磁同步风力发电机组建模及其控制策略[J].电网技术,2007,31(15):61-65.
    [18]张梅,何国庆,赵海翔,张靠社.直驱式永磁同步风力发电机组的建模与仿真[J].中国电力.2008,41(6):79-84.
    [19]李建林,高志刚,胡书举.并联背靠背PWM变流器在直驱型风力发电系统的应用[J].电力设备自动化,2008,5(32):59-62.
    [20]Monica Chinchilla, Santiago Arnaltes. Control of Permanent Magnet Generators Applied to Variable-Speed Wind- Energy Systems Connected to the Grid[J]. IEEE,2006,21(1):130-135.
    [21]姚骏,廖勇,瞿兴鸿,刘刃.直驱永磁同步风力发电机的最佳风能跟踪控制[J].电网技术.2008,32(10):11-15.
    [22]T Tafticht, K Agbossou, A Cheriti. DC Bus Control of Variable Speed Wind Turbine Using a Buck-boost Converter[J].2006 IEEE Power Engineering Society General Meeting, PES,(1):1-5.
    [23]刘其辉,贺益康,赵仁德.变速恒频风力发电系统最大风能追踪控制[J].电力系统自动化,2003,27(20):62-67.
    [24]T Thiringer, J Linders. Control by variable rotor speed of a fixed-pitch wind turbine operating in a wide speed range. IEEE Transactions on Energy Conversion,1993,8(3):520-526.
    [25]李晶,方勇,宋家骅,等.变速恒频双馈风电机组分段分层控制策略的研究[J].电网技术,2005,29(9):15-21.
    [26]苑国锋,柴建云,李永东.变速恒频风力发电机组励磁变频器的研究[J].中国电机工程学报,2005,25(8):90-94.
    [27]卞松江,吕晓美,相会杰,等.交流励磁变速恒频风力发电系统控制策略的仿真研究[J].中国电机工程学报,2005,25(16):57-62.
    [28]苑国锋,柴建云,李永东.新型转子电流混合控制的变速恒频异步风力发电系统[J].电网技术,2006,30(15):76-80.
    [29]佘岳,欧阳红林,高平,李龙文.三相SVPWM整流器在风能最大功率点追踪中应用[J].电力自动化设备,2006,26(5):19-22.
    [30]邓秋玲,谢秋月,黄守道,姚建刚.直驱永磁同步风力发电机系统研究[J].微电机,2008,4(6):53-56.
    [31]门耀民,范瑜,汪至中.永磁同步电机风力发电系统的自寻优控制[J].电工技术学报,2002,17(6):82-86.
    [32]冯哲峰,杨恩星,陈国柱.直驱永磁风力发电机的单位功率因数控制[J].机电工程,2007,24(9):70-73.
    [33]胡炎中,谢运祥.三相交错并联Boost DC/DC变换器设计与研制.电力电子技术,2006,40(2):45-47.
    [34]P PIllay, R Krishnan.Modeling, simulation, and analysis of permanent-magnet motor drives, Partl:the permanent-magnet synchronous motor drive.IEEE Transactions on Industry Applications,1989:265-273.
    [35]N Urasaki, T Senjyu, K Uezato.An accurate modeling for permanent magnet synchronous motor drives.15th Annual IEEE Applied Power Electronics conference and Exposition,2000,1:387-392.
    [36]Shigeo Morimoto, Hideaki Nakayama, Masayuki Sanada. Sensorless output maximization control for variable-speed wind generation system using IPMSG[J]. IEEE Transaction on industry application,2005,41(1):60-67.
    [37]Chen Z, Spooner E.A solid-state Synchronous voltage source with low harmonic distortion. International Conference on Opportunities and Advances in International Electric Power Generation,1996:158-163.
    [38]Esmaili R, Xu L, Nichols D. A new Control method of permanent magnet generator for maximum power tracking in wind turbine application[J].IEEE Power Engineering Society General Meeting,2005:1162-1167.
    [39]曹娜,李岩春,赵海翔等.不同风电机组对电网暂态稳定性的影响[J].电网技术,2007,31(9):53-57.
    [40]B K Bose. Modern Power electronics and AC drives. Beijing:China Machine Press,2003.
    [41]J R Rodriguez, J W Dixon, J R Espiooza, et al. PWM regenerative rectifiers: state of the art[J]. IEEE Transactions on Industrial Electronics,2005,52(1): 5-22.
    [42]张崇巍,张兴.PWM整流器及其控制.北京:机械工业出版社,2003.
    [43]M P Kazlnierkowski, L Malesalli. Current control techniques for three-phase voltage-source PWM converters:a survey. IEEE Transactions on Industrial Electronics,1998,45(5):691-703.
    [44]G Joos, H Pinheiro, K Khorasani.DSP implementation of neural network-based controller for voltage PWM rectifier neural. IEEE TENCON Digital Signal Processing Applications Proceedings, Perth, WA, Australia,1996,2:883-888.
    [45]伍小杰,罗悦华,乔树通三相电压型PWM整流器控制技术综述[J].电工技术学报,2005,20(12):7-11.
    [46]刘观起,张书梅,张家吉.改进SVPWM在直驱型风电并网控制中的仿真研究[J].电力科学与工程,2011,27(1):11-14.
    [47]李燕,梁英.永磁直驱风电系统电压源型变流技术[J].电力系统及其自动化学报,2010,22(1):65-70.
    [48]金钊,刘炳.电压跌落分析与对策[J].电力设备,2006,7(4):63-66.
    [49]姚骏,廖勇,庄凯.电网故障时永磁直驱风电机组的低电压穿越控制策略[J].电力系统自动化,2009,33(12):91-95.
    [50]李建林,许鸿雁,梁亮,等VSCF-DFIG在电压瞬间跌落情况下的应对策略[J].电力设备自动化,2006,19(30):65-68.
    [51]肖磊.直驱型永磁风力发电系统低电压穿越技术研究[D].湖南大学硕士学位论文.2009.
    [52]张光听.直驱风电并网变流器低电压穿越技术研究[D].北京交通大学硕士学位论文.2010.
    [53]胡书举,李建林,许洪华.直驱式VSCF风电系统直流侧Crowbar电路的仿真分析[J].电力系统及其自动化学报,2008,20(3):118-123.
    [54]胡书举,李建林,李梅.风电系统实现LVRT的电网电压跌落检测方法[J].大功率变流技术,2008,(6):17-21.
    [55]Ding Kai, Cheng K W E, Xue X D, et al. A Novel Detection Method for Voltage Sags[C].2006 2nd International Conference on Power Electronics Systems and Applications, ICPESA,2006.
    [56]叶杭冶.风力发电机组的控制技术[M].机械工业出版社,2005.
    [57]李建林.风力发电中的电力电子变流技术[M].机械工业出版社,2009.
    [58]张子皿.直驱型风力发电系统变流控制技术的研究[D].华北电力大学硕士学位论文.2010.
    [59]王砚帛.风电场建模及风电场能量管理系统的设计[D].西南交通大学硕士学位论文.2011.
    [60]张兴,张龙云,杨淑英等.风力发电低电压穿越技术综述[J].电力系统及其自动化学报,2008,20(2):1-8.
    [61]肖湘宁.电能质量分析与控制[M].中国电力出版社,2004:120-134.
    [62]李建林.全功率变流器永磁直驱风电系统低电压穿越特性研究[J].电力系统自动化,2008,32(19):29-33.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700