离心泵叶轮不等扬程水力设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
离心泵广泛应用于农业排灌、市政、轻工、化工、建筑、矿山和冶金等部门。随着社会进步和科技发展,人们对泵的高效率、稳定性和低噪声等方面提出了更苛刻的要求。目前广泛采用的离心泵叶轮水力设计方法,主要是以Stepanoff的经验系数方法为基础的相似设计法。这种方法的特点是总结了前人设计制造经验,特别是应用计算机以后,建立了优秀水力模型的数据库,这样,根据所需要的流量、扬程,从数据库选出合适比转数的水力模型设计一台相似泵,满足生产上的需要。但是,随着近年来对离心泵设计工况点的参数(如流量、扬程等)的精度要求越来越高,传统一元理论日益显示出在设计方面的不足。
     本文通过对3种离心泵方案等扬程设计研究,发现等扬程设计离心泵在叶片出口处流动并不理想,通过采用不等扬程设计方法,分别对3种离心泵方案进行了水力设计,获得了较好的叶片出口总压,静压及流速分布。并结合数值模拟CFD技术,对两种设计结果进行定常和非定常数值模拟,证实了不等扬程设计离心泵叶片方法的优越性,最后分别对等扬程设计的离心泵和不等扬程设计的离心泵进行试验研究和比较分析,进一步证实了不等扬程设计离心泵叶轮理论的正确性。
     本文主要的研究工作及创新点有:
     1.全面系统地分析了国内外离心泵水力设计方法的研究现状及进展,对传统离心泵水力设计中的相似换算法、速度系数法、面积比原理、优化设计法、三元理论等进行了较为详细的介绍,阐述了数值模拟技术在离心泵水力设计中的重要性,指出了现有水力设计方法存在的不足,并介绍了不等环量设计法在风机和轴流泵方面的研究及应用情况。
     2.首次提出了离心泵叶轮不等扬程水力设计方法。通过对传统离心泵水力设计方法的研究发现,传统离心泵水力设计方法会导致叶轮叶片出口处流动不理想,本文首次通过采用不等扬程法进行离心泵水力设计,获得了较好叶片出口总压、静压及流速分布。
     3.首次运用CFD技术分析了采用不等扬程法设计的离心泵内部定常和非定常流动。定常计算得到了各模型的静压、绝对速度、相对速度、蜗壳断面速度及叶轮出口前后盖板的压力分布,初步揭示了模型泵内的流动规律,分析对比了采用不等扬程设计及等扬程设计的水力性能,总结出采用不等扬程设计优点,并根据不同流量下模型的计算结果进行数据统计,绘制出预测的性能曲线,结果表明采用不等扬程设计中的方案一为最佳设计模型。非定常数值模拟证实了由于叶轮旋转和蜗壳之间的相互作用在离心泵内流动呈现出较强的非定常性,不仅同一时刻叶轮各流道的流动结构有差别,就是同一流道在旋转过程中流动结构也在不断变化,呈现出周期性的波动,致使蜗壳内部沿圆周各位置均存在周期性的压力脉动,压力脉动幅频普的最大幅值对应的频率值为主频与叶片数的乘积,并获得了产生压力脉动的主要影响因素。
     4.根据数值模拟结果可以实现对泵性能的预测,而通过与外特性试验所得的性能曲线的对比,则又可从一定程度上实现对数值模拟准确性的评估,验证数值预测的可信度。从各个模型数值模拟与实验数据对比表与图中可以看出,模拟结果和实验结果有一定的差距,但总体趋势一致,即在数值模拟中水力性能好的实验结果也比较理想。主要原因:预测值仅为水力效率,未考虑机械效率和容积效率,并且数值模拟把离心泵内的流动理想化了,而实际运行时不可能那么理想且实际运行中可能会产生气泡,所以数值预测的扬程普遍高于试验值。误差的大小与叶片数的多少有关系:叶片数越少,误差越大。
     5.首次将不等扬程水力设计方法应用于双叶片污水泵、自来水厂取水泵和核电站冷却水循环泵的水力设计,结果表明:(1)设计的双叶片污水泵水力性能很好,扬程曲线呈直线下降,无驼峰,高效区宽。(2)设计的自来水厂取水泵,在设计工况点效率达到最高值,最高效率η=85%,与KSB公司的同类产品效率η=82%相比,提高了3个百分点,效率指标达到国际先进水平。(3)设计的核电站冷却水循环泵水力模型效率高,换算到实型泵最高效率92.3%,额定点效率92%,高效区范围宽,效率指标达到同类泵的国际先进水平。
Centrifugal pumps are widely used in agricultural irrigation, municipal works, light industry, chemical industry, construction, mining, metallurgy and other departments. With the development of society and technology, people bring forward higher requirements on the pump's high efficiency, stability and low noise, and other aspects of the more stringent requirements. The hydraulic design methods widely used in centrifugal pump, is mainly based on the experience of Stepanoff similarity coefficient method based design. This method is characterized by a summary of the previous design and manufacturing experience, particularly the application of computer used in building a hydraulic model of the database, then, according to the required flow, head, choose a suitable specific speed hydraulic model from the database to design a similar pump to meet production needs. However, nowadays centrifugal pump operating point parameters (such as flow, head, etc.) increasingly requires high precision, the traditional unitary theory increasingly shows the deficiency of the design.
     Through the design research programs of three centrifugal pump with the same head, it's found that the blade outlet flow of centrifugal pump is not ideal; using differ head design method, respectively, in three centrifugal pumps hydraulic design, Good blade export total pressure program were obtained good blade export total pressure, static pressure, static pressure and velocity distribution are obtained. CFD and numerical simulation technology is used in the two design methods for steady and unsteady numerical simulations, confirming the superiority of the design method for centrifugal pump blades. Finally Experimental studies and comparative analysis in the design of centrifugal pumps using differ head design method and equal head method is done, which further confirmed the correctness of the design theory of centrifugal pump impeller. In the paper, the research work and innovations are:
     1. Comprehensive and systematic analysis of the hydraulic design of centrifugal pumps Research and Development of methods at home and abroad, the traditional centrifugal pump for the hydraulic design of similar algorithms, the speed coefficient, area ratio principle, optimal design method, ternary theories were introduced describing a wide range of application progress of numerical simulation in the hydraulic design of centrifugal pumps, pointing out the current method of hydraulic design deficiencies, and presenting differ chordwis circulation design method in circulation areas such as fans and axial flow Research and Application.
     2. Differ head design method is introduced in centrifugal pump impeller hydraulic design for the first time. Through the study of traditional method of centrifugal pump hydraulic design,it has been found that the traditional method of hydraulic design of centrifugal impeller will lead to unsatisfactory flow in the blade outlet, while using differ head method in the design of centrifugal pump, can get a good blade outlet total pressure, static pressure and velocity distribution.
     3. CFD technology is used in the design of the centrifugal pump to analyze the steady and unsteady flow in the centrifugal pump designed by differ head method. In the steady calculation,static pressure of each model, absolute speed, relative speed, scroll speed and impeller outlet section of the pressure distribution before and after the cover were obtained, revealing the flow pattern inside the pump mode. Through analysis and comparison of differ design and equal head design of hydraulic performance, the advantages obtained by differ head method is obvious and according to the flow rate statistics in different models, forecast performance curve has been drawn, summarized the design of programs using differ head method was the best design model.
     The combination of unsteady numerical simulation verifies that impeller and volute due to the interaction between the flow in centrifugal pump shows a strong unsteady state, not onlye the flow of the impeller respectively passageway structure at the same time is differential, but also flow structure in the rotation process at the same passageway is also changing, and it shows a cyclical fluctuations, which causes that various locations along the circumferential volute exists in the periodic pressure fluctuation,pressure pulse amplitude and frequency the maximum amplitude of the P values corresponding to the main frequency the product of frequency and number of leaves and produce pressure fluctuation is the main factors resulting in pressure fluctuation.
     4. According to previous simulation results, the pump performance can be predicted, however, compared with the performance curve obtained through the outside performance test, we can also assess the accuracy of numerical simulation certainly to verify the reliability of numerical prediction. The main reason:It only contains the hydraulic efficiency rather than mechanical efficiency and volume efficiency of Predictive value, and the numerical simulation idealized the flow of centrifugal pump,but the actual operation can not be less than ideal and the actual operation may produce bubbles, Therefore, it generally higher than the predicted experimental head. The size of the error number is related with the number of leaf: The more of the leaves, the bigger of the error.
     5. Differ head hydraulic design method is applied to double- blades sewage pump,water plant and nuclear power plants cooling water circulation pumps for the first time, and the results show that:(1) design of double-blades hydraulic sewage pump has a good hydraulic properties, head curve linear decline, no hump, and efficient district wide. (2) water plant pumps, efficiency in the design of the highest operating point value, the maximum efficiencyη=85%, similar products with the efficiency of the company KSBη=82% compared to 3 percent increase, efficiency indicators reaches international advanced level. (3) nuclear power plant cooling water circulation pump hydraulic model has high efficiency. High pump conversion efficiency to the real pump is 92.3%, efficiency rating points is 92%, effective district is wide.And efficiency indicators have reached international advanced level of similar pumps.
引文
[1]International Energy Agency. World Energy Outlook 2008[R]. IEA,2008
    [2]国家发展和改革委员会.“十一五”十大重点节能工程实施意见[R].2007
    [3]中华人民共和国节约能源法.北京:中国法制出版社.2007
    [4]世界气候大会.哥本哈根协议文件(中文版)[R],哥本哈根:世界气候大会,2009
    [5]袁建平.离心泵多设计方案下内流PIV测试及其非定常全流场数值模拟[D].[博十论文],江苏大学,2008
    [6]能源科学学科发展战略研究组.2011-2020年我国能源科学学科发展战略报告[R],2010
    [7]何希杰,劳学苏.泵业市场发展综述.中国建设信息(水工业市场)[J].2009(10):8-12
    [8]隋永滨.中国泵行业的发展亟待突破研发瓶颈[J].机械.2008,35(10):81-81
    [9]Kovats A. Design and performance of centrifugal and axial flow pump and compressors. Pergamun Press Oxford,1964.
    [10]Neumann B. The interaction between geometry and performance of a centrifugal pump. Mechanical Engineering Publications Limited. London,1991
    [11]李昳,袁寿其.低比速离心泵水力设计进展[J].排灌机械,2000,18(1):9-13
    [12]严敬,杨小林.低比转数泵叶轮水力设计方法综述[J].排灌机械,2003,21(3):6-9
    [13]毕尚书,王文新,严敬,等.低比转数离心泵叶轮水力设计新方法综述[J].机械,2008,35(10):4-7
    [14]黄列群,武鹏,薛存球,等.离心式化工流程泵设计技术进展综述[J].机电工程,2009,26(6):1-4
    [15]袁寿其.低比速离心泵理论与设计[M].北京:机械工业出版社,1997
    [16]邹滋祥.相似理论在叶轮机械模型研究中的应用[M].北京:科学出版社,1984
    [17]陈凤军.相似原理在循环泵技术改造中的应用[J].节能,2003(1):33-34
    [18]胡庆喜,陈中豪.相似理论在中浓度纸浆泵设计中的应用[J].造纸科学与技术,2004,23(6):85-88
    [19]云忠,谭建平,彭俊.相似理论在旋转叶轮血泵模型设计中的应用[J].机械工程师,2006(7):47-48
    [20]张根广,张鸣远,杨万英,等.模型血泵相似性设计及验证[J].西安交通大学学报,2008(1):32-35
    [21]薛敦松,黄思.离心泵三元叶轮的优化改型设计[J].水泵技术,1990(4):5-9
    [22]李明,王六玲,朱肇瑞.全三元流理论在离心泵叶轮优化改型中的应用[J].云南师范 大学学报(自然科学版),1994,14(1):22-25
    [23]周永霞,万邦烈.电动潜油离心泵能量平衡试验及叶轮改型设计[J].石油大学学报(自然科学版),1994,18(1):39-44
    [24]黎义斌,王洋.无过载超低比转数离心泵改型设计[J].排灌机械,2006,24(2):7-9
    [25]王洋,何文俊.基于Fluent的无过载离心泵改型设计[J].农业机械学报,2009,40(9):85-88
    [26]孙玉祥.基于CFD数值分析的水泵改型设计[J].水电能源科学,2009,27(3):165-167
    [27]符杰,赖喜德,宋文武,等.基于性能预测的离心泵改型及优化设计[J].流体机械,2009,12(9):14-17
    [28]Stepanoff A J. Centrifugal and axial flow pumps theory design and application[M], John wilay and sons, New York,1957
    [29]Kasia T,戴元安.按比转数进行离心泵叶轮水力设计[J].流体工程,1984,12(5):14-17
    [30]陈次昌.离心泵叶轮主要几何尺寸的计算[J].排灌机械,1985,3(1):34-40
    [31]张俊达,薛国富.速度系数统计[J].水泵技术,1990,1:19-23
    [32]张玉臻.离心泵速度系数设计方法研究[J].流体工程,1995,23(5):14-17
    [33]何希杰,劳学苏.离心泵系数法设计中新的统计曲线和公式[J].水泵技术,1997,5:30-37
    [34]严敬,严利.对美国一种新离心叶轮设计资料的分析[J].农业机械学报,2004,35(3):65-67
    [35]沙毅,康灿,陈燕.基于IS系列离心泵速度系数法水力设计[J].流体机械,2005,4:20-23
    [36]牟介刚,张生昌.CI80-100型离心泵水力模型的设计与试验研究[J].水泵技术,2005,33(4):5-8
    [37]葛宰林,吕斌,于馨.基于速度系数法的离心泵叶轮优化设计[J],大连铁道学院学报2006,27(3):37-40
    [38]刘厚林,探明高,袁寿其.离心泵理论扬程的计算[J].农业机械学报,2006,37(12):65-67
    [39]自小榜,沙毅,李金磊.混流泵速度系数法水力设计探讨[J].水泵技术,2008,5:11-15
    [40]虞俊.国外叶片泵水力设计的研究现状[J].流体工程,1985,13(11):31-37.
    [41]蒋树德.现代离心泵的水力设计方法[J].流体工程,1983,14(10):28-35.
    [42]Anderson H H. Mine pumps. Journal of Mining Socity,1938
    [43]Worster R C. The flow in volutcs and its effects on centrifugal pump performance.Proc.I Mech.E.1963,177(31).
    [44]Anderson H H.The area ratio system[J]. Word Pumps,1984(June):201-211
    [45]郭自杰,金忠正.面积比原理的探讨[J].水泵技术,1982(3):34-37
    [46]罗崇来.离心泵压水室喉部面积探讨[J].水泵技术,1986(4):28-29
    [47]郭自杰.涡壳泵面积比原理讨论[J].排灌机械,1989,7(2):1-4
    [48]张俊达.面积比系数的统计[J].水泵技术,1991(2):28-29
    [49]袁寿其,曹武陵,陈次昌.面积比原理和泵的性能[J].农业机械学报,1993,24(2):36-41
    [50]杨虎军,张人会,王春龙,等.低比转数离心泵的面积比原理[J],兰州理工大学学报2006,32(5):53-55
    [51]杨虎军,张人会,王春龙,等.计算离心泵面积比和蜗壳面积的方法[J],机械工程学报2006,42(9):67-70
    [52]刘在伦,梁森,魏清顺.基于面积比原理的水泵设计方法[J].农业机械学报,2007,38(6):21-24
    [53]魏清顺,刘在伦.面积比原理在潜水泵中的应用[J].流体机械,2009,37(9):18-20
    [54]吴仁荣,王智磊.离心泵设计的相似换算和面积比法[J].船舶工程,2009,37(9):27-31
    [55]沈天耀.离心叶轮的内流理论基础[M].杭州:浙江大学出版社,1986
    [56]吴达人,景思睿,陈胜利,等.离心泵叶轮的优化设计[J].水动力学研究进展(B辑),1988,3(4):27-33
    [57]严敬.低比转数叶轮的优化设计[J].流体工程,1990,27(8):22-27
    [58]张蓉生.低比转数泵叶轮优化设计模型[J].流体工程,1991,28(8):27-30
    [59]赵万勇,丁成伟.离心泵叶轮最佳出口几何参数计算[J].甘肃工业大学学报,1992,18(1):26-30
    [60]何希杰.中低比转数离心泵叶轮优化设计方法[J].水泵技术,1992(3):29-32
    [61]汪建华.低比转数离心泵叶轮的优化设计[J].水泵技术,1993(6):10-13
    [62]孙建平,张克危,贾宗谟.泵优化水力设计的现状及展望[J].水泵技术,1994(5):12-15
    [63]严敬.再论低比转数叶轮的优化设计[J].水泵技术,1994(6):19-23
    [64]孙建平,刘龙珍,张克危.离心泵主要几何参数的优化[J].水泵技术,1996(4):30-32
    [65]曹银春,陈次昌.叶轮出口参数的优化设计[J].排灌机械,1996,14(3):10-11
    [66]王江祥.离心泵叶轮叶片进口角和包角的优化设计[J].水泵技术,1996(2):4-10
    [67]邓德力,李文广,魏育添,等.低比转数离心油泵叶轮出口直径的优化[J].水泵技术,2000(1):3-6
    [68]周玉娟,赵林明Bezier曲线在离心泵叶轮水力设计中的应用[J].华北水利水电学报,2000,21(4):39-41
    [69]袁寿其,付强,朱荣生.核电站离心式上充泵多工况水力设计[J],排灌机械工程学报,2010(4):82-85,
    [70]王幼民,唐铃凤,苏应龙.离心泵叶轮的优化设计模型[J].北京工业大学学报,2000, 26(2):115-118
    [71]曹卫东,李红,朱荣生,等.闭式污水泵叶轮与泵体的水力设计及优化[J].流体机械,2001,29(12):22-24
    [72]陈红梅,袁寿其.低比转数离心泵优化设计方法[J].流体机械,2001,29(8):19-22
    [73]李龙,陈黎明.泵优化设计国内现状及发展趋势[J].水泵技术,2003(2):29-32
    [74]严俊峰,陈炜.基于遗传算法的低比转数高速泵优化设计[J].火箭推进,2006,32(3):1-7
    [75]韩绿霞,宋怀俊.低比转数离心泵叶轮优化设计方法研究[J].水泵技术,2007,4:22-24
    [76]何希杰,朱广奇,劳学苏.遗传算法在离心泵优化设计中的应用[J].排灌机械,2008,26(2):40-44
    [77]赖喜德,胡苑,王建录,等.基于多工况性能预测的双吸泵优化设计方法[J].水泵技术,2008(4):11-15
    [78]胡敬宁,肖霞平,周生贵,等.万吨反渗透海水淡化高压泵的优化设计[J].排灌机械,2009,27(1):25-29
    [79]贾瑞宣,徐鸿.低比转数混流泵叶轮优化设计[J].排灌机械工程学报,2010,28(2):98-102
    [80]朱荣生,胡自强,杨爱玲.高效叶片式污水泵叶轮的优化设计[J].水泵技术,2010(3):5-7
    [81]吴仲华.使用非正交曲线坐标和非正交速度分量的叶轮机械三元流动基本方程及其解法[J].机械工程学报,1979,15(1):1-24
    [82]Oh H W, Chung M K. Optimum values of design variables versus specific speed for centrifugal pumps[J]. Technical Note,1990,213:219-226
    [83]Blanco-Marigorta E, Fernandez-Francos J, Parrondo-Gayo J, et al. Numerical simulation of centrifugal pumps[J]. Proceedings of ASME FEDSM00,2000,FEDSM00-11162
    [84]Gu F, Engeda A, Cave M, et al. A numerical investigation on the Volute/Diffusser interaction due to the axial distortion at the impeller exit[J]. Transactions of the ASME, Journal of Fluids Engineering,2001,123:475-483
    [85]Gonzalez J, Fernandez J, Blanco E, et al. Numerical simulation of the dynamics effects due to impeller-volute interaction in Centrifugal Pump[J]. Transactions of the ASME, Journal of Fluids Engineering,2002,124:348-355
    [86]Glenn Dorsch, Kent Keeran. Optimizing existing designs through cost-effective simulation[J]. PUMPS & SYSTEMS.2007,6:88-91
    [87]Guel Asuaje, Rarid Bakir, Rmainekouidri and Robertre. Inverse Design Method for Centrifugal Impellers and Comparison with Numerical Simulation Tools[J]. International Journal of Computational Fluid Dynamics.2004,18:101-110
    [88]M Asuaje, F Bakir, S Kouidri, R Noguera, and R Rey. Computer-aided design and optimization of centrifugal pumps[J]. J. Power and Energy.2005,219:187-195
    [89]Borges J E.A Three-dimensional inverse method for tubomachinery Part one-theory [J]. ASME Journal of Engineering for Power,1984,106:341-353
    [90]Hawthorne W R, Tan C S, Wang C, et al. Theory of blade design for large deflection:Part II Annular cascades[J]. ASME Journal of Engineering for Gas Turbines and Power,1984, 106:354-365
    [91]陈乃祥.可用于混流式水轮机叶片三元设计的反问题计算方法[J].机械工程学报[J].1990,26(5):77-82
    [92]罗兴琦.混流式水轮机转轮全三维反问题计算和优化[D].[博士论文],清华大学,1995
    [93]Akira Goto, Mehrdad Zangeneh. Hydrodynamic design of pump diffuser using Inverse design method and CFD[J], Journal of Fluids Engineering.2002,124:319-327
    [94]Akira Goto, Mehrdad Zangeneh. Hydrodynamic design system for pumps based on 3D CAD, CFD, and inverse design method[J]. Journal of Fluids Engineering,2002,124: 329-335
    [95]Zangeneh M, Goto A, Harada H. On the design criteria for suppression of sencondary flows in centrifugal and mixed flow impellers[J]. ASME Journal of Turbomachinery,1998, 120:732-735
    [96]Zangeneh M,Goto A,Takemura T.Suppression of Secondary Flows in a Mixed Flow Pump Impeller by Application of 3-D Inverse Design Method.Part Ⅰ-Design and Numerical Validation.ASME Journal of Turbomachinery,1996,118:536-543
    [97]张莉,陈汉平,徐忠.离心压缩机叶轮内部流场的准三元迭代数值分析[J].风机技术,2000(5):3-7
    [98]忻孝康.叶轮机械三元流动与准正交面法[M].上海:复旦大学出版社,1988
    [99]忻孝康,朱世灿.具有分流叶片的径流式压气机叶轮三元流场计算[J].机械工程学报,1981,17(1):50-60
    [100]忻孝康,蒋锦良,朱世灿.计算透平机械三元流动的任定准止交面方法Ⅱ-S1流面翘曲的三元流动计算[J1.力学学报,1979(1):24-28
    [101]朱士灿.离心式水泵叶轮三元流场计算[J].流体工程,1989(6):29-31
    [102]陈德江,王尚锦.应用有限元法计算离心式叶轮内部流场[J].应用力学学报,1999(16):27-32
    [103]王灿星,林建忠,宋向群.多叶离心通风机内部流场的计算[J].风机技术,1997(4):6-9
    [104]袁卫星,张克危,贾宗谟.离心泵射流-尾迹模型的三元流动计算[J].水泵技术,1990(1):12-18
    [105]朱刚.叶轮机内部流场的修正Taylor-Galerkin(MDTGFE)有限元法[J].上海力学,1994,15(4):58-63
    [106]钱涵欣.混流泵叶轮奇点法水力设计[J].工程热物理学报,1993,14(3):277-280
    [107]Furukawa A, Chen C, Takamatsu Y. Studies on estimating the performance of jempellers with cut-down of the blade edge of the centrifugal pump by the surface singularity method[C]. JSME International Journal, Series2:Fluids Engineering, Heat Transfer, Power, Combustion, Thermo-physical Properties,1990,33(3):525-530
    [108]Yan Chao, Wu Yulin, Mei Zuyan. Simulation of internal flow at off-design conditions of a reversible type pump-turbinerunner[C]. ASME, Fluids Engineering Division (Publication) FED, Hydropower Fluid Machinery,1992,136:31-35
    [109]Cao S L, Goulas A, Yakintho K, et al. Numerical simulation of three-dimensional turbulent flow in a centrifugal pump impeller[C]. Proceedings of the International Conference on Pumps and Fans, ICPE,1988:411-418
    [110]李文广.特低比转数离心泵叶轮内部流动分析[J].水泵技术,2005(1):1-6
    [111]Hornsby C. CFD-Driving pump design forward[J]. World Pumps,2002(8):18-22
    [112]Cao S, Peng G, Yu Z. Hydrodynamic design of rotodynamic pump impeller for multiphase pumping by combined approach of inverse design and CFD analysis[J]. ASME Transactions, Journal of Fluids Engineering,2005,127:330-338
    [113]F A, Muggli, Holbein P. CFD calculation of a mixed flow pump characteristic from shutoff to maximum flow[J]. ASME Transactions, Journal of Fluids Engineering,2002,124, 798-802
    [114]Asuaje M, Bakir F, Kouidri S, et al. Inverse design method for centrifugal impellers and comparison with numerical simulation tools[J]. International Journal for Computational Fluid Dynamics,2004,18(2):101-110
    [115]Zhang M, Tsukamoto H. Unsteady hydrodynamic forces due to rotor-stator interaction on a diffuser pump with identical number of vanes on the impeller and diffuser[J]. ASME Transactions, Journal of Fluids Engineering,2005,127,743-751
    [116]Spann J, Horgan S. The evolution of pump design simulation[J]. World Pumps,2006(9): 32-35
    [117]Heilmann C M, Siekmann H E. Particle image velocimetry as CFD validation tool for flow field investigation in centrifugal pumps[C]. in Proceedings of the 9th International Symposiumon Transport Phenomena and Dynamics of Rotating Machinery (ISROMAC'02), Honolulu, Hawaii, USA, February 2002
    [118]Majidi K, Siekmann H E. Numerical calculation of secondary flow in pump volute and circular casings using 3D viscous flow techniques[J]. International Journal of Rotating Machinery,2000,6(4):245-252
    [119]Ziegler K U, Gallus H E, Niehuis R. Astudyon impeller-diffuser interaction part I: influence on the performance[J], Journal of Turbomachinery,2003,125(1):173-182,
    [120]Shi F, Tsukamoto H. Numerical study of pressure fluctuations caused by impeller-diffuser interaction in a diffuser pump stage[J]. ASME Journal of Fluids Engineering,2001,123(3): 466-474
    [121]Shum Y K P, Tan C S, Cumpsty N A. Impeller-diffuser interaction in a centrifugal compressor[J]. Journal of Turbomachinery,2000,122(4):777-786
    [122]Akhras A, Hajem M El, Champagne J Y, et al. The flow rate influence on the interaction of a radial pump impeller and the diffuser[J]. International Journal of Rotating Machinery, 2004,10(4):309-317
    [123]Hong S S, Kang S H. Flow at the centrifugal pump impeller exit with circumferential distortion of the outlet static pressure[J]. ASME Journal of Fluids Engineering,2004, 126(1):81-86
    [124]Hagelstein D, Hillewaert K, Vanden Braembussche R A, et al. Experimental and numerical investigation of the flow in a centrifugal compressor volute[J]. Journal of Turbomachinery, 2000,122(1):22-31
    [125]Stepanoff A J. Centrifugal and Axial Flow Pumps:Theory, Design and Application[M]., Krieger, Melbourne, Fla, USA,2nd edition,1992
    [126]Zhang M J, Pomfret M J, Wong C M. Three dimensional viscous flow simulation in a backswept centrifugal impeller at the design point[J]. Computers and Fluids,1996,25(5): 497-507
    [127]Zhang M J, Pomfret M J, Wong C M. Performance prediction of a backswept centrifugal impeller at off-design point conditions[J]. International Journal for Numerical Methods in Fluids,1996,23(9):883-895
    [128]Byskov R K, Jacobsen C B, Pedersen N. Flow in a centrifugal pump impeller at design and off-design conditions-part Ⅱ:large eddy simulations[J]. ASME Journal of Fluids Engineering,2003,125(1):73-83
    [129]Gu F, Engeda A, Cave M, et al. A numerical investigation on the volute/diffuser interaction due to the axial distortion at the impeller exit[J]. ASME Journal of Fluids Engineering, 2001,123(3):475-483
    [130]Asuaje M, Bakir F, Kouidri S, et al. Inverse design method for centrifugal impellers and comparison with numerical simulation tools[J]. International Journal of Computational Fluid Dynamics,2004,18(2):101-110
    [131]Goto A, Nohmi M, Sakurai T, et al. Hydrodynamic design system for pumps based on 3-D CAD, CFD, and inverse design method[J]. ASME Journal of Fluids Engineering,2002, 124(2):329-335
    [132]Zhao Z.M. Design of centrifugal pump using computational fluid dynamics[M]. M.Eng thesis, National University of Singapore, Singapore,2002
    [133]Zangeneh M, Schleer M, Ploger F, et al. Investigation of an inversely designed centrifugal compressor stage—Part Ⅰ:design and numerical verification[J]. Journal of Turbomachinery, 2004,126(1):73-81
    [134]Cui B, Zhu Z, Zhang J,et al. The flow simulation and experimental study of low specific speed high speed complex centrifugal impellers[J]. Chinese Journal of Chemical Engineering,2006,14(4):435-441
    [135]Kergourlay G., Younsi M, Bakir F, et al. Influence of splitter blades on the flow field of a centrifugal pump:Test-analysis comparison[J]. International Journal of Rotating Machinery,2007
    [136]Khin Cho Thin, Mya Khaing, Khin Maung Aye. Design and performance analysis of centrifugal pump[J]. World Academy of Science, Engineering and Technology,2008,46, 422-429
    [137]Sunao Miyauchi, Hironori Horiguchi, Jun-ichirou Fukutomi, et al. Optimization of meridional flow channel design of pump impeller[J]. International Journal of Rotating Machinery,2004(10):115-119
    [138]Vasilios A Grapsas, John S Anagnostopoulos, Dimitrios E Papantonis. Hydrodynamic design of radial flow pump impeller by surface parameterization[C].1st International Conference on Experiments/Process/System Modelling/Simulation/Optimization,2005(7): 6-9
    [139]John S, Anagnostopoulos. CFD analysis and design effects in a radial pump impeller[J]. Wseas Transactions on Fluid Mechanics,2006,1(7):763-770,
    [140]Binder R C, Knapp R T. Experimental determination of the flow characteristics in the volutes of centrifugal pumps[J]. Trans ASME,1936,58(8):659
    [141]Acosta A J, Bowerman R D. An experimental study of centrifugal pump impellers[J]. Trans. ASME,1957,79,1821-1831.
    [142]Stepanoff A J. Centrifugal and axial flow pumps[M]. Wiley, NY,1957
    [143]Agostinelli A, Nobles D, Mockridge C R. An experimental investigation of radial thrust in centrifugal pumps[J]. ASME J Eng Power,1960,80,120-126
    [144]Biheller H J. Radial forces on the impeller of centrifugal pumps with volute, Semivolute, and fully concentric casings[J]. ASME J. Eng. Power,1965,85,319-323
    [145]Hergt P, Krieger P. Radial forces and moments acting on the impeller of volute casing pumps[C]. Proceedings of the Fourth Conference of Fluid Machinery, Budapest,1972, 599-619
    [146]Kanki H, Kawata Y, Kawatani T. Experimental research on the hydraulic excitation force on the pump shaft[J]. ASME Design Engineering Technical Conference, Hartford, CT, United States,1981(9):20-23
    [147]Chamieh D S, Acosta A J, Brennen C E, et al. Experimental measurements of hydrodynamic radial forces and stiffness matrices for a centrifugal pump impeller[J]. ASME J Fluids Eng, 1985,107,307-315
    [148]Hira D S, Vasandhani V P. Influence of volute tongue length and angle on the pump performance[J]. Journal of Mechanical Engineering(Indian),1975,56,55-59
    [149]Jaroslaw Mikielewicz, David Gardon Wilson, Tak-Chee Chan, et al. A method for correlating the characteristics of centrifugal pumps in two-phase flow[J]. Journal of fluids Engineering,1978,100(4):395-409
    [150]Koji Kikuyama, Murakami M, Asakuru E, et al. Velocity distribution in the impeller passages of centrifugal pumps[J]. Bulletin of JSME,1985,28(243):1963-1969
    [151]Yedidiah S. A new toll for solving problems encountered with centrifugal pumps[J]. World Pumps,1996,355,48-53
    [152]Yedidiah S. Present knowledge of the effects of the impeller geometry on the developed head[J]. Proc Instn Mech Engrs,1996,210:237-244
    [153]Oh, Chung M K. Optimum values of design variables versus specific speed for centrifugal pumps[J]. Proc Instn Mech Engrs,1999,213(3):219-226
    [154]Oh H W, Kim K Y. Conceptual design optimiztion of mixed-flow pump impellers using mean streamline analysis[J]. Proc Instn Mech Engrs,2001,215(1):133-138
    [155]Paeng K S, Chung M K.A new slip factor for centrifugal impellers[J]. Proc Instn Mech Engrs Part A,2001,215(5):645-649
    [156]Akira Goto, Motohiko Nohmi, Takaki Sakurai, et al. Hydrodynamic Design System for Pumps Based on 3-D CAD, CFD, and inverse Design Method[M]. published by EBARA Corporation, Tokyo, Japan.2002
    [157]Samkaraiah M. Automatic generation of pump impeller geometry[J]. World Pumps,2000(3): 28-30
    [158]Gulich J F. Effect of reynolds number and surface roughness on the efficiency of centrifugal pumps[J]. ASME Journal of Fluids Engineering,2003,125(7):670-679
    [159]Gonzalez J, Fernandez J, Blanco E, et al. Numerical simulation of the dynamic effects due to impeller volute interaction in a centrifugal pump[J], ASME Journal of Fluids Engineering, 2002,124:348-355
    [160]Gonzalez J, Parrondo J, Santolaria C, et al. Steady and unsteady forces for a centrifugal pump with impeller to tongue pump variation[J]. ASME Journal of Fluids Engineering, 2006,128:454-462
    [161]Byskov R K, Jacobsen C B, Pedersen N. Flow in a centrifugal pump impeller at design and off-design conditions- Part Ⅱ:Large Eddy Simulations[J]. ASME Journal of Fluids Engineering,2003,125:73-83
    [162]Joseph P Veres. Centrifugal and axial pump design and off-design performance prediction[J]. Prepared for the 1994 Joint Subcommittee and User Group Meetings. Snnuvale, California,1994(10):17-21
    [163]Neumann B. The interaction between geometry and performance of a centrifugal pump[M]. London:Mechanical Enginering Publications Limited,1991
    [164]李世煌.叶片泵的非设计工况及其优化设计[M].北京:机械工业出版社,2006
    [165]Joseph P V. Centrifugal and axial pump design and off-design performance[R]. US: National Aeronautics and Space Administration,1995:17-21
    [166]Sun J, Tsukamoto H. Off-design performance prediction for diffuser pumps [J]. Journal of Power and Energy,2001,215(2):191-201
    [167]Cheah K W, Lee T S, Winoto S H, et al. Numerical flow simulation in a centrifugal pump at design off-design conditions [J]. International Journal of Rotating Machinery,2007:1-8
    [168]Wang Hong, Tsukamoto Hiroshi. Experimental and numerical study of unsteady flow in a diffuser pump at off-design conditions [J]. Journal of Fluids Engineering,2003,125(9): 767-778
    [169]Wuibaut G, Bois G, Dupont P. PIV measurements in the impeller and the vaneless diffuser of a radial flow pump in design and off-design operation conditions[J]. Journal of Fluids Engineering,2002,124(9):791-797
    [170]邹滋祥.轴流透平叶片的控制环量设计与扭曲规律优化的研究[J].工程热物理学报,1982(3):38-41
    [171]袁仲文.轴流风机采用变环量设计的研究[J].机械设计与研究,1984(6):17-20
    [172]吴秉礼.轴流通风机自由涡流设计方法的改进[J].流体机械,1996,24(3):38-41
    [173]吴宏,李秋实,宋亚慧,等.风扇通流设计中环量分布形式的探讨[J].工程热物理学报,2008(1):43-45
    [174]芮胜军,李健,高凤玲.轴流通风机不同变环量指数性能数值模拟[J].风机技术,2008(1):41-42
    [175]孙止中,苏莫明.控制环量方法在离心叶轮准三元设计中的应用[J].汽轮机技术,2008,50(3):182-184
    [176]赵锦屏,朱俊华.轴流式泵设计中环量分布规律的分析[J].华中工学院学报,1982,10(2):32-25
    [177]金仲华.轴流泵变环量设计方法[J].水泵技术,1985(2):16-18
    [178]郎继兴,轴流泵与混流泵的任意因转流面设计理论-任意变轴面速度设计理论[J],流体工程,1986(5):17-21
    [179]郎继兴.混流泵的变轴面速度设计理论[J].华北电力大学学报,1987(3):24-27
    [180]郎继兴,郎弘.轴流泵轮轴面速度与环量最佳分布规律的初探[J].流体工程,1990,18(3):31-36
    [181]林万来,曾松祥,王立祥.轴流泵变轴向速度的研究及试验[J].船舶,1990(2):38-44
    [182]陈林根.轴流泵出口环量变化规律与几何参数一体化最优设计方法[J].水轮泵, 1993(1):27-27,26
    [183]邬振耀,程鹏.轴流风机变环量设计的研究[J].上海交通大学学报,1993,27(2):56-60
    [184]步群.轴流通风机变环量级的设计计算[J].风机技术,1994(2):23-25
    [185]李文广,苏发章,黎义斌,等.轴流泵叶轮出口速度矩采用不同的二次多项式分布规律时的特性研究[J].水泵技术,2004(1):3-9
    [186]李文广,苏发章,黎义斌,等.轴流泵叶片设计中叶轮出口液体速度矩分布[J].兰州理工大学学报,2005,31(3):54-58
    [187]关醒凡.泵的理论与设计[M].北京:机械工业出版社,1986
    [188]张克危.流体机械原理[M].北京:机械工业出版社,2001
    [189]程良骏.离心泵叶轮中的流动滑移[J].排灌机械,1987,5(1):4-7
    [190]吴达人.离心泵流体力学[M].北京:中国电力出版社,1998
    [191]David Thiepxuan Cao, Design of a centrifugal pump for liquid fuel pumping application, Michigan State University in Partial Fulfillment of Requirements for the Degree of Master of Science.2002
    [192]苏铭德,黄素逸.计算流体力学基础[M].北京:清华大学出版社,1997
    [193]帕坦卡.传热与流体流动的数值计算[M].张政,译.北京:科学出版社,1989
    [194]陶文铨.数值传热学(第二版)[M].西安:西安交通大学出版社,2001
    [195]陶文铨.计算传热学的近代进展[M].北京:科学出版社,2001
    [196]Tourlidakis A. Numerical modeling of viscous turbomachinery flows with a pressure correction method[D]. Cranfield University, England,1992
    [197]郭乃龙.螺旋离心泵性能与内部三维不可压湍流流动及应用混沌[D].[博士学位论文],江苏理工大学,1997
    [198]Patankar S V, Spalding D B. A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. Int. J. Heat and Mass Transfer,1972,15: 1787-1806
    [199]Patankar S V. A calculation procedure for two-dimensional elliptic situations. Numer. Heat Transfer,1980,4:409-425
    [200]Howard J H G, Patankar S V, Bordynuik R M. Flow prediction in rotating ducts using coriolis-modified turbulence models. Trans ASME, J.of fluids Eng.,1980,21:456-461
    [201]于勇,张俊明,姜连田Fluent入门与进阶教程[M].北京:北京理工大学出版社,2008
    [202]Lucian Jude, Dorel Homentcovschi.Numerical analysis of the inviscid incompressible flow in two-dimensional radial-flow pump impellers[J]. Engineering Analysis with Boundary Elements,1998 (22):271-279
    [203]F.C. Visser, J.J.H. Brouwers, J.B. Jonker. Fluid flow in a rotating low- specific-speed centrifugal impeller passage[J]. Fluid Dynamics Research,1999 (24):275-292
    [204]Weidong Zhou, Zhimei Zhao, T. S. Lee and S. H. Winoto.Investigation of How Through Centrifugal Pump Impellers Using Computational Fluid Dynamics[J]. International Journal of Rotating Machinery,2003(9):49-61
    [205]查森.叶片泵原理及水力设计[M].北京:机械工程出版社,1988
    [206]谈明高,刘厚林.基于Fluent的离心泵水力性能预测技术[J].排灌机械,2008(3):22-25
    [207]江帆,黄鹏Fluent高级应用与实例分析[M].北京:清华大学出版社,2008
    [208]谢旭.桥梁结构地振响应分析与抗振设计[M].北京:人民交通出版社,2006
    [209]赵斌娟.双流道泵内非定常三维湍流数值模拟及PIV测试[D].江苏大学,[博十学位论文],2007
    [210]Igor J.Karassik,Joseph P.Messina,Paul Cooper,Charles C.Heald. Pump Handbook[M]. Original edition Copyright(2001)by The McGraw-Hill Companies
    [211]Gonza'lez, J., Santolaria, C., Blanco, E., and Ferna'ndez, J.,2002,'Unsteady Flow Structure on a Centrifugal Pump:Experimental and Numerical Approaches,'ASME Paper FEDSM2002-31182
    [212]Hagelstein D, Hillewaert K, Vanden Braembussche R A, et al. Experimental and numerical investigationof the flow in a centrifugal compressor volute[J]. ASME J Turbomach,2000, 122,22-31
    [213]郑梦海.泵测试实用技术[M].北京:机械工业出版社,2006
    [214]国家标准局.GB/T 12785-91潜水电泵实验方法[S].北京:中国标准出版社,1994
    [215]Mustafa Golcu. Investiqution of performance characteristics in a pump impeller with low blade discharge angle[J]. World pumps,2005,32-40
    [216]杨旭红,叶建华,钱虹.我国核电产业的现状及发展[J].上海电力学院学报,2008,24(3):218-221
    [217]工业和信息化部.重大技术装备自主创新指导目录(2009年版)[R].北京:工信部,2009
    [218]隋永滨.核电泵阀国产化工作取得重要进展[J].通用机械,2009(5):13-17

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700