高温高压混流泵空化及其对泵结构设计影响分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核主泵,即核反应堆冷却剂泵,是核岛中冷却剂循环的驱动设备。作为核岛中唯一运转的部件,核主泵必须在承受高温、高压、强辐射环境下,能够超长使役安全、可靠地运行。空化空蚀作为水力机械中常见的一种破坏原因,它会引发噪声和振动,使水力机械的性能剧烈下降,严重时还会造成叶片的损坏和断裂。所以空化是核主泵在正常运行或者其他灾变工况下极力避免发生的现象。
     本文首先对核主泵中的空化与一般的混流泵空化进行了对比分析,表明运用已有的空化模型对核主泵空化进行数值计算的可行性。采用一种基于正压关系的状态方程空化模型对二维naca66(mod)翼型进行了定常和非定常的空化流数值模拟,结果表明模拟值与实验值吻合良好,体现了这种空化模型在模拟空化流的准确性。
     为了对核主泵中的空化进行深入的分析,对分别采用速度系数法和模型变换法设计的5叶片混流式核主泵叶轮进行了空化性能的计算。结果发现,速度系数法设计的叶轮效率为90.866%,临界空化余量为51.93m。而模型变换法设计的叶轮效率为92.844%,比速度系数法高近2个百分点;临界空化余量为16.35m,比速度系数法相对降低了68.5%。
     为了改善速度系数法设计的叶轮的空化性能,本文对叶轮结构进行了优化。发现原采用速度系数法设计的5叶片叶轮结构并不合理,泵叶轮设计工况下的临界空化余量较高。针对这一问题,增加混流泵的叶片数目为7片,并以效率和扬程作为目标函数,对7叶片混流泵叶片进口边形状、叶片前缘厚度以及叶片厚度变化规律进行了优化设计。对优化前后三种不同叶片结构方案的叶轮空化性能对比分析结果表明:混流泵叶片进口边适当向进口方向延伸,叶片进口边前缘减薄,以及改变叶片厚度的变化规律,将使混流泵的临界空化余量大大降低。优化设计后的混流泵效率为90.857%,扬程为163.86m,优化后的临界空化余量为28.64m,相比优化前降低了45%,有效地改善了混流泵在设计工况下的空化性能。对今后该类高温高压混流式核主泵的设计和优化有一定的参考价值。最后对优化后的核主泵计算了在0.8~1.2倍设计流量范围内的空化性能曲线。结果表明,随着流量的增大叶轮的临界空化余量明显提高,叶轮的空化性能随之变差。
Nuclear reactor coolant pump, usually called nuclear main pump, is the driving equipment in the nuclear coolant cycling system. As the only revolving part in the nuclear islands, nuclear main pump must operate in the long term safely and reliably under the circumstances of high temperature, high pressure and strong radiation. As a common causes of damage in hydraulic machinery, cavitation and erosion make the performance of hydraulic machinery drop steeply with noises and vibrations, seriously, it will cause the damage or fracture of the blades. Therefore the cavitation in nuclear main pump should be avoided at the normal or disaster operations.
     In this paper, the comparison of cavitation phenomenon is carried out between nuclear main pump and ordinary mixed-flow pump, and the results show that it is feasible to simulate cavitation in reactor coolant pump by utilizing the existing cavitation model. Steady and unsteady numerical simulation are implemented for a2d naca66(mod) hydrofoil based on barotropic relationship model, and the simulation results agree well with the experimental data, that indicates the accuracy of this cavitation model in simulation of cavitating flows.
     In order to have a further analysis on reactor coolant pump cavitation, the characters of5blades impellers designed by velocity coefficient method and model transformation method are calculated in the cavitating flow conditions. The results show that the two types of impeller efficiency and critical net positive suction head(NPSHcr), are90.866%,92.844%, and51.93m, and16.35m respectively. The deviations of efficiency and NPSHcr between two design methods are nearly2%and68.5%.
     An optimization process is put into effect to improve the cavitation performances of impeller designed by velocity coefficient method. The result shows that the5blades impeller designed by velocity coefficient method, is not reasonable due to higher NPSHcr under design condition. Consequently, the pump impeller blades inlet edge shape, thickness, and the variation of blades thickness along flowing direction are optimized with objective functions of efficiency and head after increasing the impeller blade number to seven,. Cavitation performances among three types of impeller with different blade structures are compared and analyzed. Some useful conclusions are conducted. The NPSHcr is greatly reduced by extending the blade inlet toward the pump inlet properly, attenuating the blade inlet edge and optimizing the blade thickness. The optimized impeller efficiency and NPSHcr are90.857% and28.64m respectively, and NPSHcr is relatively reduced by45%compared with original5blades impeller. The effective improvement of the cavitation performance at the design condition provides helpful directions for further design and optimization of the reactor coolant pump impeller. Finally, cavitation characters are obtained by numerical simulation within the limits of0.8~1.2times design flow rate, the results indicate that the NPSHcr significantly enhance along with the increase of flow rates, meanwhile, the cavitation performance of the impeller goes worse.
引文
[1]林诚格,郁祖盛.非能动安全先进核电厂[M].北京:原子能出版社,2008.
    [2]关醒凡.现代泵技术手册[M].北京:宇航出版社,1995.
    [3]贺成龙,吴建华,刘文莉.空化应用研究进展综述[J].嘉兴学院学报,2008,20(3):57-61.
    [4]Delannoy Y, Kueny J L. Cavitation and Multiphase Flow Forum[C], ASME-FED, 1990.
    [5]O Coutier-Delgosha, R Fortes-Patella, J L Reboud, et al. Numerical simulation of cavitating flow in 2D and 3D inducer geometries[J]. Int. J. Numer. Meth. Fluids, 2005,48:135-167.
    [6]A Kubota, H Kato, H Yamaguchi. A new modelling of cavitating flows: a numerical study of unsteady cavitation on a hydrofoil section [J]. Journal of Fluid Mechanics. 1992, 240: 59-96.
    [7]Ashok K. Singhal, Mahesh M. Athavale, Huiying Li, et al. Mathcmatical Basis and Validation of the Full Cavitation Model[J]. Journal of Fluids Engineering, 2002, 124:617-624.
    [8]Philip J. Zwart, Andrew G. Gerber, Thabet Belamri. ICMF 2004 International Conference on Multiphase Flow[C]. Yokohama, Japan, 2004.
    [9]Jonas P. R. Gustavsson, Kyle C. Denning, Corin Segal. Hydrofoil cavitation under strong thermodynamic effect[J]. Journal of Fluids Engineering, 2008, 130(091303): 1-5.
    [10]Eric Goncalves, Regiane Fortes Patella. Numerical study of cavitating flows with thermodynamic effect[J]. Journal of Computers and Fluids. 2010, 39: 99-113.
    [11]Angelo Cervone, Cristina Bramanti, Emilio Rapposelli. Thermal cavilation experiments on a naca0015 hydrofoil [J]. Journal of Fluids Engineering, 2006, 128: 326-331.
    [12]季斌,罗先武,吴玉林.考虑热力学效应的高温水空化模拟[J].清华大学学报,2010,50(2):262-265.
    [13]张瑶,罗先武,许洪元.中国工程热物理学会[C],2009.
    [14]王勇,刘厚林,袁寿其等.叶片进口冲角对离心泵空化特性的影响[J].流体机械,2011,39(4):17-20.
    [15]甘加业,薛永飞,吴克启.混流泵叶轮内空化流动的数值计算[J].工程热物理学报,2007,28:165-168.
    [16]尉支苹,万慧萍,许姝佳等.影响离心泵空化性能的因素分析[J].通用机械制造,2011,4:86-88.
    [17]吴大转,王乐勤.高速混流泵空化特性与空化性能改善方法[J].农业机械学报,2006. 37(9):93-96.
    [18]罗先武,张瑶,彭俊奇,许洪元.叶轮进口几何参数对离心泵空化性能的影响[J].清华大学学报,2008,48(5):836-839.
    [19]范宗霖,李文广,薛建欣.叶片进口边形状对离心泵NPSH的影响[J].甘肃工业大学学报,1994,20(1):44-47.
    [20]谢蓉,单玉娇,王晓放.混流泵叶轮流动性能数值模拟和叶型优化设计[J].排灌机械工程学报,2010,28(4):295-299.
    [21]Amit Gupta, J T Kshirsagar. Proceedings of FEDSM2005[C], Houston, USA,2005.
    [22]Katsutoshi Kobayashi, Yoshimasa Chiba. Proceedings of FEDSM2009[C], Vail,USA,2009.
    [23]Yumiko Takayama, Hiroyoshi Watanabe. Proceedings of FEDSM2009[C], Vail, USA,2009.
    [24]Richard B. Medvitz, Robert F. Kunz, David A. Boger, et al. Performance analysis of cavitating flow in centrifugal pumps using multiphase CFD[J]. Journal of Fluids Engineering.2002,124:377-383.
    [25]H. Ding, F. C. Visser, Y. Jiang, et al. Proceedings of FEDSM2009[C]. Vail, USA, 2009.
    [26]Benoit Pouffary, Regiane Fortes Patella, Jean-Luc Reboud. Numerical simualtion of 3D cavitating flows:analysis of cavitation head drop in turbomachinery[J]. Journal of Fluids Engineering.2008,130(061301):1-10.
    [27]Rudolf Bachert, Bernd Stoffel, Matecz Dular. Unsteady cavitation at the tongue of the volute of a centrifugal pump[J]. Journal of Fluids Engineering,2010, 132(061301):1-6.
    [28]陈向阳,袁丹青,杨敏官等.300MW级核电站主泵压力脉动研究[J].核动力工程,2010,31(3):78-82.
    [29]徐一鸣.断电事故下核主泵内流场数值模拟[D].大连理工大学,2011.
    [30]李良.AP1000核反应堆用冷却剂泵水力模型的设计与研究[D].大连理工大学,2011.
    [31]单玉娇.基于CFD的1000MW级核主泵水力模型模化计算方法研究[D].大连理工大学,2011.
    [32]A. PoulIikkas. Two phase flow performance of nuclear reactor cooling pumps [J]. Progress in Nuclear Energy.2000,36(2):123-130.
    [33]Demin Liu, Shuhong Liu, Yulin Wu, et al. Numerical analysis of airfoil naca0015 and centrifugal pump' s cavitation characteristic based on the thermodynamic effects[C]. Proceedings of FEDSM2009, Vail, USA,2009.
    [34]黄继汤.液体粘性对空泡生存过程的影响[J].北京建筑工程学院学报,1994,10(2):124-131.
    [35]X. B. Zhang, L. M. Qiu, H. Qi, er al. Modeling liquid hydrogen cavitating flow with the full cavitation model [J]. International Journal of Hudrogen Energy.2008,33: 7197-7206.
    [36]Eric Goncalves, Regiane Fortes Patella. Constraints on equation of state for cavitating flows with thermodynamic effects[J]. Applied Mathematics and Computation.2011,217(11):5095-5102.
    [37]Yogen Utturkar, Jiongyang Wu, Guoyo Wang, et al. Recent progress in modeling of cryogenic cavitation for liquid rocket propulsion[J]. Progress in Aerospace Sciences.2005,41:558-608.
    [38]Jean-Pierre FRANC. The Rayleigh-Plesset equation:a simple and powerful tool to understand various sapects of cavitation[J]. Fluid Dynamics of Cavitation and Cavitating Turbopumps.2007,496:1-41.
    [39]C. Vortmann, G. H. Schnerr, S. Seelecke. Thermodynamic modeling and simulation of cavitating nozzle flow[J]. International Journal of Heat and Fluid Flow.2003, 24:774-783.
    [40]Demin Liu, Shuhong Liu, Yulin Wu, et al. Numerical analysis of hydrofoil naca0015's cavitation characteristics based on the thermodynamic effccts[J]. Modern Physics Letters B.2010,24(13):1499-1502.
    [41]Satoshi Watanabe, Tatsuya Hidaka, llironori Horiguchi, et al. Steady analysis of the thermodynamic effect of partial cavitation using the singularity method[J]. Journal of Fluids Fngineering.2007,129:121-127.
    [42]U. lben, F. Wrona, C.-D. Munz. Cavitation in hydraulic tools based on thermodynamic properties of liquid and gas[J]. Journal of Fluids Engineering.2002,124: 1011-1017.
    [43]B. R. Shin, Y. lwata, T. lkohagi. Numerical simulation of unsteady cavitating flows using a homogenous equilibrium model [J]. Journal of Computational Mechanics.2003, 30:388-395.
    [44]Tang yue, Jin Li-jiang. Theory and Methods of Pump Tests[M]. Ordnance Industry Press,1995.
    [45]Yiannis Ventikos, George Tzabiras. A numerical method for the simulation of steady and unsteady cavitating flowsLj]. Journal of Computers and Fluids.2000,29: 63-88.
    [46]Wu Lei, Lu Cuan-jing, Li Jie, et al. Numerical simulations of 2D periodic unsteady cavitating flows [J]. Journal of Hydrodynamics,2006,18(3):341-344.
    [47]Abolfaza Asnaghi, Ebrahim Hahanbakhsh, Mohammad Saeed Seif. Unsteady multiphase modeling of cavitation around naca0015[J]. Journal of Marine Science and Technology.2010,18(5):689-696.
    [48]Ciro Pascarella, Vito Salvatore. Numerical study of unsteady cavitaliong on a hydrofoil section using a barotropic model[C]. CAV2001:sessionB2.005.
    [49]邓丽梅,鲁传敬,薛雷平.单流体变特性模型的定常局部空泡流数值模拟[J].上海交通大学学报.2003,37(4):544-547.
    [50]Sheng Huang, Miao He, Chao Wang, et al. Simulation of cavitating flow around a 2-D hydrofoil[J]. J. Marine. Sci. Appl.2010,9:63-68.
    [51]0. Coutier-Delgosha, J. L. Reboud, Y. Delannoy. Numerical simulation of the unsteady behaviour of cavitating flows[J]. International Journal for Numerical Methods in Fluids.2003,42:527-548.
    [52]谭磊,曹树良,桂绍波等.绕水翼空化流动的数值模拟[J].清华大学学报,2010,50(7):1058-1062.
    [53]王国玉,曹树良,Ikohagi T剪切层中的漩涡空化机理[J].清华大学学报,2001,41(10):62-64.
    [54]季斌,洪方文,彭晓星.二维水翼非定常空泡流数值模拟[J].舰船科学技术,2009,31(1):128-133.
    [55]顾巍,何友声等.小攻角水翼空泡流瞬态与周期现象试验[J].上海交通大学学报,199832(8):86-92.
    [56]张敏弟,王国玉,鲁君瑞.绕水翼初生空化涡的实验观测[J].力学学报,2006,38(4):547-552.
    [57]Hironori Horiguchi, Yury Semenov, Masataka Nakano, et al. Linear stability analysis of the effects of camber and blade thickness on cavitation instabilities in inducers[J]. Journal of Fluids Engineering.2006,128:430-438.
    [58]崔利斌.基于CFD的大流量高全压叶轮机械开发设计与研究[D].大连理工大学,2011.
    [59]王菲,吕剑虹,王刚.翼型厚度对风力机叶片翼型气动特性的影响[J].流体机械,2011,39(12):5-8.
    [60]李常,梁武科,金雪红等.翼型厚度对风力机翼型气动特性的影响[J].流体机械,2010,38(2):31-34.
    [61]张野,王晓放,介红恩.压水堆冷却剂中硼酸浓度对核主泵性能影响研究[J].核动力工程,2011,32(4):95-98.
    [62]李成果,杨学仁.压水堆冷却剂系统中的气体及其含量计算[J].核动力工程,1980,4(8):19-27.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700