含三维裂隙的脆性岩体破坏机理的试验与数值分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
岩体中含有丰富的节理裂隙,这些裂隙在工程开挖,水流,风的侵蚀等力的作用下起裂,扩展,相互贯通,对岩体的力学特性和破坏模式产生重要影响,同时这些裂隙相互作用产生的通道成为地下水流的重要途径,影响着岩体的渗流特性,可能腐蚀锚杆等工程材料,严重影响了岩体工程的稳定性,因此,研究多裂隙岩体的破坏机制一直是工程地质界关注的重要问题,以往的研究大多简化为平面应力或平面应变问题,但是现实中的裂隙岩体都为三维的,简化的研究方法将导致很多三维裂隙扩展的重要信息丢失,研究三维裂隙岩体的断裂机制和破坏机理将成为岩石工程界的重要方向,对岩体工程的设计,施工和稳定性具有重要作用。
     由于在真实岩石试件的内部很难预置有一定分布规律的多条三维裂隙。因此,研究含三维裂隙脆性岩体破坏机理的很多试验采用类岩石的相似材料来开展。因为要使模拟含三维裂隙岩体的材料力学特性,其材料尽量符合脆性岩石的主要特性,而且要在足够大的试块中要模拟有一定排列模式的多条断续节理很困难,本文采用似岩石类脆性材料开展试验,研制出脆性很高的材料,其拉压比常温下就能达到1/5,在一定低温条件下预计将可达到1/7至1/8左右。与以往的同类脆性材料相比,脆性提高了一倍。该材料透明性很好,可清晰地观察到三维内置裂隙试件的裂纹扩展的过程;在性能上与脆性岩石有较好的相似性,可以模拟多类岩石的力学特性。同时研制了可预制任意角度,条数,不同间距的三维裂隙试件模具,因此可方便制作出含二维或三维裂隙的块体试件。
     通过单轴压缩试验,研究了该透明脆性材料的三维裂纹产生,扩展与贯通的过程,根据应力应变曲线,泊松比系数随时间变化规律和试验时观察到的现象,可以将其过程分为初始压密,弹性变形,次生裂纹萌生和汇合,裂纹加速扩展,试件整体破坏四个阶段,试验结果表明,与二维裂纹扩展相比,三维裂纹扩展形态更加复杂,有花瓣状裂纹、包裹式翼裂纹和鱼鳍状裂纹等,完整试件抗压强度明显大于三维裂隙试件强度,变形量小于三维裂隙试件,试件破坏方式主要以劈裂破坏为主。
     把构成三维裂隙试件材料的单元看成是表征体元REV (representative element volume),试件破坏过程看成是表征体元的不断损伤累积的过程,利用FLAC3D中的FISH语言编制了考虑材料体元参数软化脆性破坏模型的数值计算程序,模拟了三维裂隙试件三维裂纹萌生,扩展,贯通及破坏过程。分析了在单轴压缩和双轴压缩模拟条件下不同倾角和间距试件的起裂和贯通时对应的应力,时间及损伤区的规律以及各类试件强度比较,数值模拟结果表明,脆性材料三维裂隙扩展与贯通过程比二维裂隙扩展更加复杂,其中以包裹式裂纹,花瓣状裂纹,竖直张拉裂纹扩展为主,三维裂纹各部分扩展速度不同,破坏模式为劈裂破坏。起裂应力,时间,损伤单元体积和强度随着角度和间距变化曲线呈非单调关系,贯通阶段应力,时间,损伤单元体积随着角度和间距变化曲线呈单调关系,双轴加载模拟条件下也有类似规律,这为研究含三维裂隙的脆性岩体的破坏机理具有一定的研究价值。
There are abundant primary and secondary flaws in rock mass. They start the evolvement of initiation, propagation and coalescence under the influence of forces, such as engineering excavation, water flow, wind's credibility and so on, which takes a great effect on rock strength and fracture pattern, meanwhile, the reciprocity of flaws produces many channels, which make pathway of underground water and affect rock's seepage property, engineering materials, for example rock bolts, are likely to be eroded, all these cause bad effect on the stability of rock mass. Consequently, the failure mechanism of multi-fissured rock mass is always focused by the researchers of geology field. The engineering problems often are simplified to two-dimensional (3D) models in most of the previous studies, but fractures are 3D actually, as a result, it leads a great loss of much 3D fracture information in the simple 2D model. Researchers start to focus on the fracture mechanism and failure mechanism of 3D fractured rock mass, also theoretically significant to rock mass's design, construction and stability.
     Owing to the fact that there is seldom a flaw abided by some discipline in real rock test coupons, so, analogy materials are applies in the research on failure mechanism of brittle multi-fissured rock mass. In order to simulate the properties of multi-fissured rock mass, the analogy material must satisfy the brittle rock mass's main distinctions, furthermore, some principled flaws should be lain in a enough big rock test coupon. In the thesis, a pretty brittle analogy material is developed, whose ratio of compressive and tensile strength is 5 at normal temperature, and up to about 7 or 8 at a certain low temperature. Its brittleness is increased by one time than previous analogy materials. This analogy material is limpid enough to observe the inside 3D flaw's evolvement of propagation; it can simulate the rock mass very well. Moulds that contain prefabricated 3D flaw of arbitrary angles, number and space are developed in succession, providing convince for the made of 2D or 3D-fractured test coupons. A high resolution vision is set before the pressing machine to record the fracture process of inside 3D flaws, and it's more effective.
     From uniaxial compression, the analogy material's evolvement of initiation, propagation and coalescence is analyzed. According to the stress-strain curve and phenomena, the process can be divided into four stages, initial compaction, elastic deformation, secondary flaws'evolvement of initiation, propagation, accelerated crack propagation, failure. From the results, it indicates that 3D crack propagation is much more complexes than the 2D crack propagation, such as, petal crack, wrapping wing crack fin crack and so on, a entire specimen has larger compressive strength and smaller deformation. The failure form mainly focuses on cleavage cracking.
     The full growth process of 3D flaw is simulated with volume element method with FISH programs in FLAC3D software. The uniaxial compression and multi-axial compression simulate conditions of different angles, distances, and transfixion specimens within crack, also time and corresponding stress to its evolvement of initiation and coalescence. The simulation results show that 3D crack propagation is much more complexes than the 2D crack propagation, such as the wring action of the crack plane, and the 3D coalescence pattern of cracks. The failure form mainly focuses on cleavage cracking.
     Corresponding stress to crack initiation, time, damaged unit size and strength is non-monotone against angle and spacing, Corresponding stress to crack coalescence, time, damaged unit size and strength is monotone against angle and spacing, and multi-axial compressive performs a similar principle. The simulation results provide a new method to further study of 3D flaw fracture.
引文
[1]M.F. Ashby and S.D. Hallam, The Failure of Brittle Solids Containing Small Cracks under Compressive Stress. Acta Metall, No.3,1986
    [2]H.Horii, and S., Nemat-Nasser, Brittle failure in Compression:splitting and brittle-ductile transition, Philosophical Transactions of the Royal Society of London, Series A,319,337-374.1986
    [3]S. Nemat-Nasser.and Obata, M.M.,A microcrack model of dilatancy in brittle material, Journal of alied mechanics,1988,55(2),24-35,
    [4]E. Sahouryeh, A.V. Dyskin, L.N. Germanovich. Crack growth under biaxial compression. Engineering Fracture Mechanics 69 (2002),2187-2198
    [5]Ramamurthy T. Shear strength response of some geological materials in triaxial compression. Int J Rock Mach Min Sci,2001,38:683-697.
    [6]唐春安,刘红玉,秦四清等.非均匀性对岩石介质中裂纹扩展模式的影响[J].地球物理学报,2000,43(1):116-121.
    [7]徐涛,杨天鸿,唐春安等.孔隙压力作用下煤岩破裂及声发射特性的数值模拟[J].岩土力学,2004,25(10):1560-1564.
    [8]徐涛,唐春安,宋力等.含瓦斯煤岩破裂过程流固耦合数值模拟[J].岩石力学与工程学报,2005,24(10):1667-1673.
    [9]杨天鸿,唐春安,梁正召等.脆性岩石破裂过程损伤与渗流耦合数值模型研究[J].力学学报,2003,35(5):533-541.
    [10]张亚芳,唐春安,梁正召等.单颗粒增强复合材料破裂过程的数值模拟[J],广州大学学报自然科学版,2005,4(2):152-155.
    [11]朱万成,唐春安,梁正召等.应用数值试验方法推进岩石力学实验的教学[J].力学与实践,2004,26(2):76-77.
    [12]朱万成,唐春安.岩板中混合裂纹扩展过程的数值模拟[J].岩土工程学报,2000,20(2):231-234.
    [13]朱万成,林天革,唐春安等.混凝土拉伸断裂过程及尺寸效应的数值模拟[J]岩土力学.2002,23(2):147-151.
    [14]朱万成,唐春安,杨天鸿等.岩石破裂过程分析用(RFPA2D)系统的细观单元本构关系及验证[J].岩土力学,2003,22(1):24-29.
    [15]黄凯珠,林鹏,唐春安等.双轴加载下断续预置裂纹贯通机制的研究[J].岩石力学与工程学报,2002,21(6):808-816.
    [16]Chunan Tang, Zhengzhao Liang, Yongbin Zhang, et al. Three-Dimensional Material Failure Process Analysis [J]. Key Engineering Materials,2005,300(1):1196-1201.
    [17]Li Song, Houquan Zhang, Zhengzhao Liang, et al. Effect of element size on rock shear strength and failure pattern by rock failure progress
    [18]Wong R H C, Leung W L.Wang S W. Shear strength studies on rock-like models containing arrayed open joints. Proceeding of the 38th U.S. Rock Mech Symp Rock Mech in the National In terest.2001b.843-849.
    [19]Bobet A, Einstein H H. Fracture coalescence in rock-type materials under uniaxial and biaxial compression. Int J Rock Mech Min Sci,1998,35(7):863-888.
    [20]Yang Z Y, Chen J M, Huang T H. Effect of joint sets on the strength and deformation of rock mass models. Int.J. Rock Mech Min Sci,1998,35(1):75-84.
    [21]Zhu W.,Liang Z. and Xu J.,Physical Simulation Tests of Jointed Rock Mass and Prediction of its Strength, Int.J. Rock Mech. and Mining Science & Geom. Abstr. Vol.30, No.5,1993, pp.545-550.
    [22]周小平,张永兴.断续节理岩体劈裂破坏的贯通机理研究[J].岩石力学与工程学报,2005,24(1):8-12.
    [23]简浩,朱维申.模拟节理岩体水压致裂的CT实时试验初探[J].岩石力学与工程学报,2002,21(11):1655-1662
    [24]任伟中,白世伟.平面应力条件卜闭合断续节理岩体力学特性试验研究[J].实验力学,1999,14(4):520-527.
    [25]刘东燕.含断续节理岩体强度的各向异性研究[J].岩石力学与工程学报,1998,17(4):366-371
    [26]C.A.Tang, P.Lin, R.H.C.Wong and K.T.Chau. Analysis of crack coalescence in rock-like materials containing three flaws-Part II:numerical approach. International Journal of Rock Mechanics and Mining Sciences, Volume 38, Issue 7, October 2001,925-939.
    [27]袁绍国,雷化南 节理岩体加载实验的计算机模拟[J].中国矿业,1994,3(3):64-66.
    [28]朱维申,王平.节理岩体的等效连续模型及其工程应用.岩土工程学报,1992,14(2):1-11.
    [29]刘连峰,王泳嘉.三维节理岩体计算模型的建立[J].岩石力学与工程学报,1997,16(1):36-42.
    [30]刘宁,卓家寿.节理岩体的三维随机有限元及可靠度计算[J].岩石力学与工程学报,1995,14(4):297-305.
    [3]]李泽,王均生,王汉辉.成组节理岩体的有限元塑性极限分析研究[J].岩土工程学报,2007,29(10):1517-1521.
    [32]徐卫亚,张贵科.节理岩体正交各向异性等效强度参数研究[J].岩土工程学报,2007,29(6):806-810
    [33]analysis (RFPA2D) [J]. Key Engineering Materials,2005,300(1):2573-2578.
    [34]Liang Z Z, Tang C A, Li H X, Zhang Y B. Numerical simulation of the 3D failure process in heterogeneous rocks [J]. International Journal of Rock Mechanics & Mining Sciences,2003,41(3):419-419.
    [35]Liang Z Z. Wang S H, Tang C A, et al. Progressive failure and Mechanical behavior of transversely isotropic rocks [A]. In:Pavel Konecny. Eurock2005-impact of Human activity on the geological environment [C]. London:Taylor & Francis Group,2005: 309-314.
    [36]Liang Z Z, Song L, Tang C A, et al. Numerical simulation of patterns of seismic activities in rock failure process [A]. In:Ohnishi. Contribution of Rock Mechanics to the New Century:Proceedings of the ISRM International Symposium 3rd ARMS. Purer:MillPress,2004,1:521-524.
    [37]Zhengzhao Liang, Chunan Tang, Deshen Zhao, et al.3-D Micromechanics Model for Progressive Failure Analysis of Laminated Cylindrical Composite Shell [J]. Key Engineering Materials,2005.297(1):1113-1119.
    [38]Nayroles B. Touzot G. Villon P. Generalizing the finite element method:diffuse approximation and diffuse elements [J]. Comput. Mech.,1992,10(5):307-318.
    [39]Belytschko T, Lu Y Y, Gu L. Element-free Galerkin Methods [J]. Int. J. for Num. Methods in Eng.,1994,37(3):229-256.
    [40]Lu Y Y, Belytschko T, Gu L. A New implementation of the element-free Galerkin method [J]. Comput. Method Appl. Mech. Eng.,1994,113(1):397-414.
    [41]Chau K T, Wong R H C. Effective module of microcracked-rock theories and experiments [J]. International Journal of Damage Mechanics,1997,62(4):258-277.
    [42]Tang C A. Numerical simulation of progressive rock failure and associated seismicity [J]. Int. J. Rock Mech. Min. Sci.,1997,34(2):249-262.
    [43]Tang C A, Zhu W C, Yang T H. Influence of heterogeneity on crack propagation mode in brittle rock under static load [A]. In:Brown. Proceeding of Development and Application of Discontinuous Modelling for Rock Engineering [C]. BrRotterdam: Balkema Publishers,2003:33-38.
    [44]Tang C A, Lin P, Wong R H C, et al. Analysis of crack coalescence in rock-like materials containing three flaws-Part II:Numerical approach [J]. International Journal of Rock Mechanics and Mining Science,2001,38(7):925-936.
    [45]Wong R H C, Chau K T, et al. Analysis of crack coalescence in rock-like materials containing three flaws-Part I:Experimental approach [J]. International Journal of Rock Mechanics and Mining Sciences,2001,38(7):909-924.
    [46]Wong R H C, Tang C A, et al. Splitting failure in brittle rocks containing pre-existing flaws under uniaxial compression [J]. Engineering Fracture Mechanics,2002,69(17): 1853-1871.
    [47]Wong R H C, Chau K T. The coalescence of frictional cracks and the shear zone formation in brittle solids under compressive stresses [J]. Int. J. of Rock Mech.& Min. Sci.,1997,34(3/4):366-380.
    [48]Huang M L, Wong R H C, Wang S Y, et al. Numerical studies of the influence of heterogeneity on rock failure with pre-existing crack in uniaxial compression[J]. Key Engineering Materials.2004.261-263(11):1557-1562.
    [49]Lin P. Wong R H C, Chau K T, et al. Multi-crack coalescence in rock-like material under uniaxial and biaxial loading [J]. Key Engineering Materials,2000,14 (2): 183-187.
    [50]Lin P, Wong R H C, Chau K T. Experimental and numerical study on failure behavior of Hong Kong pre-existing pored granite [A]. In:Wong. Hong Kong Society of Theoretical and Alied mechanics annual meeting [C], Hong Kong:PloyU,2001:12-120.
    [51]Wong R H C, Chau K T. Crack coalescence in a rock-like material containing two cracks [J]. International Journal of Rock Mechanics and Mining Science,1998,35(3):147-161.
    [52]P.H.S.W.Kulatilake & S.Wang, Scale effects on the deformability and strength of rock, Scale Effects in Rock Masses, Pinto da Cunha, Balkema, Rotterdam,1990.
    [53]Ki-Bok Min, Lanru Jing. Numerical determination of the equivalent elastic compliance tensor for fractured rock masses using the distinct element method[J]. Int. J. Rock Mech. Min. Sci.,2003,40(6):795-816.
    [54]周创兵等.论岩体表征单元体积REV—岩体力学参数取值的一个基本问题[J].工程地质学报,1999,(4).
    [55]Tomofumi Koyama and Lanru Jing. Effects of model scale and particle size on micro-mechanical properties and failure processes of rocks—A particle mechanics approach[J]. Engineering Analysis with Boundary Elements,2007,31(5):458-472
    [56]周创兵,陈益峰,姜清辉.岩体表征单元体与岩体力学参数[J].岩土工程学报,2007,29(8):1135-1142.
    [57]张平,李宁,贺若兰.含裂隙类岩石材料的局部化渐进破损模型研究[J].岩石力学与工程学报,2006,25(10).
    [58]卢波,葛修润等.节理岩体表征单元体的分形几何研究[J].岩石力学与工程学报,2005,24(8):1355-1361.
    [59]徐靖南,朱维申.压剪应力作用下多裂隙岩体的力学特性—断裂损伤演化方程及试验验证[J].岩土力学,1994,15(2):1-12.
    [60]周小平,张永兴,王建华等.断续节理岩体劈裂破坏的贯通机理研究[J].岩石力学与工程学报,2005,24(1):8-12.
    [61]杨强等.基于二阶损伤张量的节理岩体各向异性屈服准则[J].岩石力学与工程学报,2005,24(8):1275-1282.
    [62]晏石林等.贯通节理岩体等效模型与弹性参数确定[J].华中科技大学学报,2001,29(6):60-63.
    [63]秦娟.节理岩体的代表单元集合体模型及弹性参数预测[J].水利学报,2001,(9):45-50.
    [64]黄润秋等.断续节理岩体宏观变形特性差异性的分形估计[J].岩石力学与工程学报, 2002.21(6):817-821.
    [65]刘远明,夏才初.共面闭合非贯通节理岩体贯通机制和破坏强度准则研究[J].岩石力学与工程学报,2006,25(10):2086-2091.
    [66]T. Kawamoto, Deformation and fracturing of discontinuous rock mass and damage mechanics theory, Int.J. Num. Anal. Meth. Geomech,1988,12,1-30.
    [67]Swoboda & Q. Yang. Damage propagation model and its application to rock engineering problems. Proceeding of Int. Cong. Rock Mechanics, Tokyo. Japan.1995,159-163.
    [68]Kulatilake P H S W, Ucpirti H,Wang S,et al. Use of the distinct element method to perform stress analysis in rock with non-persistent joint sand to study the effect of joint geometry parameters on the strength and deformability of rock masses. Rock Mech Rock Engng,1992,25(4):253-274.
    [69]Cai, M.,A constitutive model and FEM analysis of jointed rock masses,Int. J.Rock Mech. Min. Sci & Geomech. A bstr.,30,1993.
    [70]Fisher S R. Dispersion on a sphere[A]. In:Proc. Roy. Soc. Land.[C]. [s.1.]:[s.n.],1953. 295-305.
    [71]Priest S D, Hudson J A. Estimation of discontinuity spacing and trace length using scan line surveys[J]. Int. J. Rock Mech. Sci. Geomech. Abstr.,1981,18:183-197.
    [72]Schwartz F. W., Smith W. L., Crowe A. S. A stochastic analysis of microscopic dispersion in fractured media[J]. Water Resour. Res.,1983,19(5):1253-1265.
    [73]Billaux D., Chiles J. P., Hestir K., Long J. Three-Dimensional Statistical Modeling of a Fractured Rock Mass An Example From Fanay_Augores Mine. Int. J. of Rock Mech. Min. Sci.& Geomech. Abstr. Vol.26, No.3/4, PP 281-299,1989.
    [74]陈剑平,肖树芳,王清.随机不连续面三维网络计算机模拟原理[M].长春:东北师范大学出版社,1995.
    [75]Shapiro A M, Andersson J. Simulation of steady-state flow in three-dimensional fracture networks using boundary-element method[J]. Adv. Water Resour.,1985,8(3):106-110.
    [76]Rouleau A, Gale J E. Stochastic discrete fracture simulation of groundwater flow into an underground excavation in granite[J]. Int. J. Rock Mech. Min. Sci.& Geomech. Abstr,1987,24(2):99-112.
    [77]Alireza Baghbanan and Lanru Jing. Hydraulic properties of fractured rock masses with correlated fracture length and aperture. International Journal of Rock Mechanics and Mining Sciences, Volume 44, Issue 5, July 2007, Pages 704-719.
    [78]伍法权.节理岩体的本构模型与强度理论.科学通报,1991,36(14):1088-1091.
    [79]刘宁.可靠度随机有限元法及其工程应用.中国水利水电出版社,2001.
    [80]Tang C A, Lin P, Wong R H C. Analysis of crack coalescence in rocklike materials containing three flaws-Part Ⅱ:Numerical approach [J]. International Journal of Rock Mechanics and Mining Science,2001,38 (7):925-936.
    [81]Anne B N. David A. Lange.3D surface image analysis for fracture modeling of cement-based materials [J]. Cement and Concrete Research,2006,1(4):119-133.
    [82]Atiye T. The effect of weathering on pore geometry and compressive strength of selected rock types from Turkey [J]. Engineering Geology.2004,75(3):215-227.
    [83]Whittaker B N. Singh R N, Sun G. Rock fracture mechanics:principles, design and applications [M]. Lodon:Elsevier science publishers,1992:36-168.
    [84]Bonnet M, Maier G. Polizzotto C. Symmetric Galerkin boundary element methods [J]. Appl. Mech. Rev.,1998,51(11):669-704.
    [85]Brebbia C A, Telles J C F, Wrobel L C. Boundary element techniques:theory & applications in engineering [M]. Berlin:Berlin:Springer,1984:65-87.
    [86]陈剑平.岩体不连续面三维网络数值模拟技术[J].岩士工程学报,2001,23(4):397-402.
    [87]刘耀儒.三维有限元并行计算及其在水利工程中的应用[D].北京:清华大学,2003:54-69.
    [88]石根华著,裴觉民泽.数值流形元方法与非连续变形分析[M].北京:清华大学出版社,1987:34-52.
    [89]梁正召,唐春安,李连崇等.细观介质拉压比对岩石破坏过程的影响[J].岩石力学与工程学报,2004,23(1):7-11.
    [90]梁正召,唐春安,黄明利等.岩石破裂过程中声发射模式的数值模拟[J].东北大学学报:自然科学版,2002,23(10):1008-1011.
    [91]梁正召,唐春安,朱万成等.岩石非均匀性对震级—频度关系的影响的数值模拟[J].地震研究,2003,26(2):151-155.
    [92]彭文斌FLAC 3D实用教程[M].北京:机械工业出版社,2007.
    [93]刘波,韩彦辉等FLAC原理、实例与应用指南[M].北京:人民交通出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700