逆变器并联系统若干关键问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大功率的用电领域,柔性交流输电、高压直流输电、等都离不开大功率的电力电子装置。提高装置容量的有效途径是多台并联运行,死区对逆变器输出电压波形质量影响、逆变器并联系统特性影响和逆变器并联系统的限流保护(尤其短路)都是比较关键的问题。
     电感电流纹波较大场合下死区在某些特定区域不产生死区电压,以往的基于电流极性的2段式死区平均电压分析方法难以解释该现象。针对该问题,在2段式死区电压分析的基础上,本文提出了通用7段式死区电压分析方法,该方法根据电感电流的基波成分、纹波成分和零电流成分将电感电流划分为7种状态,并对双极性SPWM调制和单极性SPWM调制下7种状态的死区平均效应分别深入分析发现,单极性SPWM调制还与调制波的正负息息相关。
     带LC滤波器的逆变电源中,死区效应除了与直流电压、死区时间所占开关周期的百分比的定量关系,还与很多因素有关。为研究死区效应具体与哪些因素有关,文中提出了一种空载下的死区效应评估方法,并分别建立了双极性SPWM调制和单极性SPWM调制下的死区效应评估函数,给出了参数变化的死区效应强弱曲线。研究了死区效应与LC滤波器的谐振频率、开关频率等的关系。
     直接根据7段式死区效应进行死区补偿需要检测准确检测零电流钳位现象的时间,实现上较为困难。针对该问题,文中借鉴估算电感电流的方法,提出了一种基于间接电感电流的3段式死区补偿方法。该方法避免了直接检测电感电流7种状态,而是检测接近正弦的负载电流,计算出电感电流的3个区域,并进行死区补偿,实现上较为容易,仿真和实验验证了所提方法的有效性。
     无死区的逆变器并联系统中认为有功功率、无功功率与电压幅值、电压相位呈现线性关系、存在一个常系数矩阵对功率进行解耦。但带死区的空载逆变器并联系统中(以两台为例),以电压瞬时值为分析手段,初步得到存在一个以平衡点为圆心,死区电压峰值为半径的不敏感区域,位于该圆域外,环流有功、环流无功随电压幅值、电压相位的变化较为明显,且靠近该区域时曲线发生扭曲,环流有功、环流无功与电压幅值、电压相位构成的三维图近似为平面(线性关系)。位于该圆域内环流较小,环流有功、环流无功受滤波电容的影响较大。
     为研究组合式三相逆变器并联系统的限流保护,本文首先给出了组合式三相逆变器的数学模型,并介绍了正常情况下电压控制模式和异常情况下电流控制模式两种数学模型,在电压控制模式下引入重复控制改善了输出电压波形质量。
     两种模式的相互平稳切换是一大难点,短路故障时,采用硬件和软件相结合的限流方式很好地保证了单台独立运行和多台并联运行平稳地由电压控制模式切换到电流控制模式,短路故障消除后,利用同步信号保证了多台并联逆变器在同一时刻由电流控制模式切换到电压控制模式,避免了功率倒灌现象、直流电压泵升等一系列问题。2台400KVA组合式三相逆变器并联系统进行实验验证。
With the development of the Power Electrical technology, the applications of high power devices in power field such as FACTS、HVDC are more important than before. It is usually used that several inverters operate in parallel operation for increasing capability. Dead time influence to improve the output voltage distortion and current limit protection (such as short circuit) for system safety are more and more attention.
     On the occasion of the large inductor current ripple, the dead-time effect is eliminated at most zero-crossing zone of the inductor current, which is hard to explain using the conventional average dead time analysis. For this problem, a usual analysis metod based on seven situations of inductor current according to zero current clamping phenomenon is proposed. This method breaks inductor current into 7 situations using fundamental value、current ripple and zero current clamping phenomenon. The analyses of dead time effect using in unipolar and bipolar SPWM are obtained.
     For the inverter with output LC filter, the dead time effect is is not only relative DC voltage, dead time, switching cycle, but also relative modulation method, filter frequency, load current and so on. Thus, an estimating method for dead time effect is proposed for the inverter working in no load, and the dead time effect estimating functions are built for biopolar SPWM and unipolar SPWM. the curves is obtained to visually express the relation between LC filer frequency、switching frequency and dead time effect.
     The proposed dead-time compensation method is based on adjusting promptly the compensation voltage in accordance with the seven situations of inductor current in theory. However, it is difficulties to determine seven situations around the zero current clamping (ZCC), as the seven situations of inductor current are variable with change of the load current, DC voltage. Thus, an improved inductor current detecting method with high precision is presented, which estimates the inductor current by detecting load current instead of inductor current. Therefore, the proposed dead-time compensation method is based on compensation voltage according to the three zones (positive zone, zero-crossing zone, and negative zone) of estimated inductor current in practice. The simulation and experiment results show the validity of the analysis and the effectiveness of the proposed dead-time compensation.
     For parallel inverters system without dead time, the active power and reactive power are connected with voltage amplitude, voltage phase. The 3D figure is the flat, which means that it is possible to decouple between active power and reactive power using a constant coefficient matrix. However, there is a no sensitive area once adding the dead time. The change of active power, reactive power is large with change of voltage amplitude and phase without in this area. On the contrary, the power change is not obvious with the varying of voltage amplitude and phase.
     For analysis of current limit protection technique in the parallel inverters system. Controlling the output voltage in normal operation constantly is named the voltage control mode (VCM), and controlling the output current constantly in abnormal operation conditions (such as short circuit) is named the current control mode (CCM). A hybrid control strategy is proposed. On the one hand, the PID control and the repetitive control are used in VCM to obtain the fast dynamic responses and low harmonic distortions. On the other hand, the state feedback control is used in CCM. Pole assignment has been employed in designing parameter of the PID controller and state feedback, and the repetitive control design process is given.
     For ensuring reliable operation of high power inverter happening in load shocking (such as short circuit), the switching model between VCM and CCM becomes one of key technologies. However, it is possible to yield large shock between several parallel inverters when switching from CCM to VCM isn't in same time for parallel inverters. Thus, the large circulating current results in power flooding inversely, even more stoping inverters. An improved switching model technique is proposed only according to the synchronizing signals for ensuring the same time from CCM to VCM. Experimental results validate the proposed control strategy using two 400KVA parallel inverters.
引文
[1]王予倩.电力电子技术的发展及其在开关电源中的应用.四川电力技术,2005(5):45-47
    [2]韦和平.现代电力电子及电源技术的发展.现代电子技术,2005(18):102-105
    [3]Ganguly A. K. Restructuring of Power Distribution Entities in Developing Economies. IEEE Transmission and Distribution Conference and Exposition,2001: 476-479
    [4]Richard D. DeBlasio, Thomas S. Basso. Status on Developing IEEE Standard P1547 for Distributed Power Resources and Electric Power Systems Interconnection. IEEE Transmission and Distribution Conference and Exposition,2001:941-944
    [5]徐建中.分布式供电和冷热电联产的前景.节能与环保,2002:10-14
    [6]林新春.UPS无互联线并联控制技术研究:[博士学位论文].武汉:华中科技大学,2003
    [7]孔雪娟.全数字化三相大功率逆变器及并联运行:[硕士学位论文].武汉:华中科技大学,2002
    [8]Lehmkoster C. Security constrained optimal power flow for an economical operation of FACTS devices in liberalized energy markets. IEEE Transactions on Power delivery,2002,17(2):603-608
    [9]L. Gyugyi, C. D. Schauder, S. L. Willams, et al. The Unified Power Flow Controller: A New Approach to Power Transmission Control. IEEE Transactions on Power Delivery,1995,10(2):1085-1097
    [10]Muwaffaq I. Alomoush. Derivation of UPFC DC Load Flow Model with Examples of its Use in Restructured Power System. IEEE Transactions on Power Systems, 2003,18(3):1173-1180
    [11]朱鹏程,李勋,康勇等.统一电能质量控制器控制策略研究.中国电机工程学报,2004,24(8):67-73
    [12]鞠儒生,陈宝贤,邱晓刚.UPFC控制方法研究.中国电机工程学报,2003,23(6): 60-65
    [13]刘平.用于超导磁储能系统的高性能电压源变换器控制技术研究:[博士学位论文].武汉:华中科技大学,2000
    [14]何中一.PWM逆变器的控制及并联运行控制研究:[博士学位论文].南京:南京航空航天大学,2009
    [15]Pradeep M. Bhagwat, V. R. Stefanovic. Generalized structure of a multilevel PWM inverter. IEEE Transactions on Industry Applications,1983,19(6):1057-1069
    [16]Lee C. K., Leung J. S. K., Hui S. Y. R., et al. Circuit-level comparison of STATCOM technologies. IEEE Transactions on Power Electronics,2003,18(4): 1084-1092
    [17]Rojas R., Ohnishi T., Suzuki T. Neutral-point-clamped inverter with improved voltage waveform and control range. IEEE Transactions on Indutrial Electronics, 1995,42(6):587-594
    [18]A. K. Gupta, A. M. Khambadkone. A simple space vector PWM scheme to operate three-level NPC inverter at high modulation index including overmodulation region, with neutral point balancing. IEEE Transactions on Industry Applications,2007, 43(3):751-760
    [19]Y. Liang, C. O. Nwankpa. A Power Line Conditioner Based on Flying Capacitor Multilevel Voltage Source Converter with Phase Shift SPWM. IEEE-IAS Conference Record,1999:2337-2343
    [20]王鸿雁,王小峰,张超等.飞跨电容多电平逆变器的新型载波PWM方法.电工技术学报,2006,21(2):63-67
    [21]Bor-Ren Lin, Yuan-Po Chien, Hsin-Hung Lu. Multilevel inverter with series connection of H-bridge cells. IEEE-PEDS Conference Record,1999:859-864
    [22]单庆晓,李永东,潘孟春.级联型逆变器的新进展.电工技术学报,2004,19(2):1-9
    [23]王旭,臧义,徐彬等.基于开关管的级联H桥逆变器故障处理方法.中国电机工程学报,2007,27(7):76-81
    [24]陈坚.电力电子学—电力电子变换和控制技术(第二版).北京:高等教育出版 社,2004:45-47
    [25]Peter W. Hammond. Enhancing the reliability of modular medium-voltage drives. IEEE Transactions on Industrial Electronics,2002,49(5):948-954
    [26]孙进,侯振义,苏彦民.三相四臂对逆变电源控制方法的研究.电工技术学报,2004,19(4):61-65
    [27]胡媛媛.三相三线逆变器数字控制系统研究:[硕士学位论文].武汉:华中科技大学,2008
    [28]王建元,俞红祥,王琦等.基于DSP新型PWM三相逆变器的研究.电力系统及其自动化学报,2003,15(4):38-41
    [29]Hiroshi Ohshima, Kazuto Kawakami. Large Capacity 3-Phase UPS with IGBT PWM Inverter. IEEE PESC,1991:117-122
    [30]Park R. H. Two-Reaction Theory of Synchronous Machines. AIEE Transaction, 1929,48:716
    [31]陈坚.交流电机数学模型及调速系统.北京:国防工业出版社,1989
    [32]Yao G,, Phillips S., Norum L. Three-Phase Inverter Analysis of Ability to Maintain Symmetrical Output Voltages. IEEE IECON,1993:1057-1062
    [33]Gannett R. A., Sozio J. C., Boroyevich D. Application of Synchronous and Stationary Frame Controllers for Unbalanced and Nonlinear Load Compensation in 4-leg Inverters. IEEE APEC,2002:1038-1043
    [34]彭力,白丹,康勇等.三相逆变器不平衡抑制研究.中国电机工程学报,2004,24(6):175-180
    [35]C. M. Wu, Winghong Lau, Henry Shuhung Chung. Analytical Technique for Calculating the Output Harmonics of an H-Bridge Inverter with Dead Time. IEEE Transcations on Circuits and Systems-I:Fundamental Theory and Aplications,1999, 46(5):617-627
    [36]程小猛,陆海峰,瞿文龙等.用于逆变器死区补偿的空间矢量脉宽调制策略.清华大学学报(自然科学版),2008,48(7):1077-1080
    [37]T. J. Summers, R. E. Betz. Dead-time issues in predictive current control. IEEE Transactions on Industry Applications,2004,40(3):835-844
    [38]Odavic M., Sumner M., Zanchetta P., et al. A Theoretical Analysis of the Harmonic Content of PWM Waveforms for Multiple-Frequency Modulators. IEEE Transactions on Power Electronics,2010,25(1):131-141
    [39]D. G. Holmes, T. A. Lipo. Pulse Width Modulation for Power Converters. Piscataway, NJ,2003
    [40]刘军峰,李叶松.死区对电压型逆变器输出误差的影响及其补偿.电工技术学报,2007,22(5):117-122
    [41]张永锋.DSP控制SPWM逆变器死区问题的研究:[硕士学位论文].合肥:合肥工业大学,2007
    [42]王连芳.电压源型PWM逆变器死区效应补偿策略研究:[硕士学位论文].济南:山东大学,2008
    [43]陈慧荣.逆变器死区效应机理和典型补偿方法的研究:[硕士学位论文].天津:天津大学,2006
    [44]金舜.一种一中点控制_窄脉冲消除_死区补偿_的三电平PWM控制算法:[博士学位论文].西安:西安理工大学,2003
    [45]Y. K. Lin, Y. S. Lai. Dead-Time Elimination of PWM-Controlled Inverter/Converter without Separate Power Sources for Current Polarity Detection Circuit. IEEE Transactions on Industrial Electronics,2009,56(6):2121-2127
    [46]D. Leggate, R. J. Kerkman. Pulse-based dead-time compensator for PWM voltage inverters. IEEE Transactions on Industrial Electronics,1997,44(2):191-197
    [47]Cho K. M., Oh W. S., Kim Y. T., et al. A new switching strategy for pulse width modulation (PWM) power converters. IEEE Transactions on Industrial Electronics, 2007,54(1):330-337
    [48]Attaianese C., Nardi V., Tomasso G. A novel SVM strategy for VSI dead-time-effect reduction. IEEE Transactions on Industry Applications,2005,41(6): 1667-1674
    [49]Z. Y. He, X. W. J. A New Inverter Compensation Strategy Based on Adjusting Dead-Time On-Line. IEEE International Symposium on Industrial Electronics,2008: 459-464
    [50]何正义,季学武,瞿文龙.一种新颖的基于死区时间在线调整的SVPWM补偿算法.电工技术学报,2009,24(6):42-47
    [51]J. Jung, K. Nam. A PI-type dead-time compensation method for vector-controlled GTO inverters. IEEE Transactions on Industry Applications,1998,34(3):452-457
    [52]Kim S. Y., Lee W, Rho M. S., et al. Effective Dead-Time Compensation Using a Simple Vectorial Disturbance Estimator in PMSM Drives. IEEE Transactions on Industrial Electronics,2010,57(5):1609-1614
    [53]Urasaki N., Senjyu T., Uezato K., et al. An adaptive dead-time compensation strategy for voltage source inverter fed motor drives. IEEE Transactions on Power Electronics,20(5):1150-1160
    [54]C. Attaianese, G. Tomasso. Predictive compensation of dead-time effects in VSI feeding induction motors. IEEE Transactions on Industry Applications,2001,37(3): 856-863
    [55]A. R. Munoz, T. A. Lipo. On-line dead-time compensation technique for open-loop PWM-VSI drives. IEEE Transactions on Power Electronics,1999,14(4):683-689
    [56]Hyun-Soo Kim, Hyung-Tae Moon, Myung-Joong Youn. On-line dead-time compensation method using disturbance observer. IEEE Transactions on Power Electronics,2003,18(6):1336-1345
    [57]S. Y. Kim, S. Y. Park. Compensation of dead-time effects based on adaptive harmonic filtering in the vector-controlled AC motor drives. IEEE Transactions on Industrial Electronics,2007,54(3):1768-1777
    [58]Hengbing Zhao, Wu Q. M. J., Kawamura A. An accurate approach of nonlinearity compensation for VSI inverter output voltage. IEEE Transactions on Power Electronics,2004,19(4):1029-1035
    [59]J. H. Su, B. C. Hsu. Application of small-gain theorey in the dead-time compensation of voltage-source-inverter drives. IEEE Transactions on Industrial Electronics,2005,52(5):1456-1458
    [60]K. Natori, K. Ohnishi. A design method of communication disturbance observer for time-delay compensation, taking the dynamic property of network disturbance into account. IEEE Transactions on Industrial Electronics,2008,55(5):2152-2168
    [61]Oliveira A. C., Jacobina C. B., Lima A. M. N. Improved dead-time compensation for sinusoidal PWM inverters operating at high switching frequencies. IEEE Transactions on Industrial Electronics,2007,54(4):2295-2304
    [62]Choi C. H., Cho K. R., Seok J. K. Inverter nonlinearity compensation in the presence of current measurement errors and switching device parameter uncertainties. IEEE Transactions on Power Electronics,2007,22(2):576-583
    [63]葛黄徐,杨仁刚,潘年安等.基于功率因数角预测电流矢量的死区补偿方法.电力电子技术,2008,42(3):78-80
    [64]杨荣峰,陈伟,于泳等.自适应滤波在电流矢量死区补偿方法中的应用.电工技术学报,2009,24(7):65-69
    [65]Urasaki N., Senjyu T., Kinjo T., et al. Dead-time compensation strategy for permanent magnet synchronous motor drive taking zero-current clamp and parasitic capacitance effedts into account. IEEE Transactions on Industiral Electronics,1997, 44(2):191-197
    [66]胡庆波,吕征宇.一种新颖的基于空间矢量PWM的死区补偿方法.中国电机工程学报,2005,25(3):13-17
    [67]Lazhar Benbrahim. On the compensation of dead time and zero current crossing for a PWM-inverter-controlled ac serve drive. IEEE Transactions on Inducstrial Electronics,2004,51(5):1113-1117
    [68]张星,瞿文龙,陆海峰等.基于两相电流差检测的逆变器输出电压补偿新方法.电工技术学报,2008,23(7):27-32
    [69]Lai Y. S., Chen P. S., Lee. H. K., et al. Optimal common-mode voltage reduction PWM technique for inverter control with consideration of the dead-time effects-Part II:Applications to IM drives with diode front end. IEEE Transactions on Industry Applications,2004,40(6):1613-1620
    [70]M. M. Renge, H. M. Suryawanshi. Five level diode clamped inverter to eliminate common mode voltage and reduce dv/dt in medium voltage rating induction motor drives. IEEE Transactions on Power Electronics,2008,23(4):1598-1607
    [71]杨兵建,杨波,何湘宁等.三电平逆变器中的死区效应与补偿.电力电子技术, 2011,45(3):4-6
    [72]金舜,钟彦儒.一种新颖的同时考虑中点电位平衡和窄脉冲消除及死区补偿的三电平空间电压矢量脉宽调制方法.中国电机工程学报,2005,25(6):60-66
    [73]Khaligh A., Wells J. R., Chapman P. L., et al. Dead-time distortion in generalized selective harmonic control. IEEE Transactions on Power Electronics,2008,23(3): 1511-1517
    [74]吴茂刚,赵荣祥,汤新舟.空间矢量PWM逆变器死区效应分析与补偿方法.浙江大学学报(工学版),2006,40(3):469-473
    [75]张宇,段善旭,康勇等.逆变器并联系统中谐波环流抑制的研究.中国电机工程学报,2006,26(12):67-72
    [76]王璐,朱晓亮,龚春英等.三相并网逆变器的控制与死区补偿.电力电子技术,2010,44(9):1-3
    [77]L. Ben-Brahim. On the compensation of dead time and zero-current crossing for a PWM-inverter-controlled AC servo drive. IEEE Transactions on Industrial Electronics,2004,51(5):1113-1117
    [78]K. B. Lee, F. Blaabjerg. Reduced-order extended Luenberger observer based sensorless vector control driven by matrix converter with nonlinearity compensation. IEEE Transactions on Industrial Electronics,2006,53(1):66-75
    [79]Qiu W. H., Mercer S., Liang Z. X., et al. Driver deadtime control and its impact on system stability of synchronous buck voltage regulator. IEEE Transactions on Power Electronics,2008,23(1):163-171
    [80]Hara H., Yamamoto E., Kang J. K., et al. Improvement of output voltage control performance for low-speed operation of matrix converter. IEEE Transactions on Power Electronics,2005,20(6):1372-1378
    [81]V. Yousefzadeh, D. Maksimovic. Sensorless optimization of dead times in dc-dc converters with synchronous rectifiers. IEEE Transactions on Power Electronics, 2006,21(4):994-1002
    [82]Iimori K., Shinohara K., Yamamoto K. Study of dead time of PWM rectifier of voltage-source inverter without DC-link components and it's operating characteristics of induction motor. IEEE Transactions on Industry Applications, 2006,42(2):518-525
    [83]王高林,于泳,杨荣峰等.感应电机空间矢量PWM控制逆变器死区效应补偿.中国电机工程学报,2008,28(15):79-83
    [84]吴茂刚,赵荣祥,汤新舟.正弦和空间矢量PWM逆变器死区效应分析与补偿.中国电机工程学报,2006,26(12):101-105
    [85]孙向东,钟彦儒,任碧莹等.一种新颖的死区补偿时间测量方法.中国电机工程学报,2003,23(2):103-107
    [86]Adragna C., L. Huber, et al. Analysis and Performance Evaluation of Interleaved DCM/CCM Boundary Boost PFC Converters Around Zero-Crossing of Line Voltage. IEEE Applied Power Electronics Conference and Exposition,2009: 1151-1157
    [87]Hobbs I. K., Beukes H. J., Koeslag F. Analytical Characterization of Dead Time in the Zero-Crossing Region of the Inductor Current. Africon,2009:668-674
    [88]王连芳,王建民.电压源型PWM逆变器死区效应补偿策略研究.电气传动自动化,2010,32(5):13-17
    [89]Qingyi Wang, Hui Luo, Xing Den, et al. An improved method of dead time compensation in the zero-crossing current region with low-frequency operation. IEEE Conference on Industrial Electronics and Applications,2007:1971-1975
    [90]Jian Sun. On the zero-crossing distortion in single-phase PFC converters. IEEE Transactions on Power Electronics,2004,19(3):685-692
    [91]Xiaohui Qu, Xinbo Ruan. A scheme for improving input current zero-crossing distortion of single-phase Power-Factor-Correction converters. IEEE Power Electronics Specialists Conference,2006:2070-2075
    [92]Kotsopoulos A., Heskes P. J. M., Jansen M. J. Zero-crossing distortion in grid-connected PV inverters. " IEEE Transactions on Industrial Electronics,2005, 52(2):558-565
    [93]段善旭.模块化逆变器全数字化并联控制技术研究:[博士学位论文].武汉:华中科技大学,1999
    [94]张宇.三相逆变器动态特性及其并联系统环流抑制的研究:[博士学位论文].武 汉:华中科技大学,2005
    [95]Vorell K. Control of Single Phase Parallel Inverter Systems. Dissertation for Master Degree in the University of British Columbia,1999
    [96]Prodanovic M., Green T. C., Mansir H. A Survey of Control Methods for Three-Phase Inverters in Parallel Connection. IEE International Conference on Power Electronics and Variable Speed Drives,2000:472-477
    [97]Chen J. F., Chu C. L. Combination Voltage-Controlled and Current-Controlled PWM Inverter for UPS Parallel Operation. IEEE Transactions on Power Electronics, 1995,10(5):547-558
    [98]肖岚,胡文斌,蒋渭忠等.基于主从控制的逆变器并联系统研究.东南大学学报(自然科学版),2002,32(1):133-137
    [99]姜桂宾,裴云庆,王峰等.SPWM逆变电源的自动主从并联控制技术.电工电能新技术,2003,22(3):16-20
    [100]Wu T. F., Chen Y. K., Huang Y. H.3C Strategy for Inverters in Parallel Operation Achieving an Equal Current Distribution. IEEE Transactions on Industrial Electronics,2000,47(2):273-281
    [101]Guerrero J. M., Hang L., Uceda J. Control of distributed uninterruptible power supply systems. IEEE Transactions on Industrial Electronics,2008,55(8): 2845-2859
    [102]Tuladhar A., Hua Jin, Unger T., et al. Control of Parallel Inverters in Distributed AC Power Systems with Consideration of the Line Impedance Effect. IEEE APEC Conference,1998:321-328
    [103]孔雪娟,王荆江,彭力等.采用SVPWM的三相逆变电源的分散逻辑并联运行.中国电机工程学报,2003,23(6):81-86
    [104]段善旭,刘邦银,康勇等.基于分散逻辑的UPS逆变电源并联控制技术.电力电子技术,2004,2:56-58
    [105]Chandorkar M. C., Divan D. M., Adapa R. Control of Parallel Connected Inverters in Standalone ac Supply Systems. IEEE Transactions on Industry Applications,1993, 29(1):136-143
    [106]J. M. Guerrero, L. G. Vicuna, J. Matas, et al. A wireless controller to enhance dynamic performance of parallel inverters in distributed generation systems. IEEE Transactions on Power Electronics,2004,19(5):1205-1213
    [107]Guerrero J. M., Matas J., de Vicuna L. G., et al. Wireless-Control Strategy for Parallel Operation of Distributed-Generation Inverters. IEEE Transactions on Industrial Electronics,2006,53(5):1461-1470
    [108]张丹红,李兵,刘开培.无互连线逆变器并联控制的一种改进下垂算法.武汉大学学报(工学版),2006,39(5):97-101
    [109]Guerrero J. M., GarciadeVicuna L., Matas J., et al. Output Impedance Design of Parallel-Connected UPS Inverters with Wireless Load-Sharing Control. IEEE Transactions on Industrial Electronics,2005,52(4):1126-1135
    [110]S. R. Bowes, B. M. Bird. Novel approach to the analysis and synthesis of modulation processes in power converters. Proceeding of IEE,1975,122(5): 507-513
    [111]S. R. Bowes. New Sinusoidal Pulsewidth-Modulated Inverter. Proceeding of IEE, 1975,122(11):1279-1285
    [112]M. Mazzucchelli, L. Puglisi, G. Sciutto. PWM Systems in Power Converters:An Extension of the'Subharmonic' Method. IEEE Transactions on Industrial Electronics and Control Instrumentation,1981,28(4):315-322
    [113]Carrara G., Gardella S., Marchesoni M., et al. A new multilevel PWM method:a theoretical analysis. IEEE Transactions on Power Electronics,1992,7(3):497-505
    [114]McGrath B. P., Holmes D. G. An analytical technique for the determination of spectral components of multilevel carrier-based PWM methods. IEEE Transactions on Industrial Electronics,2002,49(4):847-857
    [115]Corzine K. A., Baker J. R. Multilevel voltage-source duty-cycle modulation: analysis and implementation. IEEE Transactions on Industrial Electronics,2002, 49(5):1009-1016
    [116]Holmes D. G., McGrath B. P. Opportunities for harmonic cancellation with carrier-based PWM for a two-level and multilevel cascaded inverters. IEEE Transactions on Industry Applications,2001,37(2):574-582
    [117]Koeii De Gusseine, David M. Van de Sype, Wouter R. Ryckaert. Zero-Crossing Distortion in Grid-Coupled AC-DC Converters. European conference on Power Electronics and Applications,2005:1-10
    [118]Zhang Jin, Luo Fanglin. An Accurate Approach of Dead-time Compensation for Three-phase DC/AC Inverter. IEEE Conference on Industrial Electronics and Applications,2009:2929-2934
    [119]Zhou B., Lau W. H., Chung H. The analysis of a novel dead-time generation and compensation method for 2-level PWM topology. IEEE Power Electronics Specialists Conference,2006:452-456
    [120]Kwang-Seob Kim, Tai-Sik Hwang, Byung-Ki Kwon, et al. Dead-time Compensation Method of a 600KW Electrical Balance Of Plant with LC Filter for Molten Carbonate Fuel Cell. IEEE International Electric Machines and Drives Conference,2009:1652-1657
    [121]Oliveira A. C., Jacobina C. B., Lima A. M. N., et al. Dead-time compensation in the zero-crossing current region. IEEE Annual,2003:1937-1942
    [122]Zixin Li, Ping Wang, Yaohua Li, et al. Dead-Time Compensation for VSI Based PowerSupply with Small Filter Inductor. IEEE International Power Electronics and Motion Control Conference,2009:1519-1523
    [123]Xiaolin Mao, Ayyanar R., Jain A. K. Dead time effect in two-level space vector PWM voltage source inverters with large current ripple. IEEE Applied Power Electronics Conference and Exposition,2011:679-684
    [124]Nakamura Y., Funato H., Ogasawara S. Compensation of output voltage distortion analysis of PWM inverter with LC filter caused by device voltage drop. European Conference on Power Electronics and Applications,2007:1-9
    [125]张宇,陈息坤,康勇等.逆变器并联系统中死区的环流效应.电力电子技术,2005,39(5):99-100
    [126]于玮,徐德鸿.基于虚拟阻抗的不间断电源并联系统均流控制.中国电机工程学报,2009,29(24):32-39
    [127]Yu Zhang, Xikun Chen, Yong Kang, et al. The restrain of the dead time effects in parallelinverters. IEEE International Conference on Electric Machines and Drives, 2005:797-802
    [128]Yu Zhang, Shanxu Duan, Yong Kang, et al. The Restrain of Harmonic Circulating Currents between Parallel Inverters. IEEE International Power Electronics and Motion Control Conference,2006:1-5
    [129]Itkonen T., Luukko J., Pollanen R. Modeling and analysis of the dead-time effects inparallel two-level voltage source inverters. IEEE Energy Conversion Congress and Exposition,2009:3211-3217
    [130]Itkonen T., Luukko J., Sankala A., et al. Modeling and Analysis of the Dead-Time Effects inParallel PWM Two-Level Three-Phase Voltage-Source Inverters. IEEE Transactions on Power Electronics,2009,24(11):2446-2455
    [131]蔡昆,谢孟,胜晓松等.高性能全数字电压型逆变器三相独立控制技术.电力电子技术,2004,38(4):49-53
    [132]陈敏.9kVA组合式三相逆变器的研制:[硕士学位论文].南京:南京航空航天大学,2002
    [133]侯婷,裴雪军,刘明先等.大功率组合式三相逆变电源的统一控制技术.中国电机工程学报,2006,26(25):46-50
    [134]刘明先.组合式三相逆变器并联控制技术研究:[硕士学位论文].武汉:华中科技大学,2007
    [135]Zhang Xiaoqing, Li Ming. Using the Fault Current Limiter With Spark Gap to Reduce Short-Circuit Currents. IEEE Transactions on Power Delivery,2008,23(1): 506-507
    [136]丁辉,姚蜀军,韩民晓.高压变频驱动系统脉冲封锁保护策略.中国电机工程学报,2006,26(6):123-127
    [137]费万民,张艳莉,孟照娟等.基于自关断器件的三相不接地系统短路限流器及其实验研究.电工技术学报,2007,22(5):64-70
    [138]刘国海,刘平原,沈跃等.两电机变频调速系统的神经系统广义逆解耦控制.中国电机工程学报,2008,28(36:8-102
    [139]胡长生,林平,张仲超.变频调速系统集成化中的分时技术.中国电机工程学报,2005,25(5):79-82
    [140]辜承林,陈乔夫,熊永前.电机学(第二版).武汉:华中科技大学出版社,2005:238-247
    [141]阚加荣,谢少军.提高无互联线并联系统稳定性的一种功率运算方法.电工技术学报.2007,22(3):85-91
    [142]M. Ramanoorthy. Application of Digital Computers to Power System Protection, Inst, Eng. (India),1997,52:235-238
    [143]Jason R. Wells, Brett M. Nee, Patrick L. Chapman, et al. Selective harmonic control a general problem formulation and selected solutions. IEEE Transactions On Power Electronics.2005,20(6):452-460
    [144]Sincy George, Vivek Agarwal. A DSP based optimal algorithm for Shunt active filter under nonsinusoidal supply and unbalanced load conditions. IEEE Transactions on power electronics,2007,22(3):593-601
    [145]杨柳,刘会金,陈允平等.三相四线制系统任意次谐波电流的检测新方法.中国电机工程学报.2005,25(13):41-44

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700