虹膜识别理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
虹膜识别作为生物特征识别的一个重要分支,是指利用人眼虹膜区域进行身份鉴别的技术。虹膜特征与其它生物特征相比具有高稳定性、高可靠性和高防伪性等优点。该技术从提出到现在已有十多年的时间,但是由于应用环境的复杂性,仍然存在许多需要改进之处。本文正是针对现有虹膜识别算法在虹膜图像模糊检测和虹膜图像定位两部分的不足之处,提出了新的改进性方法,并取得了较好的实验结果。
     本文首先介绍了生物特征识别技术和虹膜识别技术的基本概念,以及虹膜识别系统的主要组成部分,即:虹膜图像质量评估、虹膜定位、虹膜图像归一化、虹膜图像遮挡掩膜估计、虹膜图像特征提取、匹配和虹膜图像粗分类。同时介绍了每一部分相关算法的研究现状和发展动态,及存在的主要问题。针对这些主要问题,本文进行了以下五个方面的研究工作:
     1.提出了基于多核函数学习的模糊虹膜图像检测模型。
     虹膜图像模糊检测是自动虹膜识别系统中图像质量评估最重要的一个步骤,该问题作为非参考图像模糊检测问题一直未被很好解决。本文在分析模糊虹膜图像频谱和倒谱特征的基础上,提出了两种新的基于频谱能量密度分布和奇异倒谱直方图的模糊特征。提出奇异倒谱直方图分布作为模糊特征也是本文一个重要的贡献之一。该特征是与图像内容独立的具有很强判别性的模糊特征。另外,本文提出采用多核函数学习的方法,融合两种特征进行虹膜图像的模糊检测。实验结果证明了提出特征和多核函数学习的有效性。
     2.提出了基于概率成对投票的虹膜定位模型。
     虹膜图像定位是虹膜识别系统中最困难且最重要的问题,它直接关系到识别特征的有效性和算法的实时性。眼睑、睫毛和光斑等的干扰以及拍摄时头部的转动加剧了该问题的复杂性。本文提出了一种基于概率成对投票的圆定位方法。该方法能够有效克服被检测物体的微小形变,不易受到遮挡、噪声的干扰。同时由于在概率框架下在连续参数空间中进行投票,因此可以通过模态检测的方法找到最佳假设圆参数,有效地降低了已有圆定位方法的算法复杂度。本文将该方法应用于虹膜定位问题,取得了很好的效果。
     3.提出了基于局部判别模型和哈夫聚类的虹膜定位模型。
     多数已有虹膜定位方法利用虹膜边缘的灰度梯度信息进行虹膜边缘的检测或判断,然而虹膜的内外边缘除了灰度梯度值特征之外,还有许多判别性更强的局部特征。本文提出利用边界点附近局部区域的图像特征进行虹膜和非虹膜边界点的判定。同时利用哈夫聚类的基本思想,通过边界点在图像中分布位置的整体约束,进一步准确地区分虹膜和非虹膜边界点。最后,利用光滑样条函数拟合虹膜边界点,得到虹膜边缘的精确位置。实验证明局部判别模型的应用有效地提高了原有虹膜定位方法的定位准确度。
     4.提出了基于小波多分辨率分析和M估计的虹膜定位模型。
     小波多分辨率分析是图像分析的有效工具。本文通过分析瞳孔边缘、虹膜边缘以及眼睑、睫毛边缘特征存在的尺度范围,提出在虹膜内外边缘特征存在的尺度范围内进行虹膜边界点提取,有效地减少了其它边界的干扰。同时,提出采用基于M估计的椭圆拟合方法拟合边界点,进一步排除了非虹膜边界点对定位结果的影响。
     5.提出了基于相位一致性分析和最小修剪方差拟合的虹膜定位模型。
     相位一致性分析是进行图像特征检测和提取的一种有效方法。本文通过检测相位一致性的局部最大值提取虹膜边界点。该边界点提取方法不易受图像光照变化、对比度变化的影响,同时通过选择滤波器的尺度范围避免了眼睑、睫毛等高频图像特征的干扰。此外,利用最小修剪方差拟合边界点也有效避免了噪声和外点对于拟合结果的干扰。
     最后,本文总结了上述各种方法的优点与不足,并提出了今后工作的主要研究方向。
Iris recognition, as an important branch of biometric recognition, recognizes person’sidentity according to the textures of iris region in our eyes. Compared with otherbiometric identification technologies, iris recognition is much more stable, secure andanti-counterfeiting. In the past more than ten years after this technology was firstlyproposed, many related methods have been proposed for iris recognition. However, theexisting iris recognition methods also have some drawbancks, especially in the irisimage quality evaluation part and iris localization part. Aiming at solving the difficultproblems in these two parts, this thesis proposes a novel improved iris image blurdetection method and four effective iris localization algorithms.
     At the beginning of this thesis, we introduce the concepts of biometric recognitionand iris recognition. Moreover, we introduce the major parts of iris recongtion system,namely, iris image quality evaluation, iris localization, iris image normalization, irisocclusion mask estimation, feature extraction and matching as well as iris image coarseclassification. In the description for each part, we also introduce the related existingmethods and their advantages and disadvantages. To solve the problems in irisrecognition and improve the performance of exisiting methods, we have done thefollowing works:
     1. Propose the blurred iris image detection model with multiple kernel learning.
     Blurred iris image detection is an especially important problem for automatic irisrecognition system. However, it is a non-reference image quality evaluation problemand is hard to find discriminative features for blur detection. In this thesis, we analyzethe characteristics of the frequency spectrum and cepstrum of blurred iris image andpropose two new discriminative blur features, namely: Spectral Ennergy DensityDistribution and Singular Cepstrum Histogram. Defining blur feature in cepstrum isalso one of the major contributions of this thesis. To merge the two proposed blurfeatures, we employ multiple kernel learning theory to construct a merging kernel whichis a linear combinition of two kernels. The experiment results demonstrate the improvedperformance of our method.
     2. Propose a new iris localization model based on probabilistic pairwise voting.
     Iris localization is an especially hard and important task in iris recognition. As withother biometric recognition problems, correct localization or registration is key toaccurate iris recognition since it allows “apples-to-apples” comparisons. However, dueto the occlusion from eyelash, eyelid and spectral reflections, as well as the off-axiscapturing, iris localization is a very challenging problem. This thesis proposes a newcircular object detection method which can be used for iris localization. The proposedmethod is robust to small object shape deformations, noise and occlusions. The wholevoting model is formulated in continuous parameter space and the optimal parametercan be detected though using mode-finding mehods. This stratege reduces thecomputational cost of existing voting-based circle detection method. When applying foriris localization, the proposed method performs well.
     3. Propose a new iris localization model based on local experts of edge point andHough Clustring.
     For most existing iris localization methods, they usually utilize the gradientinformation of edge points to detect iris inner or outer edge. However, except thegradient value, there are also many other kind of local image patch features which canbe used for iris and non-iris edge point discrimination. In this thesis, we propose toextract the local image feature of every edge point and train two local experts todesriminate iris and non-iris inner or outer edge points. Meanwhile, coupled with thespatial distribution of these edge points, we can slectect the correct iris edge pointsthrough Hough Clustering. Finally, smooth spline fitting is adopted to fit these slectededge points to get the accurate edge of iris. Related experiment results show theimproved performance of this method.
     4. Propose a novel iris localization method based on Multi-resolution analysis andM-estimation.
     Multi-resolution analysis is an efficient image analysis theory. In this thesis, wesuppose the edges of pupil, iris, eyelash and eyelid are image features exsisting atdifferent scales. Then, we propose to extract iris edge points at appreciate scales toavoid the disturbing of eyelash and eyelid. Meanwhile, we propose to employM-estimation to fit these extracted edge points.
     5. Propose a new iris localization method based on phase congruency analysis andtrimmed least square fitting.
     Phase congruency analysis is an efficient method for image feature localization andextraction. This thesis proposes to detect the local maximum of phase congruency atapprociate scale range and choose these points with local maximal phase congruency aspupillary and iridial edge points. Detecting the edge points of iris based on phasecongruency analysis is robust to illumination change and contrast variations. Moreover,we propose to employ trimmed least square method to fit these edge points robustly.
     At the end of this thesis, we conclude the advantages and disadvantages of theproposed methods, then introduce the future work.
引文
[1] J.G. Daugman. High confidence visual recognition of persons by a test of statisticalindependence. IEEE Transactions on Pattern Analysis and Machine Intelligence,1993,12(11):1148-1161
    [2] L. Ma, T. Tan, Y. Wang, and D. Zhang. Personal identification based on iris texture analysis.IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(12):1519-1533
    [3] Y. Du, C. Belcher, Z. Zhou, and R.W. Ives. feature correlation evaluation approach for irisimage quality measure. Signal Processing,2010,90(4):1176-1187
    [4] N.D. Kalka, J. Zuo, N.A. Schmid, and B. Cukic, Estimating and fusing quality factors foriris biometric images. IEEE Transactions on Systems, Man and Cybernetics, Part A:Systems and Humans,2010,40(3):509-524
    [5] J.G. Daugman. How iris recognition works. IEEE Transactions on Circuits Systems VideoTechnology,2004,14(1):21-30
    [6] K. W. Bowyer, K. Hollingsworth, and P. J. Flynn. Image understanding for iris biometrics: Asurvey. Computer Vision and Image Understanding,2008,110(2):281-307
    [7] R. Wildes. Iris recognition: An emerging biometric technology. Proceedings of the IEEE,1997,85(9):1348-1363
    [8] X. Zhu, Y. Liu, X. Ming, and Q. Cui. A quality evaluation method of iris images sequencebased on wavelet coefficients in 'region of interest'. Proceedings of the4th InternationalConference of Computer Information Technology,2004,24-27
    [9] Y. Chen, S. Dass, and A. Jain. Localized iris quality using2-D wavelets. Proceedings ofInternational Conference on Biometrics,2006,373-381
    [10] Z. Wei, T. Tan, Z. Sun, and J. Cui. Robust and fast asessment of iris image quality.Proceedings of International Conference on Biometrics,2006,464-471
    [11] E. Krichen, S. Garcia-Salicetti, and B. Dorizzi. A new probabilistic iris quality measure forcomprehensive noise detection. Proceedings of the1st IEEE International Conference onBiometrics: Theory, Applications and Systems,2007,1-6
    [12] K. Hollingsworth, K. W. Bowyer, and P. J. Flynn. Pupil dilation degrades iris biometricperformance. Computer Vision and Image Understanding,2009113(1):150-157
    [13] J. Jang, K.R. Park, J. Kim, and Y. Lee. New focus assessment method for iris recognitionsystems. Pattern Recognition Letter,2008,29(13):1759-1767
    [14] K. R. Park and J. Kim. A real-time focusing algorithm for iris recognition camera. IEEETransactions on Systems, Man, and Cybernetics, Part C,2005,35(3):441-444
    [15] Z. Zhi, Y. Du, and C. Belcher. Transforming traditinal iris recognition system to work onnon-ideal situation. IEEE Transactions on Industrial Electronics,2009,56(8):3203-3213
    [16] Y. K. Jang, B. J. Kang, and K. R. Park. A study on eyelid localization considering imagefocus for iris recognition. Pattern Recognition Letters,2008,29(11):1698-1704
    [17] B. J. Kang and K. R. Park. A robust eyelash detection based on iris focus assessment.Pattern Recognition Letters,2007,28(13):1630-1639
    [18] J. Zuo, N. K. Ratha, and J. H. Connell. A new approach for iris segmentation. Proceedingsof the2008IEEE Computer Society Conference on Computer Vision and PatternRecognition Workshop on Biometrics,2008,1-6
    [19] M. Nabti and A. Bouridane. An efficient and fast iris recognition system based on acombined multiscale feature extraction technique. Pattern Recognition,2008,41(3):868-879
    [20] X. Ren, Z. Peng, and Q. Zeng. An improved method for Daugman’s iris localizationalgorithm. Computers in Biology and Medicine,2008,38(1):111-115
    [21] A. Basit and M. Y. Javed. Localization of iris in gray scale images using intensity gradient.Optics and Lasers in Engineering,2007,45(12):1107-1114
    [22] X. He and P. Shi. A new segmentation approach for iris recognition based on hand-heldcapture device. Pattern Recognition,2007,40(4):1326-1333
    [23] J. Zuo and N. A. Schmid. On a methodology for robust segmentation of Non-ideal irisimages. IEEE Transactions on Systems, Man, and Cybernetics, PartB: Cybernetics,2010,40(3):703-718
    [24] E. Sung, X. Chen, J. Zhu, and J. Yang. Towards non-cooperative iris recognition systems.Proceeding of the7th International Conference on Control, Automation, Robotics andVision,2002,990-995
    [25] X. Liu, K. W. Bowyer, and P. J. Flynn. Experiments with an improved iris segmentationalgorithm. Proceeding of4th IEEE Workshop on Automatic Identification AdvancedTechnologies,2005,118-123
    [26] Q. Tian, Q. Pan, Y. Cheng, and Q. Gao. Fast algorithm and application of hough transformin iris segmentation. Proceedings of the3rd International Conference on Machine Learningand Cybernetics,2004,3977-3980
    [27] C. L. Fancourt, L. Bogoni, K. J. Hanna, Y. Guo, R. P. Wildes, N. Takahashi, and U. Jain. Irisrecognition at a distance. Proceedings of Internatiaonal Conference on Audio-andVideo-based Biometric Person Authentication,2005,1-13
    [28] J. G. Daugman. New methods in iris recognition. IEEE Transactions on Systems, Man, andCybernetics, Part B: Cybernetics,2007,37(5):1167-1175
    [29] S. Shah, A. Ross. Iris Segmentation Using Geodesic Active Contours. IEEE Transactions onInformation Forensics and Security.2009,4(4):824-836
    [30] Z. He, T. Tan, Z. Sun, and X. Qiu. Towards accurate and fast iris segmentation for irisbiometrics. IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,31(9):1617-1632
    [31] H. Proen a. Iris Recognition: On the segmentation of degraded images acquired in thevisible wavelength. IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,32(8):1502-1516
    [32] Z. Wei, T. Tan, and Z. Sun. Nonlinear iris deformation correction based on Gaussian model.International Conference on Biometrics,2007,780-789
    [33] Z. He, T. Tan, Z. Sun, and X. Qiu. Robust eyelid, eyelash and shadow localization for irisrecognition. Proceedings of the IEEE International Conference on Image Processing,2008,265-268
    [34] X. Yuan, P. Shi. A non-linear normalization model for iris recognition. Advances inBiometric Person Authentication,2005,135-141
    [35] D. Zhang, D.M. Monro, and S. Rakshit. Eyelash removal method for human iris recognition.Proceedings of the2006IEEE International Conference on Image Processing,2006,285-288
    [36] J. Thornton. Matching deformed and occluded iris patterns: a probabilistic model based ondiscriminative cues. PhD thesis, Carnegie Mellon University,2007
    [37] J. Zuo, N.D. Kalka, and N.A. Schmid. A robust iris segmentation procedure forunconstrained subject presentation. Proceedings of Biometrics Symposium: Special Sessionon Research at Biometric Consortium Conference,2006,1-6
    [38] Y.-H. Li and M. Savvides. A pixel-wise, learning-based approach for occlusion estimation ofiris images in polar domain. IEEE International Conference on Acoustics, Speech andSignal Processing,2009:1357-1360
    [39] J. Thornton, M. Savvides, and B. V. K. Vijaya Kumar. A Bayesian approach to deformedpattern matching of iris images. IEEE Transactions on Pattern Analysis and MachineIntelligence,2007,29(4):596-606
    [40] R. Kerekes, B. Narayanaswamy, J. Thornton, M. Savvides, and V. Bhagavatula. graphicalmodel approach to iris matching under deformation and occlusion. IEEE Conference onComputer Vision and Pattern Recognition,2007,1-6
    [41] F. Hao, J. G. Daugman, P. Zielinski. A fast search algorithm for a large fuzzy database. IEEETransactions on Information Forensics and Security,2008,3(2):203-212
    [42] L. Yu, K. Wang, and D. Zhang. Coarse iris classi_cation based on box-counting method.Proceedings of the2005IEEE International Conference on Image Processing,2005,301-305
    [43] L. Yu, D. Zhang, K. Wang, and W. Yang. Coarse iris classification using box counting toestimate fractal dimensions. Pattern Recognition,2005,38(11):1791-1798
    [44] L. Ma, T. Tan, Y. Wang, and D. Zhang. Personal identification based on iris texture analysis.IEEE Transactions on Pattern Analysis and Machine Intelligence.2003,25(12):1519-1533
    [45] P. Yao, J. Li, X. Ye, Z. Zhuang, and B. Li. Iris recognition algorithm using modifiedLog-Gabor filters. Proceedings of the18th International Conference on Pattern Recognition,2006,461-464
    [46] Z. Sun, T. Tan, and Y. Wang. Robust encoding of local ordinal measures: A generalframework of iris recognition. Proceedings of BioAW Workshop,2004,270-282
    [47] L. Ma, T. Tan, Y. Wang, and D. Zhang. Efficient iris recognition by characterizing key localvariations. IEEE Transactions on Image Processing,2004,13(6):739-750
    [48] C. Lu and Z. Lu. E_cient iris recognition by computing discriminable textons. Proceedingsof International Conference on Neural Networks and Brain,2005,1164-1167
    [49] C.-T. Chou, S.-W. Shih, W.-S. Chen, and V. W. Cheng. Iris recognition with multi-scaleedge-type matching. Proceedings of International Conference on Pattern Recognition,2006,545-548
    [50] D. Monro, S. Rakshit, and Dexin Zhang. DCT-based iris recognition. IEEE Transactions onPattern Analysis and Machine Intelligence,2007,29(4):586-595
    [51] E. Krichen, M. A. Mellakh, S. GarciaSalicetti, and B. Dorizzi. Iris identification usingwavelet packets. Proceedings of the2004International Conference on Pattern Recognition,2004:335-338
    [52] F. Rossant, M. Torres Eslave, T. Ea, F. Amiel, and A. Amara. Iris identification androbustness evaluation of a wavelet packets based algorithm. Proceedings of the2005International Conference on Image Processing,2005,2589-2594
    [53] E. Rydgren, T. Ea, F. Amiel, F. Rossant, A. Amara, and C. Sanchez-Reillo. Iris featuresextraction using wavelet packets. Proceedings of the2004International Conference onImage Processing,2004,861-864
    [54] W. Boles and B. Boashash. A human identi_cation technique using images of the iris andwavelet transform. IEEE Transactions on Signal Processing,1998,46(4):1185-1188
    [55] J. Gan and Y. Liang. Applications of wavelet packets decomposition in iris recognition.Proceedings of the2006International Conference on Biometrics,2006,443-449
    [56] J. Jang, K. R. Park, J. Son, and Y. Lee. A study on multi-unit iris recognition. Proceedings ofthe2004Int. Conference on Control, Automation, Robotics and Vision,2004,1244-1249
    [57] R. W. Ives, A. J. Guidry, and D. M. Etter. Iris recognition using histogram analysis.Proceedings of the38th Asilomar Conference on Signals, Systems, and Computers,2004,562-566
    [58] Z. Sun, Y. Wang, T. Tan, and J. Cui. Cascading statistical and structural classifiers for irisrecognition. Proceedings of the2004International Conference on Image Processing,2004,1261-1262
    [59] Z. Sun, Y. Wang, T. Tan, and J. Cui. Improving iris recognition accuracy via cascadedclassifiers. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics,2005,35(3):435-441
    [60] Z. Sun, T. Tan, and X. Qiu. Graph matching iris image blocks with local binary pattern.Proceedings of the2006International Conference on Biometrics,2006,366-372
    [61] J. K. Pillai, V. M. Patel, R. Chellappa, N. K. Ratha. Secure and robust iris recognition Usingrandom projections and sparse representations. IEEE Transactions on Pattern Analysis andMachine Intelligence,2011,33(9):1877-1893
    [62] V. Dorairaj, N. A. Schmid, and G. Fahmy. Performance evaluation of iris based recognitionsystem implementing PCA and ICA encoding techniques. Proceedings of SPIE5779:Biometric Technology for Human Identification II,2005,5779:51-58
    [63] H. Ji and C. Liu. Motion Blur Identification from Image Gradients. Proceedings of the2008IEEE conference on Computer Vision and Pattern Recognition,2008,1-8
    [64] M. E. Moghaddam. A Robust Noise Independent Method to Estimate Out of Focus Blur.Proceedings of the2008IEEE International Conference on Acoustics, Speech, and SignalProcessing,2008,1273-1276
    [65] J. H. Elder and S. W. Zucker. Local scale control for edge detection and blur estimation.IEEE Transactions on Pattern Analysis and Machine Intelligence,1998,20(7):669-716
    [66] P. Marziliano, F. Dufaux, S. Winkler, and T. Ebrahimi. A no-reference perceptual blur metric.Proceedings of the2002International Conference on Image Processing,2002,57-60
    [67] W. Zhang and F. Bergholm. Multi-scale blur estimation and edge type classification forscene analysis. International Journal of Computer Vision,1997,24(3):219-250
    [68] A. Levin. Blind Motion Debluring using Image Statistics. NIPS,2006,841-848
    [69] L. Xu, E. Oja, and P. Kultanen. A new curve detection method: Randomized Houghtransform. Pattern Recognition Letter,1990,11(5):331-338
    [70] T. C. Chen and K. L. Chung. An efficient randomized algorithm for detecting circles.Computer Vision and Image Understanding,2001,83(2):172-191
    [71] J. Cauchie, V. Fiolet, and D. Villers. Optimization of an Hough transform algorithm for thesearch of a center. Pattern Recognition,2008,41(2):567-574
    [72] K.-L. Chung, Y.-H. Huang, J.-P. Wang, T.-C. Chang, and H.-Y. M. Liao. Fast randomizedalgorithm for center-detection. Pattern Recognition,2010,43(2):2659-2665
    [73] R. Valenti and T. Gevers. Accurate eye center location and tracking using isophote curvature.Proceedings of the2008IEEE Conference on Computer Vision and Pattern Recognition,2008,1-8
    [74] M. á. Carreira-Perpin án. Mode-finding for mixtures of gaussian distributions. IEEETransaction on Pattern Analysis and Machine Intelligence,2000,22(11):1318-1323
    [75] P. V. C. Hough. Method and means for recognizing complex patterns. US Patent,1962,3069654
    [76] E. E. Zelniker. Maximum-likelihood estimation of circle parameters via convolution. IEEETransaction on Image Processing,2006,15(4):865-876
    [77] T. Lindeberg. Scale-space theory in computer vision,1994
    [78] S. Maji and J. Malik. Object detection using a max-margin hough transform. Proceedings ofthe2009IEEE International Conference on Computer Vision and Pattern Recognition,2009:1038-1045
    [79] B. Leibe, A. Leonardis, and B. Schiele. Robust object detection with interleavedcategorization and segmentation. International Journal of Computer Vision,2008,77:259-289
    [80] D. Comaniciu and P. Meer. Mean shift: a robust approach toward feature space analysis.IEEE Trans. Pattern Analysis and Machine Intelligence,2002,24(5):603-619
    [81] O. Rioul. A discrete-time multi-resolution theory. IEEE Transaction on Signal Processing,1993,41(8):2591-2606
    [82] CASIA iris image database. http://www.cbsr.ia.ac.cn/Databases.htm
    [83] S. G. Mallat and S. Zhong. Characterization of signals from multiscale edges. IEEETransaction on Pattern Analysis and Machine Intellegence,1992,14(7):710-732
    [84] S. G. Mallat. A theory for Multi-resolution signal decomposition: the wavelet representation.IEEE Transaction on Pattern Analysis and Machine Intellegence,1989,11(7):674-693
    [85] A. Fitzgibbon, M. Pilu, and R. B. Fisher. Direct least square fitting of ellipse. IEEETransaction on Pattern Analysis and Machine Intellegence,1999,21(5):476-480
    [86] E. Bai. Outliers, inliers and the squares estimator in generalized least trimmed systemidentification. Joumal of Control Theory and Application,2003,1:17-27
    [87] P. Kovesi. Image features from phase congruency. A Journal of Computer Vision Research,1999,1(3):1-27
    [88] V. Schenk and M. Brady. Improving phase-congruency based feature getection throughAutomatic scale-selection. LNCS,2003,2905:121-128
    [89] S. Abbey. Robust measures and the estimator limit. Geostandards Newsletter,1998,12:241-248
    [90] W. J. Dixon. Simplified estimation for censored normal samples. Annals of MathematicalStatistics1960,31:385–391
    [91] F. Thomas. An inconsistent maximum likelihood estimate. Journal of the AmericanStatistical Association,1982,77(380):831–834
    [92] A. Blake and A. Zisserman. Visual Recinstruction. MIT Press, Cambridege, MA,1987
    [93] M. Brady and H. Asada. Smotthed local symmetries and their implementation. TheInternatinal Journal of Robotics Research,1984,3(3):36-61
    [94] M. C. Morrone and R. A. Owens. Feature detection from local energy. Pattern RecognitionLetters,1987,6(5):303-313
    [95] M. C. Morrone and D. C. Burr. Feature detection in human vision: A phase dependentenergy model. The Royal Society of London, Series B,1988,235(1280):212-245
    [96] P. Kovesi. Invariant measures of image features from phase information. Ph.D. Thesis, TheUniversity of Western Australia,1996
    [97] P. Kovesi. Image Features from Phase Congruency. Videre: A Journal of Computer VisionResearch,1999,1(3):1226-1326
    [98] S. Venkatesh and R. A. Owens. An energy feature detection scheme. The Proceedings of theInternation Conference on Image Processing,1989,553-557
    [99] C. H. Reinsch. Smoothing by spline functions. Numerische Mathematik,1967,10:177-183
    [100] G. R. G. Lanckriet, N. Cristianini, L. E.Ghaoui, P. Bartlett, and M. I. Jordan, Learning thekernel matrix with semidefinite programming. Journal of Machine Learning Research,2004,5:27–72.
    [101] F. R. Bach, G. R. G. Lanckriet, and M. I. Jordan. Multiple kernel learning, conic duality, andthe SMO algorithm. Proceedings of the21th International Conference on Machine Learning,2004.
    [102] Libor Masek. Recognition of human iris patterns for biometric identification. Ph. D. Thesis,The University of Western Australia,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700