高速光纤通信系统中色散与非线性补偿研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着光纤通信系统中信号速率的提高和传输距离的增加,光纤的群速度色散、非线性效应,以及二者之间的相互作用,成为限制系统性能的重要因素。本论文针对此问题展开研究,利用理论分析、数值仿真和实验论证相结合的方法,重点研究了在直接检测和相干检测方式下,10 Gb/s及40 Gb/s长距离光纤传输系统中群速度色散和光纤非线性的补偿方案。取得以下主要研究成果:
     1、提出了一种对非归零码进行相位预调制,提高系统色散容限的方法。10 Gb/s实验和40 Gb/s仿真结果表明,采用时钟信号和数据相关信号对非归零码进行可调节的相位预调制,可增加信号的眼图开启度和接收灵敏度,将系统的色散容限提高1倍左右。该方法降低了系统对光信噪比和色散管理的要求,且由于相位预调制在发射端进行,调节方便,实施简单,便于系统升级。
     2、提出了一种相干光时域采样的新方法,与并行处理结构相结合,在基于数字信号处理的相干检测系统中对高速信号进行并行电色散补偿。实验实现了10 Gb/s差分相移键控(DPSK)信号的相干检测和并行电色散补偿,使模数转换器的采样速率从原来要求的20 Gsample/s降为10 Gsample/s。该方法可以解决信号传输速率高与采样、处理速率低之间的矛盾。
     3、提出了一种在40 Gb/s标准单模光纤传输系统中用终端色散补偿取代在线色散补偿的方案,提高系统抵抗光纤非线性效应的能力,并进行了实验和仿真验证。40 Gb/s实验结果表明,传输1500 km后,终端色散补偿方案在非线性区域的Q值比在线色散补偿方案提高约2 dB。该方案简化了链路设计,降低了铺设和维护成本,为40 Gb/s系统的色散管理提供了一种新途径。
     4、对差分编码/相干检测系统中的载波相位估计方法进行了改进,提高了相干检测系统抵抗带内非线性效应的能力。10 Gsymbol/s差分4相移键控(DQPSK)信号的仿真结果表明,由于相邻脉冲非线性相移的相关性,相干检测比差分检测对带内非线性效应更加敏感;通过改进载波相位估计的滤波算法,相干检测方式在非线性较大的区域达到了和差分检测相同的性能,并保持了在线性区域的灵敏度优势,整体性能得到提升。
Fiber group-velocity dispersion (GVD), fiber nonlinearity and their interaction become the essential limiting factors of fiber communication systems with the increasing of bit rate and transmission distance. This dissertation undertakes a detailed study of GVD and fiber nonlinearity compensation schemes in 10 Gb/s and 40 Gb/s long-haul fiber transmission using direct detection or coherent detection. The study is carried out through theoretical analysis, numerical simulation and experimental demonstration. The main points are as follows:
     1. A new method to improve dispersion tolerance by imposing phase pre-modulation on non-return-to-zero (NRZ) format is put forward in this dissertation. 40 Gb/s simulation and 10 Gb/s experiment are performed using tunable clock or data-related signal as the phase pre-modulating signal. The eye opening and receiver sensitivity are improved and the dispersion tolerance is doubled when the phase pre-modulation is imposed on NRZ signals. This scheme relaxes the requirement of optical signal-to-noise ratio and dispersion management. It also benefits the NRZ system upgrade because the phase pre-modulation is easy to be employed and adjusted at the transmitter.
     2. A means using coherent optical time-domain sampling (COTDS) for parallel electronic dispersion compensation (EDC) is firstly presented in digital signal processing (DSP)-based high-speed optical coherent detection. The rigid requirement for high-speed analog-to-digital converters (ADCs) and DSP units is relaxed by using COTDS combined with parallel signal processing. Parallel EDC using 10 Gsample/s ADCs instead of 20 Gsample/s ADCs is experimentally demonstrated for 10 Gb/s DPSK signal. It provides an effective solution for EDC in high-speed optical coherent detection.
     3. A new scheme is proposed using terminal dispersion compensation instead of inline dispersion compensation scheme in 40 Gb/s transmission over standard single-mode fiber (SSMF). Simulation and experiment of 40 Gb/s signals in long-haul transmission demonstrate the terminal dispersion compensation scheme is more resistant to fiber nonlinearities. The Q value of the terminal compensation scheme is around 2 dB higher than that of the inline compensation scheme in nonlinear region after 1,500 km transmission. It provides a new avenue to design 40 Gb/s fiber transmission links with simplicity, flexibility and potential low cost.
     4. The algorithm of carrier phase estimation in differential coding/coherent detection systems is modified to improve the resistance to intrachannel fiber nonlinearities. Simulation results of 20 Gb/s DQPSK transmission show that coherent detection is less resistant to intrachannel nonlinearities than differential detection. The reason is the nonlinear phase-shift correlation between adjacent symbols helps differential detection partially cancel the nonlinear phase noise while does not benefit coherent detection. With the modified algorithm of carrier phase estimation, coherent detection has similar performance to differential detection in nonlinear region while keeps the advantage in linear region. Therefore, the performance of coherent detection over the whole power range is improved.
引文
[1] Agrawal G P, Fiber-Optic Communication Systems, 3rd ed. New York: John Wiley & Sons, Inc., 2002.
    [2] Chen D Z, Xia T J, Wellbrock G, et al. New field trial distance record of 3040 km on wide reach WDM with 10 and 40 Gb/s transmission including OC-768 traffic without regeneration. J. Lightwave Technol., 2007, 25(1): 28-37.
    [3] Fürst C, Wernz H, Camera M, et al. 43Gb/s RZ-DQPSK Field Upgrade Trial in a 10Gb/s DWDM Ultra-Long-Haul Live Traffic System in Australia. Proc. Conference on Optical Fiber Communication (OFC) 2008, Paper NTuB2, 2008.
    [4] Lach E, Schuh K, Schmidt M, et al. 7x170 Gbit/s (160 Gbit/s + FEC overhead) DWDM transmission with 0.53 bit/s/Hz spectral efficiency over long haul distance of Standard SMF. Proc. European Conf. on Opt. Commun. (ECOC) 2003, Paper Th4.3.5, 2003
    [5] Ferber S, Ludwig R, Boerner C, et al. Comparison of DPSK and OOK modulation format in a 160 Gb/s transmission system. Proc. European Conf. on Opt. Commun. (ECOC) 2003, Paper Th2.6.2, 2003
    [6] Hansen Mulvad H C, Tangdiongga E, Raz O, et al. 640 Gbit/s OTDM Lab-Transmission and 320 Gbit/s Field-Transmission with SOA-based Clock Recovery. Proc. Conference on Optical Fiber Communication (OFC) 2008, Paper OWS2, 2008.
    [7] Nakazawa M, Hongo J, Kasai K, et al. Polarization-Multiplexed 1 Gsymbol/s, 64 QAM (12 Gbit/s) Coherent Optical Transmission over 150 km with an Optical Bandwidth of 2 GHz. Proc. Conference on Optical Fiber Communication (OFC) 2007, Paper PDP26, 2007.
    [8] Gnauck A H, Charlet G, Tran P, et al. 25.6-Tb/s C+L-band transmission of polarization multiplexed RZ-DQPSK signals. Proc. Conference on Optical Fiber Communication (OFC) 2007, Paper PDP19, 2007.
    [9] Rasmussen C, Fjelde T, Bennike J, et al. DWDM 40G transmission over trans-pacific distance (10 000 km) using CSRZ-DPSK, enhanced FEC, and all-Raman-amplified 100-km UltraWave fiber spans. Proc. Conference on Optical Fiber Communication (OFC) 2003, Paper PD18, 2003.
    [10] Ooi H, Akiyama Y, Ishikawa G. Automatic polarization-mode dispersion compensation in 40-Gbit/stransmission. Proc. Conference on Optical Fiber Communication (OFC) 1999, Paper WE5-1, pp 86, 1999.
    [11] Bulow H, Baumert W, Schmuck H, et al. Measurement of the maximum speed of PMD fluctuation in installed field fiber. Proc. Conference on Optical Fiber Communication (OFC) 1999, Paper WE4, pp 83, 1999.
    [12] Winzer P J, Essiambre R J. Advanced optical modulation formats. Proc. European Conf. on Opt. Commun. (ECOC) 2003, Paper Th2.6.1, 2003.
    [13] Killey R I, Thiele H J, Mikhailov V, et al. Reduction of intrachannel nonlinear distortion in 40-Gb/s-based WDM transmission over standard fiber. IEEE Photon. Technol. Lett., vol. 12, no. 12, pp. 1624–1626, Dec. 2000.
    [14] Frignac Y, Antona J C, Bigo S, et al. Numerical optimization of pre- and in-line dispersion compensation in dispersion-managed systems at 40 Gbit/s. Proc. Conference on Optical Fiber Communication (OFC) 2002, Paper ThFF5, 2002.
    [15] Mizuochi T. Forward Error Correction in optical Communication Systems. Proc. European Conf. on Opt. Commun. (ECOC) 2007, Paper P2.2.1, 2007.
    [16] Katz G, Sadot D, Tabrikian J. Electrical dispersion compensation equalizers in optical direct- and coherent-detection systems. IEEE Trans. Commun., 2006, 54(11): 2045-2050.
    [17] Bulow H. Electronic dispersion compensation. Proc. Conference on Optical Fiber Communication (OFC) 2007, Paper OMG5, 2007.
    [18] Taylor M G. Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments. IEEE Photon. Technol. Lett., 2004, 16(2): 674–676.
    [19] Noe R. Phase noise tolerant synchronous QPSK receiver concept with digital I&Q baseband processing. Optoelectronics and Communications Conference/3rd International Conference on Optical Internet (OECC/COIN) 2004, Paper 16C2-5, 2004.
    [20] Kikuchi K. Phase-diversity homodyne detection of multilevel optical modulation with digital carrier phase estimation. IEEE J. Sel. Topics Quantum Electron., 2006, 12(4): 563-570.
    [21] Vengsarkar A M, Reed W A. Dispersion-compensating single mode fiber: Efficient designs for first- and second-order compensation. Opt. Lett., 1993, 18(11): 924-926.
    [22] Suzuki H, Takachio N, Masuda H, et al. 50 GHz spaced, 32×10 Gbit/s dense WDM transmission inzero-dispersion region over 640 km of dispersion-shifted fibre withmultiwavelength distributed Raman amplification. Electron. Lett., 1999, 35(4): 1175–1176.
    [23] Yariv A, Fekete D, Pepper D M. Compensation for channel dispersion by nonlinear optical phase conjugation. Opt. Lett., 1979, 4(2): 52–54.
    [24] Rong H, Ayotte S, Mathlouthi W, et al. Mid-span dispersion compensation via optical phase conjugation in silicon waveguides. Proc. Conference on Optical Fiber Communication (OFC) 2008, Paper OWP2, 2008.
    [25] Chowdhury A, Raybon G, Essiambre R J, et al. Compensation of intrachannel nonlinearities in 40-Gb/s pseudolinear systems using optical-phase conjugation. J. Lightwave Technol., 2005, 23(1): 172-177.
    [26] Jansen S L, van den Borne D, Krummrich P M, et al. Long-haul DWDM transmission systems employing optical phase conjugation. J. Lightwave Technol., 2006, 24(12): 505-520.
    [27] Quellette F. Dispersion cancellation using linearly chirped grating filters in optical waveguides. Opt Lett. 12(10), pp 847-849, Oct. 1987.
    [28] Eggleton B J, Ahuja A, Westbrook P S, et al. Tunable dispersion compensation in a 160-Gb/s TDM system by avoltage controlled chirped fiber Bragg grating. IEEE Photon. Technol. Lett., 2000, 12(8): 1022-1024.
    [29] Moss D J, Lamont M, McLaughlin S, et al. Tunable dispersion and dispersion slope compensators for 10 Gb/s using all-pass multicavity etalons. IEEE Photon. Technol. Lett., 2003, 15(5): 730-732.
    [30] Shirasaki M, Kawahata Y, Cao S, et al. Variable dispersion compensator using the virtually imaged phased array (VIPA) for 40-Gbits/s WDM transmission systems. Proc. European Conf. on Opt. Commun. (ECOC) 2000, Paper PD2.3, 2000.
    [31] Doerr C R, Buhl L L, Cappuzzo M A, et al. Polarization-independent tunable dispersion compensator comprised of a silica arrayed waveguide grating and a polymer slab. Proc. Conference on Optical Fiber Communication (OFC) 2006, Paper PDP9, 2006.
    [32] Madsen C K, Lenz G, Bruce A J, et al. Integrated all-pass filters for tunable dispersion and dispersion slope compensation. IEEE Photon. Technol. Lett., 1999, 11(12): 1623-1625.
    [33] Takiguchi K, Jinguji K, Okamoto K, et al., Variable group-delay dispersion equalizer using lattice-form programmable optical filter on planar lightwave circuit. IEEE J. Sel. Topics in Quantum Electron., 1996, 2(2): 270-276.
    [34] Namiki S. Tunable dispersion compensation using parametric processes. Proc. Conference on Optical Fiber Communication (OFC) 2008, Paper OWP1, 2008.
    [35] Franz B, R?sener D, Dischler R, et al. 43 Gbit/s SiGe based electronic equalizer for PMD and chromatic dispersion mitigation. Proc. European Conf. on Opt. Commun. (ECOC) 2005, Paper We1.3.1, 2005.
    [36] Franz B, R?sener D, Buchali F, et al. Adaptive electronic feed-forwardequaliser and decision feedback equaliser for the mitigation of chromatic dispersion and PMD in 43 Gbit/s optical transmission sysems. Proc. European Conf. on Opt. Commun. (ECOC) 2006, Paper We1.5.1, 2006.
    [37] Farbert A, Langenbach S, Stojanovic N, et al, Performance of a 10.7 Gb/s receiver with digital equaliser using Maximum Likelihood Sequence Estimation. Proc. European Conf. on Opt. Commun. (ECOC) 2004, Paper Th4.1.5, 2004.
    [38] McGhan D, Laperle C, Savehenko A, et al. 5120 km RZ-DPSK transmission over G652 fiber at 10 Gb/s with no optical dispersion compensation. Proc. Optical Fiber Communications (OFC) 2005, Paper PDP27, 2005.
    [39] Tsukamoto S, Katoh K, Kikuchi K, Unrepeated transmission of 20-Gb/s optical quadrature phase-shift-keying signal over 200-km standard single-mode fiber based on digital processing of homodyne-detected signal for group-velocity dispersion compensation. IEEE Photon. Technol. Lett., 2006, 18(9): 1016-1018.
    [40] Goldfarb G, Li G F. Dispersion compensation of up to 25,200ps/nm using IIR filtering. Proc. Optical Fiber Communications (OFC) 2008, Paper JThA61, 2008.
    [41] Pfau T, Peveling R, Samson F, et al. Polarization-multiplexed 2.8 Gbit/s synchronous qpsk transmission with real-time digital polarization tracking. Proc. European Conf. on Opt. Commun. (ECOC) 2007, Paper We 8.3.3, 2007.
    [42] Winzer P J, Essiambre R J. Advanced optical modulation formats. Proc. European Conf. on Opt. Commun. (ECOC) 2007, Paper We 6.2.1, 2007.
    [43] Penninckx D, Chbat M, Pierre L, et al. The phase-shaped binary transmission (PSBT): a new technique to transmit far beyond the chromatic dispersion limit. IEEE Photon. Technol. Lett. 1997, 9(2): 259-261.
    [44] Fürst C, Wernz H, Elbers J P, et al. Dispersion Tolerance of Duobinary Long-Haul Transmission at 10.7 Gb/s and 43 Gb/s with 50 GHz Channel Grid. Proc. European Conf. on Opt. Commun. (ECOC) 2004, Paper We 2.4.2, 2004.
    [45] Walkin S, Conradi J. On the relationship between chromatic dispersion and transmitter filter response in duobinary optical communication systems. IEEE Photon. Technol. Lett. 1997, 9(7): 1005-1007.
    [46] Siahlo A I, Oxenl?we L K, Berg K S, et al. Using a phase modulator for improvement of the tolerance to second-order dispersion in a 160 Gb/s transmission system. Proc. European Conf. on Opt. Commun. (ECOC) 2003, Paper We4.P.105, 2003.
    [47] Agrawal G P.非线性光纤光学原理及应用.贾东方,余震红,等译.北京:电子工业出版社, 2002: 64-78.
    [48] Shake I, Takara H, Mori K, et al. Influence of inter-bit four-wave mixing in optical TDM transmission. Electron. Lett., 1998, 34(16): 1600-1601.
    [49] Essiambre R J, Mikkelsen B, Raybon G. Intra-channel cross-phase modulation and four-wave mixing in high-speed TDM systems. Electron. Lett., 1999, 35(18): 1576-1577.
    [50] Mecozzi A, Clausen C B, Shtaif M. Analysis of intrachannel nonlinear effects in highly dispersed optical pulse transmission. IEEE Photon. Technol. Lett., 2000, 12(4): 392-394.
    [51] Gordon J P, Mollenauer L F. Phase noise in photonic communications systems using linear amplifiers. Opt. Lett., 1990, 15(23): 1351–1353.
    [52] Killey R I, Watts P M, Glick M, et al. Electronic dispersion compensation by signal predistortion. Proc. Conference on Optical Fiber Communication (OFC) 2006, Paper OWB3, 2006.
    [53] Goeger G. Modulation format with enhanced SPM-robustness for electronically pre-distorted transmission. Proc. European Conf. on Opt. Commun. (ECOC) 2006, Paper Tu4.2.6, 2006.
    [54] Xu C, Liu X. Postnonlinearity compensation with data-driven phase modulators in phase-shift keying transmission. Opt. Lett., 2002, 17(18): 1619-1621.
    [55] Charlet G, Maaref N, Renaudier J, et al. Transmission of 40Gb/s QPSK with coherent detection over ultra-long distance improved by nonlinearity mitigation. Proc. European Conf. on Opt. Commun. (ECOC) 2006, Paper Th4.3.4, 2006.
    [56] Gnauck A H, Winzer P J. Optical Phase-Shift-Keyed transmission. J. Lightwave Technol., 2005, 23(1): 115-130.
    [57] Kim H. Cross-phase-modulation-induced nonlinear phase noise in WDM direct-detection DPSK systems. J. Lightwave Technol., 2003, 21(8): 1770-1774.
    [58] Ho K P. Error probability of DPSK signals with cross-phase modulation induced nonlinear phase noise. IEEE J. Sel. Topics in Quantum Electron., 2004, 10(2): 421-427.
    [59] Charlet G, Mardoyan H, Tran P, et al. Nonlinear interactions between 10Gb/s NRZ channels and 40Gb/s channels with RZ-DQPSK or PSBT format over low-dispersion fiber. Proc. European Conf. on Opt. Commun. (ECOC) 2006, Paper Mo3.2.6, 2006.
    [60] Betti S, Giaconi A. Analysis of the cross-phase modulation in dispersion compensated WDM optical fiber systems. IEEE Photon. Technol. Lett., 2001, 13(12): 1304-1306.
    [61] Yadin Y, Orenstein M, Shtaif M. Statistics of nonlinear phase noise in phase modulated fiber-optic communications systems. Proc. Optical Fiber Communication Conference (OFC) 2004, Paper MF59, 2004.
    [62] Liu X, Chandrasekhar S. Suppression of XPM penalty on 40-Gb/s DQPSK resulting from 10-Gb/s OOK channels by dispersion management. Proc. Optical Fiber Communications (OFC) 2008, Paper OMQ6, 2008.
    [63] Inuzuka F, Yamazaki E, Yonenaga K, et al. Nonlinear inter-channel crosstalk compensation using electronic pre-distortion in carrier phase locked WDM. Proc. Optical Fiber Communications (OFC) 2008, Paper OTuO5, 2008.
    [64] Li X, Chen X, Goldfarb G, et al. Electronic post-compensation of WDM transmission impairments using coherent detection and digital signal processing. Optics Express, 2008, 16(2): 880-888.
    [65] Hirooka T, Ablowitz M J. Intrachannel pulse interactions in dispersion-managed transmission systems: energy transfer. IEEE Photon. Technol. Lett., 2002, 14(3): 316-318.
    [66] Xu H, Zweck J, Yan L, et al. Quantitative experimental study of intrachannel nonlinear timing jitter in a 10-Gb/s terrestrial WDM return-to-zero system. IEEE Photon. Technol. Lett., 2004, 16(1): 314–316.
    [67] Martensson J, Westlund M, Bernston A. Intra-channel pulse interactions in 40Gbit/s dispersion-managed RZ transmission. Electron. Lett., 36(2), pp.244-246, 2000.
    [68] Mecozzi A, Clausen C B, Shtaif M, et al. Cancellation of timing and amplitude jitter in symmetric links using highly dispersed pulses. IEEE Photon. Technol. Lett. 2001, 13(5); 445-447.
    [69] Wei X, Gnauck A H, Liu X, et al. Nonlinearity tolerance of RZ-AMI format in 42.7 Gbit/s long-haul transmission over standard SMF spans. Electron. Lett., 2003, 39(20): 1459-1461.
    [70] Martensson J, Berntson A, Djupsjobacka A, et al. Phase modulation schemes for improving intrachannel nonlinear tolerance in 40 Gbit/s transmission. Proc. Conference on Optical Fiber Communication (OFC) 2003, Paper FE5, 2003.
    [71] Mikhailov V, Doerr C R, Buhl L L, et al. Mitigation of intra-channel nonlinear distortion in 42.7 Gb/s RZ transmission using a single chip optical equalizer. Proc. Optical Fiber Communications (OFC) 2006, Paper OWB5, 2006.
    [72] Li J, Zhang F, Chen Z. Electronic equalization of intrachannel nonlinearities. International Nano-Optoelectronics Workshop (i-NOW) 2007, pp108-109, 2007.
    [73] Van den Borne D, Fludger C R S, Duthel T, et al. Carrier phase estimation for coherent equalization of 43-Gb/s POLMUXNRZ-DQPSK transmission with 10.7-Gb/s NRZ neighbours. Proc. European Conf. on Opt. Commun. (ECOC) 2007, Paper We7.2.3, 2007.
    [74] Bakhshi B, Vaa M, Golovchenko E A, et al. Comparison of CRZ, RZ and NRZ modulation formats in a 64×12.3 Gb/s WDM transmission experiment over 9000 km, Proc. Optical Fiber Communications (OFC) 2001, Paper WF4, 2001.
    [75] Marcerou J, Vareille G. Ultra-high capacity submarine transmission. Proc. Optical Fiber Communications (OFC) 2003, Paper TuF1, 2003.
    [76] Sano A, Miyamoto Y. Performance evaluation of prechirped RZ and CS-RZ formats in high-speed transmission systems with dispersion management. J. Lightwave Technol., 2001, 19(12): 1864-1871.
    [77] Koyama F, Iga K. Frequency chirping in external modulators. J. Lightwave Technol., 1988, 6(1): 87-93.
    [78] H. Bissessur et al.,“Transmission of 40×43 Gb/s over 2540 km of SMF with terrestrial 100 km spans using NRZ format”, Proc. Conference on Optical Fiber Communication (OFC) 2003, Paper FN3, 2003
    [79] K. Nakamura et al., 43-Gbit/s×40 ch transmission over 1,600km of conventional single-mode fiber in NRZ modulation scheme. Proc. Conference on Optical Fiber Communication (OFC) 2003, Paper FN4, 2003.
    [80] Z. Y. Wang. Dispersion penalty of optical fiber communication systems. Chinese Journal of Electronics, 1999, 8(3): 236-239.
    [81] Breuer D, Petermann K. Comparison of NRZ- and RZ-modulation format for 40Gb/s TDM standard-fiber systems. IEEE Photon. Technol. Lett., 1997, 9(3): 398-400.
    [82] Tsukamoto S, Kazuhiro K, Kikuchi K. Coherent demodulation of optical 8-Phase Shift-Keying signals using homodyne detection and digital signal processing. Proc. Optical Fiber Communications (OFC) 2006, Paper OThR5, 2006.
    [83] Savory S J, Gavioli G, Killey R I. Electronic compensation of chromatic dispersion using a digital coherent receiver. Optics Express, 2007, 15(5): 2120-2126.
    [84] Noe R. PLL-free synchronous QPSK polarization multiplex/diversity receiver concept with digital I&Q baseband processing. IEEE Photon. Technol. Lett., 2005, 17(4): 887-889.
    [85] Pfau T, Wordehoff C, Peveling R, et al. Ultra-fast adaptive digital polarization control in a realtime coherent polarization-multiplexed QPSK receiver. Proc. Optical Fiber Communications (OFC) 2008, Paper OTuM3, 2008.
    [86] Engeness T D, Ibanescu M, Johnson S G, et al. Dispersion tailoring and compensation by modal interactions in OmniGuide fibers. Optics Express, 2003, 11(10): 1175-1196.
    [87] Vaa M, Golovchenko E A, Rahman L, et al. Dense WDM RZ-DPSK transmission over transoceanic distances without use of periodic dispersion management. Proc. European Conf. on Opt. Commun. (ECOC) 2004, Paper Th 4.4.4, 2004.
    [88] Mamyshev P V, Mamysheva N A, Pulse-overlapped dispersion-managed data transmission and intrachannel four-wave mixing, Opt. Lett., 1999, 24(21): 1454-1456.
    [89] Wei X, Liu X, Xu C. Numerical simulation of the SPM penalty in a 10-Gb/s RZ-DPSK system. IEEE Photon. Technol. Lett., 2003, 15(11): 1636-1638.
    [90] Li G F. Introduction: Coherent Optical Communication. Optics Express, 2008, 16(2): 752.
    [91] Ip E, Lau A P T, Barros D J F, et al. Coherent detection in optical fiber systems. Optics Express, 2008, 16(2): 753-791.
    [92] Kahn J M, Ho K P. Sepctral efficiency limits and modulation/detection techniques for DWDM systems. IEEE J. Sel. Topics in Quantum Electron., 2004, 10(2): 259-272.
    [93] Simon M K. On the bit-error probability of differentially encoded QPSK and offset QPSK in the presence of carrier synchronization. IEEE Trans. Commun., 2006, 54(5): 806-812,.
    [94]曹志刚,钱亚生.现代通信原理.北京:清华大学出版社, 1992: 292.
    [95] Kim H, Gnauck A H. Experimental investigation of the performance limitation of DPSK systems due to nonlinear phase noise. IEEE Photon. Technol. Lett., 2003, 15(2): 320–322.
    [96] Ho K P. Probability density of nonlinear phase noise. J. Opt. Soc. Amer. B, 2003, 20(9): 1875-1879.
    [97] Wei X, Liu X. Analysis of intrachannel four-wave-mixing in differential phase-shift keying transmission with large dispersion. Opt. Lett., 2003, 28(23):2300-2302.
    [98] Renaudier J, Charlet G, Tran P, et al. A performance comparison of differential and doherent detections over ultra long haul transmission of 10Gb/s BPSK. Proc. Optical Fiber Communications (OFC) 2007, Paper OWM1, 2007.
    [99] Cai Y. Coherent detection in long-haul transmission systems. Proc. Optical Fiber Communications (OFC) 2008, Paper OTuM1, 2008.
    [100] Ho K P. Error probability of DPSK signals with intrachannel four-wave mixing in highly dispersive transmission systems. IEEE Photon. Technol. Lett., 2005, 17(4): 789-791.
    [101] Liu X, Wei X, Slusher R E, et al. Improving transmission performance in differential phase-shift-keyed systems by use of lumped nonlinear phase-shift compensation. Opt. Lett., 2002, 27(18): 1616-1618.
    [102] Goldfarb G, Li G F. BER estimation of QPSK homodyne detection with carrier phase estimation using digital signal processing. Optics Express, 2006, 14(18): 8043-8053.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700