分数阶Fourier变换在逆合成孔径雷达成像处理中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
逆合成孔径雷达(ISAR)能够实现运动目标的高分辨二维成像,并具有全天候全时段的工作能力,因此受到各国研究者的广泛重视并得到了迅速的发展,成像对象已从最初的平稳运动目标扩展到复杂运动目标,例如强机动飞机目标、复杂海情中的舰船目标、高速飞行的空间航天器和空间碎片、旋翼飞机等。这些复杂运动目标的回波信号通常是非平稳的,具有多分量LFM信号的特征,此时传统的RD算法已不再适用,必须寻找新的处理方法。
     分数阶Fouire变换(FRFT)是一种新兴的非平稳信号处理方法,它是一种全时域的线性变换,具有很高的时频分辨率,不存在交叉项干扰问题,因而对分析和处理多分量LFM信号具有十分优良的特性。本文将FRFT应用到ISAR成像处理中,对高速目标、机动目标和含游动部件目标的成像进行了较深入的研究。
     本文首先研究了基于FRFT的LFM信号检测和参数估计问题,提出一种基于分数阶频谱原点矩的检测方法,并经数学推导和物理分析论证了该方法检测LFM信号的有效性。研究表明该方法与RAT检测方法等价,但它的计算量更小,能够更加有效地完成LFM信号检测和调频斜率估计。
     高速目标成像中的距离色散现象将严重影响目标的距离成像和ISAR图像质量,本文研究了基于FRFT距离压缩的解决方法。通过建立高速目标宽带回波模型和运动目标距离向点散布函数,详细分析了距离色散对目标距离像和ISAR图像的影响。利用高速目标回波是调频斜率相同的LFM信号的特点,采用FRFT替代传统的DFT完成距离压缩,从而消除了目标高速运动的距离色散效应,校正了距离像的模糊和畸变,避免ISAR图像的径向散焦。
     机动目标的多普勒回波多数情况下可以近似为LFM信号,因此FRFT能够解决机动目标的横向散焦问题。通过分数阶Fourier域滤波对距离单元回波完成子回波分离预处理,可以抑制距离-瞬时多普勒(RID)成像中的交叉项,提高RID图像质量。机动目标成像还可通过FRFT方位压缩实现,当散射点子回波在某分数阶Fourier域的能量聚集性最好时,它在该Fourier域的频谱就是其聚焦横向像,将距离单元内所有散射点在分数阶Fourier域的聚焦横向像相加则可实现该距离单元的横向成像,仿真表明基于FRFT方位压缩的成像结果好于RID方法。并且FRFT方位压缩过程完整地保留回波的相位信息,因此该方法能有效地实现机动目标的三维成像。此外,对于同时具有高速和机动两种运动形式的目标,可通过二维FRFT压缩实现其成像。
     本文研究的最后一个问题是含游动部件的目标成像,转动部件和振动部件的多普勒回波是正弦频率调制信号,它们与目标主体回波在信号参数上存在较大差异,因此可通过基于自适应高斯短时分数阶Fourier变换(AGSFRFT)的信号分解方法对两种回波进行分离,从而在ISAR图像中剔除游动部件的干扰和污染。
     本文对FRFT在ISAR成像处理中的应用做了若干尝试,较好地解决了高速目标距离色散、机动目标横向散焦和游动部件干扰等问题,但还有存在较多尚未完善的工作,有待于进一步的深入研究。
As a high resolution radar with all-weather, all-time capability, Inverse Synthetic Aperture Radar (ISAR) can obtain the image of the moving targets from a long distance. In the recent ten years, ISAR theory and technique have got great development and, furthermore, been gradually applied to image the complex moving targets, such as the maneuvering-flight airplanes, the swaying ships in extreme sea condition, the airplanes with strong rotor blade, the high-speed moving spacecrafts and space debrises. The conventional Range-Doppler (RD) algorithm is no more applicable in the imaging of those targets, because the non-stationary signal, especially the LFM signal, is involved frequently. Therefore it is necessary to introduce a new method to process the signal.
     With good cross-terms reduction and high time-frequency resolution, Fractional Fourier Transform (FRFT) is a linear and full time domain analysis tool for non-stationary signal processing. It has been widely used in the multi-component LFM signal processing for its perfect property. In this thesis, the application of FRFT in the ISAR imaging processing is studied. The main contributions and conclusions of this thesis are summarized as follows.
     Firstly, a new method for the detection and chirp rate parameter estimation of LFM signal is proposed, which is based on the fractional spectrum origin moment. The physical significance and the mathematical derivation are given to prove its efficiency. The equivalence between the new method and the RAT method is demonstrated. However, the new method has a lower computational complexity.
     Secondly, the imaging of the fast-moving targets, such as spacecrafts and space debrises, is studied. The echo signal and the normalized range point spread function of fast-moving targets are established. For the fast-moving targets, range dispersion will occur in the DFT range compression, deriving from the high-speed radial motion. It will distort the range profile and defocus the ISAR image. A new reconstruction algorithm is proposed, which uses FRFT instead of DFT to implement the range compression. A simulation, which demonstrates the imaging of space objects using space-borne ISAR, indicates that this new algorithm can avoid the range dispersion and achieve refocused ISAR image effectively.
     Thirdly, four issues, with FRFT applied, on the imaging of maneuvering target are studied. 1) A method for cross-terms reduction in Range-Instantaneous-Doppler algorithm (RID) based on filtering in fractional Fourier domain and 'clean' technique. 2) Anew azimuth compression method based on FRFT is proposed. 3) The imaging of the target, which has a fast radial motion and a maneuvering rotation at the meantime, is implemented successfully, by using two dimensional FRFT compression. 4) A new Interferometric ISAR reconstruction method, using FRFT azimuth compressoin for maneuvering target 3-D imaging, is proposed.
     Finally, the imaging of target with moving parts is studied. A signal representation method based on adaptive gauss short-time fractional Fourier transform (AGSFRFT) is proposed to distinguish the main rigid body echo from that of the rotating or vibrating parts. Therefore the pollution caused by moving parts in the ISAR image is eliminated.
引文
[1]C.A.Wiley.Synthetic aperture radars[J].IEEE TransOn AES.1985,21(3):440-443.
    [2]D.R.Wehner.High Resolution Radar[M].2 ed.Boston London:Artech House,1995.
    [3]保铮,邢孟道,王彤.雷达成像技术[M].北京:电子工业出版社,2006.
    [4]刘永坦.雷达成像技术[M].哈尔滨:哈尔滨工业大学出版社,1999.
    [5]D.A.Ausherman.Development in Radar Imaging[J].IEEE Trans on AES.1984,20(4):363-397.
    [6]C.C.Chen,H.C.Andrews.Target motion induced radar imaging[J].IEEE TransOn AES.1980,16(1):2-14.
    [7]J.L.Walker.Range-Doppler imaging of rotating objects[J].IEEE TransOn AES.1980,16(1):23-52.
    [8]Z.Bao,C.Y.Sun,M.D.Xing.Time-frequency approaches to ISAR imaging of maneuvering targets and their limitations[J].IEEE TransOn AES.2001,37(3).
    [9]V.C.Chen,W.J.Miceli.Time-varying spectral analysis for radar imaging of maneuvering targets[J],lEE Proc-RadarSonar Navig.1998,45(5):262-268.
    [10]V.C.Chen,W.J.Miceli.The Effect of roll,pitch,and yaw motions on ISAR imaging[J].Pro SPIE.1999,3810:149-158.
    [11]T.Sparr,S.E.Hamran,E.Korsbakken.Estimation and correction of complex target motion effects in inverse synthetic aperture imaging of aircraft[C].IEEE International Radar Conference;2000.p.457-462.
    [12]V.C.Chen,R.lipps.ISAR imaging of small craft with roll,pitch and yaw analysis[C].IEEE International Radar Conference;2000.p.493-498.
    [13]保铮,孙长印,邢孟道.机动目标的逆合成孔径雷达成像原理与算法[J].电子学报.2000,28(6):24-28.
    [14]D.L.Andon,N.M.Chavdar.ISAR imaging of the ship target at sea[C].24th Digital Avionics Systems Conference - Proceedings 2005.p.14.E.13-11-14.E.13-19
    [15]K.D.Ward,R.J.A.Tough,B.Haywood.Hybrid SAR-ISAR imaging of ships[C].1990 IEEE International Radar Conference;1990.p.64-69.
    [16]Ling Wang,D.Zhu,Z.Zhu.Study on airborne ISAR imaging of ship targets[C].2004 IEEE International Geoscience and Remote Sensing Symposium Proceedings Anchorage,AK,United States;2005.p.3934-3937
    [17]李士国,储晓彬.机载雷达对舰船成像[J].现代雷达.1999,21(3):25-28.
    [18]M.Xing,R.Wu,Z.Bao.High resolutio ISAR imaging of high speed moving targets[J].IEE Proc-Radar Sonar Navig.2005,152(2):58-67.
    [19]黄小红,邱兆坤,许人灿.空间轨道目标ISAR成像方法[J].数据采集与处理.2005,20(2):203-207.
    [20]D.Mehrholz,L.Leushacke,W.Flury,R.Jehn.Detecting,tracking and imaging space debris[J].European Space Agency Bulletin.2002 n 109:128-134.
    [21]D.Mehrholz.Radar teehniques for the charaeterization of meter-size objects in space[J],advanced space reasearch.2001,28(9):1259-1268.
    [22]X.Cao,F.Su,H.Sun,G.Xu.Space debris observation via space-based ISAR imaging[C].2007International Conference on Microwave and Millimeter Wave Technology;2007.
    [23]J.L.Walker.Range-doppler imaging of rotating objects[J].IEEE T ranson AES.1980,16(1):23-25.
    [24]张贤达,保铮.非平稳信号分析与处理[M].北京:国防工业出版社,1998.
    [25]陶然,齐林,王越.分数阶Fourier变换的原理与应用[M].北京:清华大学出版社,2004.
    [26]A.Liu,X.Zhu,L.Jin.Application of the fractional fourier transform to ISAR range profile compensation of fast-moving target[C].2005 IEEE/SP 13th Workshop on Statistical Signal Processing;Bordeaux,France;2005.p.950-955.
    [27]N.Wiener.Hermitian polynomials and Fourier analysis[J].Journal of Mathematics Physics MIT.1929,18:70-73.
    [28]E.U.Condon.Immersion of Fourier transform in a continous group of functional transformations[J].Proc Academy of Science.1937,23:158-164.
    [29]V.Bargmann.On a Hilbert space of analytic functions and an associated integral transform[J].CommPureA[[;Math.1961,14:187-214.
    [30]J.H.McClellan,T.W.Parks.Eigenvalue and Eigenvector decomposition of the discrete Fourier transform[J].IEEE Transactions on Audio Electroacous.1972,AU-20:66-74.
    [31]V.Namis.The fractional order Fourier transform and its applicaion to quantum mechanics[J].J Inst Maths Applics.1980,25:241*265.
    [32]L.B.Almeida.The fractional Fourier transform and time-frequency representations[J].IEEE Transon SP.1994,42(11):3084-3091.
    [33]H.M.Ozaktas,B.Barshan,L.Onural.Filtering in fractional Fourier domains and their relation to chirp transforms[C].In:B.Barshan,editor.Electrotechnical Conference,1994 Proceedings,7th Mediterranean;1994.p.77-79
    [34]H.M.Ozaktas,O.Arikan,M.A.Kutay.Digital computation of the fractional Fourier transform[J].IEEE Transactions on Signal Processing.1996,44(9):2141-2150.
    [35]H.M.Ozaktas,N.Erkaya,M.A.Kutay.Effect of fractional Fourier transformation on time-frequency distributions belonging to the Cohen class[J].IEEE Signal Processing Letters.1996,3(2):40-41.
    [36]陶然,邓兵,王越.分数阶Fourier变换在信号处理领域的研究进展[J].中国科学E辑.2006,32(2):113-136.
    [37]W.G.Carrara,R.S.Goodman.Spotlight synthetic aperture radar:signal processing algorithms[M].Boston:Artech House,1995.
    [38]Z.Yin,Y.Zhang,D.Wang,W.Chen.Imaging of space objects using space-borne millimeter wave ISAR[C].2007 International Conference on Microwave and Millimeter Wave Technology;2007.
    [39]冯德军,王雪松,削顺平,王国玉.弹道目标中段雷达成像仿真研究[J].系统仿真学报.2004,16(11):2511-2516.
    [40]F.An,X.Xu.Real-time ISAR image synthesis of ballistic targets[C].IEEE 2005 Intemational Symposium on Microwave,Antenna,Propagation and EMC Technologies for Wireless Communications,Proceedings;Beijing,China;2005.p.326-329.
    [41]A.Liu,X.Zhu,J.Lu,Z.Liu.The ISAR Range Profile Compensation of Fast-moving Target Using The Dechirp Method[C].IEEE Int Conf Neural Networks & Signal Processing;Nanjing,China,;2003.p.1619-1623.
    [42]王瑜,秦忠宇,文树梁.高分辨雷达去斜处理一维距离像速度补偿技术[J].系统工程与电子技术.2004,26(12):1757-1759.
    [43]黄小红,邱兆砷,王伟.目标高速运动对宽带一维距离像的影响及补偿方法研究[J].信号处理.2002,18(6):487-490.
    [44]曹向东.一种高分辨雷达宽带信号处理速度补偿方法[J].现代雷达.2005,27(6):36-38.
    [45]罗琳.逆合成孔径雷达成像方法的实验研究[D].西安:西安电子科技大学;1998.
    [46]王根原.机动目标的逆合成孔径雷达成像研究[D].西安:西安电子科技大学;1998.
    [47]A.Jain,I.Patel.SAR/ISAR imaging of a nonuniformly rotating target[J].IEEE Trans on AES.1992,28(1):317-321.
    [48]S.Werness,W.Carrara,L.Joyce.Moving target imaging algorithm for SAR data[J].TransOn AES.1990,26(1):57-67.
    [49]V.C.Chen,S.Qian.Reconstruction of ISAR image by time-frequency distribution series[C].Proceedings of the International Symposium on Signals,Systems and Electronics;1995.p.251-254.
    [50]J.V.Candy,B.Johnston.Inverse synthetic aperture radar processing using parametric time-frequency estimators[R]:Lawrence Livermore National Laboratory;1997.
    [51]Z.Bao,G.Y.Wang,L.Luo.Inverse synthetic aperture radar imaging of maneuvering targets[J].Optical Engineering.1998,37(5):1582-1588.
    [52]V.C.Chen,Q.Shie.Joint time-frequency transform for radar range-Doppler imaging[J].IEEE TransOn AES.1998,34(2):486-499.
    [53]保铮,王根原,罗琳.逆合成孔径雷达的距离-瞬时多普勒成像方法[J].电子学报.1998,26(12):79-83.
    [54]V.C.Chen,H.Ling.Joint time-frequency analysis for radar signal and imaging processing[J].IEEE Signal Processing Magzine.1999,16(2):81-93.
    [55]F.Berizzi,E.D.Mese,M.Diani.High-resolution ISAR imaging of maneuvering targets by means of the range instantaneous Doppler technique modeling and performance analysis[J].IEEE TransOn IP.2001,10(2):1880-1890.
    [56]刘爱芳,刘中,陆锦辉.基于Radon-ambiguity变换的ISAR成像算法[J].现代雷达.2003,(6).
    [57]V.C.Chen.Micro-Doppler effect of micro-motion dynamics:a review[C].Proceedings of PIE on Independent Component Analyses,Wavelets,and Neural Networks;Orlando,UAS;2003.p.240-249.
    [58]V.C.Chen,F.Y.Li.Analysis of micro-Doppler signatures[J].IEE Proceedings on Radar,Sonar and Navigation.2003,150(4):271-276.
    [59]V.C.Chen,F.Y.Li,S.S.Ho.Micro-Doppler effect in radar-phenomenon,model and simulation study[J].IEEE transon AES.2006,42(1):2-21.
    [60]陈行勇.微动目标雷达特征提取技术研究[D].长沙:国防科技大学;2006.
    [61]T.Thayaparan,S.Abrol,E.Riseborough,L.Stankovic,D.Lamothe.Analysis of radar micro-Doppler signatures from experimental helicopter and human data[J].IET Radar,Sonar and Navigation.2007,1(4):289-299
    [62]Y.Luo,L.Chi,Q.Zhang,Y.Jin.A Novel Method for Extraction of Micro-Doppler Signal[C].IEEE 2007 Intemational Symposium on Microwave,Antenna,Propagation,and EMC Technologies For Wireless Communications;Hangzhou,Chian;2007.
    [63]H.S.Tan,C.Ma,T.S.Yeo,Q.Zhang,C.S.Ng,B.Zou.ISAR imaging of targets with moving parts using micro-doppler detection on the range profile image[C].IEEE International Geoscience and Remote Sensing Symposium;Barcelona,Spain;2007.p.499-502.
    [64]V.C.Chen.Time-frequency analysis for radar imaging,target detection,and feature extraction[R]: 2004 IEEE Radar Conference;2004.
    [65]Y.Wang.Radar signature prediction and feature extraction using advanced signal processing techniques[D]:The University of Texas at Austin;1999.
    [66]Y.Wang,H.Ling,V.C.Chen.Application of adaptive joint time-frequency processing to ISAR image enhancement and Doppler feature extraction for targets with rotating parts[C].Part of the SPIE Conference on Radar Processing,Technology and Agolications Ⅲ San Diego,California;1998.p.156-163.
    [67]Y.Wang,H.Ling,V.C.Chen.ISAR imaging of targets with fast rotating parts using adaptive joint time-frequency processing[C].SPIE proceedings series:Wavelet applications V;Orlando FL;1998.p.569-576.
    [68]M.Bell,R.A.Grubbs.JEM modeling and measurement for radar target identification[J].IEEE transon AES.1993,29(1):73-87.
    [69]F.E.Nathanson.Radar Design Principles[M].New York:McGraw-Hill,1969.
    [70]J.Li.Model-based signal processing for radar imaging of targets with complex motions[D]:The University of Texas at Austin;2002.
    [71]J.Li,H.Ling.ISAR feature extraction from targets with non-rigid body motion using adaptive chirplet representation[C].IEEE Antennas and Propagation Society International Symposium;San Antonio,TX,United States;2002 p.294-297
    [72]J.Li,H.Ling.Application of adaptive chirplet representation for ISAR feature extraction from targets with rotating parts[J].IEE Proceedings:Radar,Sonar and Navigation.2003,150(4):284-291.
    [73]A.Ghaleb,L.Vignaud,J-M.Nicolas.Fine micro-Doppler Analysis in ISAR imaging[C].Geoscience and Remote Sensing Symposium;Barcelona,Spain;2007.p.574-577.
    [74]T.Thayaparan.Separation of target rigid body and micro-Doppler effects in ISAR/SAR imaging[R].Ottawa:Defence R&D Canada 2006.
    [75]T.Thayaparan,S.Abrol,S.Qian.Micro-Doppler Analysis of Rotating Target in SAR[R].Ottawa:Defence R&D Canada;2005.
    [76]卢光跃,保铮.ISAR成像中具有游动部件目标的包络对齐[J].系统工程与电子技术.2000,22(6):12-14.
    [77]邢孟道,保.铮.一种逆合成孔径雷达成像包络对齐的新方法[J].西安电子科技大学学报(自然科学版).2000,27(1):92-96.
    [78]邢孟道,保铮,郑义明.用整体最优准则实现ISAR成像的包络对齐[J].电子学报.2001,29(12A):1807-1811.
    [79]G.Y.Wang,Z.Bao.The minimum entropy criterion of range alignment in ISAR motion compensation[C].Radar'97;1997.p.236-239.
    [80]王根原,保铮.逆合成孔径雷达运动补偿中包络对齐的新方法[J].电子学报.1998,26(6):5-8.
    [81]X.Li,G.Liu,J.Ni.Autofocusing of ISAR images based on entropy minimization[J].IEEE TransOn AES.1999,35:1240-1251.
    [82]朱兆达,邱晓晖.用改进的多普勒中心跟踪法进行ISAR运动补偿[J].电子学报.1997,25(3):65-69.
    [83]李玺,倪晋麟,刘国岁.基于图像准则的SAR╱ISAR相位补偿技术的研究[J].电子与信息学报.2000,22(2):279-289.
    [84]X.H.Qiu,Y.Zhao,S.Udpa.Phase compensation for ISAR imaging combined with entropy principle[C].2003 IEEE Antennas and propagation society international symposium;2003.p.195-198.
    [85]A.C.Mcbride,F.H.Kerr.On Namias's Fractional Foureir transforms[J].1MA J Appl Math.1987,39:159-175.
    [86]齐林.基于分数阶Fourier变换的线性调频信号的检测与处理[D].北京:北京理工大学;2004.
    [87]J.M.Rius,M.Ferrando,L.Jofre.High-frequency RCS of complex radar targets in real-time[J].IEEE Transon AP.1994,41(9):1308-1318.
    [88]X.Yuan,Zhihe Xiao,C.Hongmei Ren.Simulation of wide-band radar echo of satellite in orbit[C].International Conference on Space Information Technology;Wuhan,China;2005.
    [89]计科峰,王世唏.空间目标宽带雷达特征信号仿真建模[J].现代雷达.2007,29(3):32-36.
    [90]徐亚中.运动目标宽带电磁回波仿真报告[R].合肥:中国科学技术大学微波毫米波工程研究中心;2007.
    [91]J.C.Wood,D.T.Barry.Radon transformation of time-frequency distributions for analysis of multicomponent signals[J].IEEE Trans on SP.1994,42(11):3166-3177.
    [92]M.Wang,A.K.Chan,C.K.Chui.Linear frequency-modulated signal detection using radon-ambiguity transform[J].IEEE Trans on SP.1998,46(3):571-586.
    [93]A.W.Lohmann,B.H.Soffer.Relationships between the Radon-Wigner and fractional Fourier transforms[J].Joumal of the Optical Society of America.1994,11(6):1798-1801.
    [94]王璞,杨建宇.基于乘积性模糊函数的多线性调频信号时频分布[J].电子学报.2006,34(7):1351-1355.
    [95]O.Akay,G.F.Boudreaux-Bartels.Fractional convolution and correlation via operator methods and an application to detection of linear FM signals[J].IEEE Trans on SP.2001,49(5):979-993.
    [96]张贤达.通信信号处理[M].1 ed:国防工业出版社,2000.
    [97]金添,黄晓涛,常文革.目标高速运动对一维像的影响及其校正方法[J].系统工程与电子技术.2004,26(8):1019-1022.
    [98]杜雨,杨建宇.线性FMCW雷达动目标一维距离像运动补偿[J].电波科学学报 2006,21(1):104-107.
    [99]张焕颖,张守宏,李强.高速运动目标的ISAR成像方法[J].电子与信息学报.2007,29(8):1789-1793.
    [100]L.G.Weiss.Wavelets and wideband correlation processing[J].IEEE Signal Processing Magazine.1994,11(1):13-32.
    [101]陈家军,王东进,陈卫东.LFMCW雷达目标运动补偿新方法[J].现代雷达.2006,28(7):37-39.
    [102]牛涛,陈卫东.冲步进频率雷达的一种运动补偿新方法[J].中国科学技术大学学报.2005,35(2):161-166.
    [103]陈隽永,徐继麟.宽带信号模型及分辨力性能研究[J].电波科学学报.2001,16(1).
    [104]施志佳,王志刚.远程火箭与卫星轨道力学基础[M].西安:西北工业大学出版社,2006.
    [105]汤子跃,张守融.双站合成孔径雷达系统原理[M].北京:科学出版社,2003.
    [106]王超,张红,刘智.星载合成孔径雷达干涉测量[M].北京:科学出版社,2002.
    [107]G.Wang,X.G.Xia,V.C.Chen.Three-Dimensional ISAR imaging of maneuvering targets using three receivers[J].IEEE Trans on Image Processing.2001,10(3):436-447.
    [108]M.F.E.Three dimensional reconstruction from ISAR sequences[C].Proceedings of SPIE -The International Society for Optical Engineering 2002.p.58-67.
    [109]J.A.Given,W.R.Schmidt.Generalized ISAR - Part Ⅱ:Interferometric techniques for three-dimensional location of scatterers[J].IEEE Transon Image Processing 2005,14(11):1792-1797.
    [110]M.Iwamoto,T.Kirimoto.A novel algorithm for reconstructing three-dimensional target shapes using sequential radar images[C].International Geoscience and Remote Sensing Symposium;2001.p.1607-1609.
    [111]K.Kaori,T.Hidetoshi,Y.Kazuhiko.3D object recognition using ISAR image[C].Proceedings of the SICE Annual Conference;2004 p.2393-2396
    [112]J.S.Seybold,S.J.Bishop.Three-dimensional ISAR imaging using a conventional high-range resolution radar [C].IEEE National Radar Conference;1996 p.309-314.
    [113]M.Soumekh.Automatic aircraft landing using interferometric inverse synthetic aperture radar imaging[J].IEEE Transon Image Process.1996,5(9):1335-1345
    [114]S.X.Wang,Y.Huang,V.C.Chen.Three-dimensional ground truth reconstruction using 2D ISAR imagery[C].Proceedings of SPIE-The International Society for Optical Engineering 1996.p.104-112
    [115]X.Xu,R.M.Narayanan.Three-dimensional interferometric ISAR imaging for target scattering diagnosis and modeling[J].IEEE Trans on Image Processing 2001,10(7):1094-1102
    [116]X.Xu,Z.Xiao,H.Luo.Three-dimensional interferometric ISAR imaging with applications to the scattering diagnosis of complex radar targets[C].Proceedings of SPIE-The International Society for Optical Engineering 1999 p.208-214.
    [117]张群,马长征.干涉式逆合成孔径雷达三维成像技术研究[J].电子与信息学报.2001,23(9):890-898.
    [118]马长征.雷达目标三维成像技术研究[D].西安:西安电子科技大学;1999.
    [119]D.MENSA.Bistatic Synthetic Aperture Radar Imaging of Rotating objects[J].IEEE Trans on AES.1982,18(4).
    [120]张亚标,朱振波,汤子跃,苑秉成.双站逆合成孔径雷达成像理论研究[J].电子与信息学报.2006,28(6):969-972.
    [121]C.Capusb,K.Brown.Short-time fractional Fourier methods for the time-frequency representation of chirp signals[J].Acoustical Society of America.2003,113(6):3253-3263.
    [122]L.Durak,S.Member,O.Ankan.Short-Time Fourier Transform:Two Fundamental Properties and an Optimal Implementation[J].IEEE Trans on SP.2003,51(5).
    [123]李家强,金荣洪,耿军平,范瑜,毛炜.基于高斯短时分数阶傅里叶变换的多分量LFM 信号检测与参数估计[J].电子与信息学报.2007,29(3):570-573.
    [124]李英祥,肖先赐.基于短时分数阶傅里叶变换域滤波的多项式相位信号时频检测[J].声学学报.2003,28(6):545-549.
    [125]栾.江.刘小宝.自适应短时傅立叶变换算法的研究[J].通信技术.2007,8:1-3.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700