硒化镓及其掺杂晶体光学、倍频和飞秒激光损伤特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硒化镓及其掺杂晶体光学、倍频及飞秒激光损伤特性的研究
     非线性光学晶体材料是光电子技术,尤其是激光技术的重要物质基础,被广泛用于激光频率转换和信号存储等,在现代高新技术和军事上都起到了非常重要的作用。
     GaSe晶体是可以用于参量频率转换装置中的最佳非线性晶体材料之一,它具有较宽的透明范围(0.62~20μm),较大的二阶非线性系数(54pm/V)以及较高的损伤阈值(接近被称为“中红外标准晶体”的ZnGeP2)。然而,GaSe晶体的层状结构也导致了其较差的机械强度:莫氏硬度约为零且容易劈裂,这也严重限制了其实际应用。研究发现,在GaSe晶体中掺杂杂质元素可以明显改善其机械性能,例如S、In、Al、Te等,从而使其更适宜用于参量频率转换装置中。
     本文对几种不同的掺杂GaSe晶体的光学特性、倍频特性以及飞秒激光损伤特性进行了研究。
     1. GaSe:Er晶体的光学和倍频特性
     使用改进的布里奇曼法合成了厘米级尺寸的GaSe:Er (0.025,0.1,0.5,1,2at.%)晶体,从光谱短波和长波吸收限的变化、喇曼光谱和EDX图像可以确定Er原子确实进入了GaSe晶体中,但在合成的晶体中Er的含量要比装料时低很多,真正的Er含量分别为0.009,0.019,0.033,0.042和0.048at.%。使用飞秒OPG和CO2激光对晶体进行作用,实验发现GaSe:Er晶体的相位匹配角与纯GaSe晶体相比没有明显变化,这也说明Er的真实掺杂含量很小。仅靠吸收光谱不能确定最佳的Er掺杂含量,根据倍频实验结果可以确定在我们所使用的晶体中,最佳的Er掺杂含量为0.033at.%,该晶体将二阶有效非线性系数提高了20%,研究发现晶体的光学质量提高是倍频转换效率提高的原因。
     2. GaSe:Te晶体的光学和倍频特性
     对掺杂浓度为0.05~10mass.%的GaSe:Te晶体进行了研究,发现GaSe:Te (≤5mass.%)晶体和ε型GaSe晶体一样具有六角形结构,其中GaSe:Te (≤0.5mass.%)单晶具有最好的光学质量。测量了飞秒OPG和CO2激光泵浦条件下GaSe:Te晶体的相位匹配角,实验发现Te掺杂晶体的相位匹配角与纯GaSe晶体相比几乎没有变化。Te掺杂晶体较高的光学质量和较大的损伤阈值使其频率转换效率较纯GaSe晶体有所提高。根据以往的实验和本实验的结果可以推测,对于较重的掺杂元素,例如In、Te和Er等,最佳的掺杂浓度应该在0.5mass.%以下。
     3. GaSe:InS晶体的光学特性
     用熔融的GaSe和Ins(1,5,20mass.%)合成了四元化合物Ga1-yInySe1-xSx,研究表明该晶体为ε型结构。通过对化学成分、晶格结构以及光学特性的分析表明该晶体可以用于参量频率转换装置中。比GaSe1-xSx低的光学损耗以及比纯GaSe和Ga1-xInxSe晶体高的损伤阈值是Ga1-yInySe1-xSx晶体的优势所在。同时,我们认为S和In掺杂浓度不同的Ga1-yInySe1-xSx晶体在非线性应用中可能更具有吸引力。
     4. GaSe:S和GaSe:In晶体的飞秒激光损伤特性
     研究了飞秒激光脉冲与GaSe:S (0.5,1,2,3,7,10mass.%)晶体和GaSe:In(0.5,1.32,2,2.32mass.%)晶体的相互作用情况,并与纯GaSe晶体进行了对比。研究发现,在用波长为0.8μm的飞秒激光作用时,使用肉眼观察作为判断标准得到的晶体损伤阈值与实验结果并不符合,晶体表面出现黑点并没有使晶体透过率和频率转换效率产生明显下降。选择一个可接受的透过率值以后,泵浦强度的限制可以由透过率曲线的变化情况来确定。透过率曲线在下降到初始值的10%以前都是可逆的,这种情况下不影响晶体在飞秒激光系统中的应用。最佳的In掺杂晶体GaSe:In(2mass.%)可以使最大可泵浦强度提高40~50%,而最佳的S掺杂晶体GaSe:S(3mass.%)可以使相应值达到纯GaSe晶体的4.5倍。研究发现限制飞秒激光脉冲泵浦强度的关键因素是非线性多光子吸收。
Nonlinear optical crystal is the important material foundation of photoelectrictechnology, especially laser technology. It can be used for laser frequencyconversion and signal storage and plays an important role in both modern high-techand military.
     The key physical properties that render the layered GaSe as one of the bestnonlinear crystals for parametric frequency conversion (PFC) are the broadtransparency range from0.62to20μm, the large second-order nonlinearity of54pm/V and the high damage threshold that can be similar to that of the so-called“mid-IR standard crystal” ZnGeP2. However, the layered structure of GaSe leads toextremely weak mechanical properties: almost zero hardness by Mohs scale andeasy cleaving that limit large size crystals application.
     It is found that the mechanical properties of GaSe can be improved significantlyby doping with S, In, Te, Al and so on, which makes it more suitable to be used inPFC systems.
     The optical, second harmonic and damage properties of several kinds of dopedGaSe crystals are investigated in this thesis.
     1. The optical and second harmonic properties of GaSe:Er crystals
     Centimeter-sized Er-doped single crystals were grown from the meltsGaSe:Er(0.025,0.1,0.5,1and2at.%) by modified Bridgman technology.Incorporation of Er atoms into GaSe structure is confirmed by fixing specifictransformation features in the short-and long-wave absorption edges, Raman spectra and EDX patterns. It is found that Er content in all grown ingots issurprisingly lower to that in the melt compositions. Real Er content is ascertained as0.009,0.019,0.033,0.042and0.048at.%, respectively. The phase matching anglesunder fs OPG and CO2laser pump are measured. No visible differences can befound between phase matching angles for GaSe:Er crystals and that for pure GaSe,which also confirms the low concentration of Er. The optimal doping of Er in GaSecannot be determined by absorption spectroscopy. Optimal doping of0.033at.%ofEr is established from SHG experiment that results in about20%increased efficientnonlinearity. It is found that improved optical quality is a reason for increased SHGefficiency.
     2. The optical and second harmonic properties of GaSe:Te crystals
     GaSe crystals with0.05~10mass.%Te-doping are studied. GaSe:Te (≤5mass.%) crystals show the hexagonal structure like ε-GaSe. It is found that thecentimetre-sized single crystal of GaSe:Te (≤0.5mass.%) possesses high opticalquality. The phase matching angles under fs OPG and CO2laser pumping aremeasured. No visible differences can be found between phase matching angles forGaSe:Te crystals and that for pure GaSe. Nevertheless, the improved opticalquality and damage threshold lead to increased frequency conversion efficiency.From the available and obtained data, it is proposed that the optimal doping levelof such heavier elements as In, Te, Er in GaSe is below0.5mass.%for nonlinearoptical applications.
     3. The optical properties of GaSe:InS crystals
     Single crystals are grown from the melt of GaSe and InS (1,5,20mol.%) thatare identified as ε-polytype of quaternary solid solution crystals Ga1-yInySe1-xSx.Chemical composition, lattice structure and optical properties have beeninvestigated that shown its usefulness as parametric frequency converters that forthe first time were confirmed experimentally. Lower nonlinear optical losses to that for solid solution crystals GaSe1-xSxand higher damage threshold to that forpure GaSe and solid solution crystals Ga1-xInxSe are their advantages. It isproposed that Ga1-yInySe1-xSxcrystals with independce of S and In concentrationmay be more attractive in nonlinear applications.
     4. The fs laser damage properties of GaSe:S and GaSe:In crystals
     The impact of fs pulses on doped crystals GaSe:S (0.5,1,2,3,7,10mass.%)and GaSe:In (0.5,1.32,2,2.32mass.%) has been studied in comparison with thaton pure GaSe crystal. It is established that visual criterion in the determination ofthe crystal damage threshold under0.8μm fs pulse pumping is not consistentbecause observation of the black matter damage spots on the crystal surfaces donot decrease noticeably both the transparency and frequency conversion efficiency.The pump intensity limit can be readily determined from the transparency decaycurve measurements and that is still reversible after a decline down to themagnitude of0.1choosing an acceptable transparency level. High advantages inthe limit pump intensity as up to40~50%for optimally In-doped crystal GaSe:In(2mass.%) and up to4.5times for optimally S-doped crystal GaSe:S (3mass.%)crystals have been demonstrated under expose to fs Ti:Sapphire laser systempulses. The nonlinear multiphoton absorption has been identified as key factorlimiting the fs Ti:Sapphire laser system pulse pump intensities.
引文
[1] Cao. X., Jahazi. M., Immarigeon. J. P., Wallace. W. A review of laser weldingtechniques for magnesium alloys. Journal of Materials processing Technology171,188–204(2006).
    [2] Wysocki, G. Lewicki. R., Curl. R. F., Tittel. F. K., Diehl. L., Capasso. F.,Troccoli. M., Hofler. G., Bour. D., Corzine. S., Maulini. R., Giovannini. M.,Faist. J. Widely tunable mode-hop free external cavity quantum cascade lasersfor high resolution spectroscopy and chemical sensing. Applied Physics B92,305–311(2008).
    [3] P. Crump, S. Patterson, W. Dong, M. Grimshaw, J. Wang, S. Zhang, S. Elim, M.Bougher, J. Patterson, S. Das, D. Wise, T. Matson, D. Balsley, J. Bell, M.DeVito, R. Martinsen. Room temperature high power mid-IR diode laser barsfor atmospheric sensing applications, Proc. SPIE6552(655214),1–6(2007).
    [4] Amy-Klein, A. et al. Slow molecule detection of Ramsey fringes in two-photonspectroscopy: which is better for high resolution spectroscopy and metrology.Optics Express4,67–76(1999).
    [5] Liu, X. Free-space optics optimization models for building sway andatmospheric interference using variable wavelength. IEEE Transactions onCommunications57,492–498(2009).
    [6] D. Richter, A. Fried, B. P. Wert, J. G. Walega, F. K. Tittel. Development of atunable mid-IR difference frequency laser source for highly sensitive airbornetrace gas detection, Appl. Phys. B75,281-288(2002).
    [7] S. W. Henderson, C. P. Hale, J. R. Magee, M. J. Kavaya, and A. V. Huffaker,Eye-safe coherent laser radar system at21μm using Tm,Ho:YAG lasers, Opt.Lett.16(10),773–775(1991).
    [8] W. Chen, F. Cazier, F. Tittel, D. Boucher. Measurements of BenzeneConcentration by Difference-Frequency Laser Absorption Spectroscopy.Appl. Opt.39(2000)6238.
    [9] Fritz Keilmann, Sergiu Amarie. Mid-infrared Frequency Comb Spanning anOctave Based on an Er Fiber Laser and Difference-Frequency Generation. JInfrared Milli Terahz Waves (2012)33:479–484
    [10] K. L. Vodopyanov, J. P. Maffetone, I. Zwieback, W. Ruderman. AgGaS2opticalparametric oscillator continuously tunable from3.9to11.3μm. Appl. Phys.Lett.75(9),1204-1206(1999).
    [11] Tie-Jun Wang, Zhi-Hui Kang, Hong-Zhi Zhang, Qiong-Yi He, Yi Qu, Zhi-ShuFeng, Yun Jiang, Jin-Yue Gao, Yury M. Andreev, Gregory V. Lanskii,Wide-tunable, high-energy AgGaS2optical parametric oscillator, OpticsExpress,2006,14(26),13001-13006.
    [12] Tie-Jun Wang, Hong-Zhi Zhang, Feng-Guang Wu, Zhi-Shu Feng, Hai-YanZhang, Zhi-Hui Kang, Yun Jiang and Jin-Yue Gao,3-5μm AgGaS2OpticalParametric Oscillator with Prism Cavity, Solid State And Liquid Lasers19(3),377-380(2009)
    [13] D.A. Russell, R. Ebert. Efficient generation and heterodyne detection of4.75-μm light with second-harmonic generation. Appl. Opt.32(1993)6638.
    [14] E. Takaoka, K. Kato.90°phase-matched third-harmonic generation of CO2laser frequencies in AgGa1-xInxSe2. Opt. Lett.24(1999)902.
    [15] H.P. Chou, R.C. Slater, Y. Wang. High-energy, fourth-harmonic generationusing CO2lasers. Appl. Phys. B66(5)(1998)555.
    [16] R.C.Y. Auyeung, D.M. Zielke, B.J. Feldman. Multiple harmonic conversion ofpulsed CO2laser radiation in Tl3AsSe3. Appl. Phys. B48(1989)293.
    [17] L. Becouarn, E. Lallier, M. Brevignon, J. Lehoux. Cascaded second-harmonicand sum-frequency generation of a CO2laser by use of a singlequasi-phase-matched GaAs crystal. Opt. Lett.23(1998)1508.
    [18] G. C. Bhar, S. Das, K. L. Vodopyanov. Nonlinear optical laser devices usingGaSe. Appl. Phys. B61,187-190(1995).
    [19] K.R. Allakhverdiev, M.. Yetis, S. zbek, T.K. Baykara, E.Yu. Salaev.Effective nonlinear GaSe crystal. Optical properties and applications. LaserPhys.19(2009)1092.
    [20] W. Shi, Y.J. Ding. Generation of backward terahertz waves in GaSe crystals.Opt. Lett.30(2005)1861.
    [21] Wei Shi and Yujie J. Ding. A monochromatic and high-power terahertz sourcetunable in the ranges of2.7-38.4and58.2-3540μm for variety of potentialapplications Appl. Phys. Lett. V.84, No.10P.1635-1637.2004
    [22] Wei Shi and Yujie J. Ding, Nils Fernelius, Konstantin Vodopyanov. Efficient,tunable, and coherent0.18-5.27-THz source based on GaSe crystal. Opt. Lett.27(16)1454(2002)
    [23] Zhiming Rao, Xinbing Wang, Yanzhao Lu. Tunable terahertz generation fromone CO2laser in a GaSe crystal. Optics Commu. V.284. P.5472-5474(2011).
    [24] Kodo Kawase, Takaaki Hatanaka, Hidenori Takahashi, Koichiro Nakamura,Tetsuo Taniuchi, Hiromasa Ito. Tunable terahertz-wave generation fromDAST crystal by dual signal-wave parametric oscillation of periodicallypoled lithium niobate. Opt. Lett.25(2000)1714.
    [25] Sergei Ya. Tochitsky, Chieh Sung, Sarah E. Trubnick, Chan Joshi, KonstantinL. Vodopyanov. High-power tunable,0.5-3THz radiation source based onnonlinear difference frequency mixing of CO2laser lines. J. Opt. Soc. Am. B24(2007)2509.
    [26] M. M. Nazarov, S. Yu. Sarkisov, A. P. Shkurinov, O. P. Tolbanov. GaSe1-xSxand GaSe1-xTexthick crystals for broadband terahertz pulses generation.Applied Physics Letters99,081105(2011)
    [27] Shin An Ku, Wei-Chen Chu, Chih Wei Luo, Yu. M. Andreev, Grigory Lanskii,Anna Shaidukoi, Tatyana Izaak, Valery Svetlichnyi, Kaung Hsiung Wu, T.Kobayashi. Optimal Te-doping in GaSe for non-linear applications Vol.20, No.5/OPTICS EXPRESS5029(2012)
    [28] Y.Jiang, Y.J.Ding. Efficient terahertz generation from two collinearlypropagating CO2laser pulses. Applied Physics Letters.91(2007)091108/1-3.
    [29] J. J. Xie, J. Guo, L. M. Zhang, D. J. Li, G. L. Yang, F. Chen, K. Jiang, M. E.Evdokimov, M. M. Nazarov, Yu. M. Andreev, G. V. Lanskii, K. A. Kokh, A. E.Kokh, V.A.Svetlichnyi. Optical properties of non-linear crystal grown from themelt GaSe–AgGaSe2Optics Communications.287(2013)145–149
    [30] R. Huber, A. Brodschelm, F. Tauser, and A. Leitenstorfer, Generation andfield-resolved detection of femtosecond electromagnetic pulses tunable up to41THz. Appl. Phys. Lett.76,3191–3193(2000).
    [31] Tobias Kampfrath, Jan N tzold, Martin Wolf. Sampling of broadband terahertzpulses with thick electro-optic crystals. Applied Physics Letters.90.231113(2007)
    [32] Yujie J. Ding, Wei Shi. Observation of THz to near-infrared parametricconversion in ZnGeP2crystal. Optics Express.14(18).8311-8316(2006).
    [33] D. Molter, M. Theuer, and R. Beigang. Nanosecond terahertz opticalparametric oscillator with a novel quasi phase matching scheme in lithiumniobate. OPTICS EXPRESS. Vol.17, No.8/6623(2009)
    [34] Yujie J. Ding, Pu Zhao, and Da Li. Recent Progress on Compact and PortableTerahertz Source Based on Parametric Conversion from Dual-FrequencySolid-State Laser Pulses. Journal of Physics: Conference Series414,012003(2013).
    [35] W. Shi and Y. J. Ding, Tunable terahertz waves generated by mixing twocopropagating infrared beams in GaP. Opt. Lett.30,1030(2005).
    [36] Y. J. Ding and W. Shi, Efficient THz generation and frequency upconversionin GaP crystals. Sol. State Electron.50,1128(2006).
    [37] LU Yan-Zhao, WANG Xin-Bing, MIAO Liang, ZUO Du-Luo, CHENGZu-Hai. Terahertz Generation in Nonlinear Crystals with Mid-Infrared CO2Laser. CHIN. PHYS. LETT. Vol.28, No.3(2011)034201
    [38] H. Sun, Y.J. Ding, I.B. Zotova. THz spectroscopy by frequency-tuningmonochromatic THz source: from single species to gas mixtures. IEEESensors J.10(2010)621.
    [39] J.W. Waters etc. The earth observing system microwave limb sounder (EOSMLS) on the Aura satellite. IEEE Trans. Geosci. Remote Sens.44(2006)1075.
    [40] H. Zhong, J. Xu, X. Xie, T. Yuan, R. Reightler, E. Madaras, X.-C. Zhang.Nondestructive defect identification with terahertz time-of-flight tomography.IEEE Sensors J.5(2005)203.
    [41] H.-B. Liu, Y. Chen, G.J. Bastiaans, X.-C. Zhang. Detection and identificationof explosive RDX by THz diffuse reflection spectroscopy. Opt. Express14(2006)415.
    [42] T. Yasuda, T. Yasui, T. Araki, E. Abraham. Real-time two-dimensionalterahertz tomography of moving objects. Opt. Commun.267(2006)128.
    [43] R.M. Woodward, B.E. Cole, V.P. Wallace, R.J. Pye, D.d. Arnone, E.H.Linfield, M. Pepper. Terahertz pulse imaging in reflection geometry of humanskin cancer and skin tissue. Phys. Med. Biol.47(2002)3853.
    [44] J. Liu, J. Dai, S.L. Chin, X.-C. Zhang. Broadband terahertz wave remotesensing using coherent manipulation of fluorescence from asymmetricallyionized gases. Nat. Photonics4(2010)627.
    [45]李港:激光频率的变换与扩展——实用非线性光学技术北京:科学出版社2005
    [46] David N. N. Nonlinear Optical Crystals: A Complete Survey. Now York:Springer,2005.
    [47]张洪志.红外非线性晶体GaSe, GaSe:X(X=S, In)及GaSe1-xSx(x≤0.413)光学及倍频特性的研究.长春:吉林大学物理学院,2008.
    [48]陈创天.非线性光学晶体材料.天津:天津大学出版社,2000.
    [49] G. C. Catella, D. Burlage: Crystal growth and optical properties of AgGaS2and AgGaSe2. MRS Bulletin23(7),28-36(1998)
    [50] R. S. Feigelson, R. K. Route: Recent developments in the growth ofchalcopyrite crystals for nonlinear infrared applications. Opt. Eng.26(2),113-119(1987)
    [51] D. A. Roberts: Simplified characterization of uniaxial and biaxial nonlinearoptical crystals: a plea for standardization of nomenclature and conventions.IEEE J. Quant. Electr.28(10),2057-2074(1992)
    [52] Y. X. Fan, R. C. Eckardt, R. L. Byer, R. K. Route, R. S. Feigelson. AgGaS2infrared parametric oscillator. Appl. Phys. Lett.45(4),313-315(1984)
    [53] K. L. Vodopyanov, J. P. Maffetone, I. Zwieback, W. Ruderman. AgGaS2optical parametric oscillator continuously tunable from3.9to11.3μm. Appl.Phys. Lett.75(9),1204-1206(1999)
    [54] T. Elsaesser, A. Seilmeier, W. Kaiser, P. Koidl, G. Brandt. Parametricgeneration of tunable picosecond pulses in the medium infrared usingAgGaS2crystals. Appl. Phys. Lett.44(4),383-385(1984)
    [55] K. Kato. Second-harmonic and sum-frequency generation in ZnGeP2. Appl.Opt.36(12),2506-2510(1997)
    [56] H. Kildal, G. W. Iseler. Laser-induced surface damage of infrared nonlinearmaterials. Appl. Opt.15(12),3062-3065(1976)
    [57] J. Kildal, J. C. Mikkelsen. The nonlinear optical coefficient, phasematchingand optical damage in chalcopyrite AgGaSe2. Opt. Commun.9(3),315-318(1973)
    [58] Physical-Chemical Properties of Semiconductor. Handbook.(Nauka, Moscow,1979)
    [59] K. L. Vodopyanov. Parametric generation of tunable infrared radiation inZnGeP2and GaSe pumped at3μm. J. Opt. Soc. Am. B10(9),1723-1729(1993)
    [60] Y. M. Andreev, V. G. Voevodin, A. I. Gribenyukov, V. P. Novikov. Mixing offrequencies of CO2and CO lasers in ZnGeP2crystals. Sov. J. QuantumElectron.17(6),748-749(1987)
    [61] G. D. Boyd, E. Buehler, F. G. Storz. Linear and nonlinear optical properties ofZnGeP2and CdSe. Appl. Phys. Lett.18(7),301-304(1971)
    [62] F. Adduci, I. M. Catalano, A. Cingolani, A, Minafra. Direct and indirecttwo-photon processes in layered semiconductor. Phys. Rev, B15(2),926-931(1977)
    [63] K. L. Vodopyanov, L. A. Kulevskii, V. G. Voevodin, A. I. Gribenyukov, K. R.Allakhverdiev, T. A. Kerimov. High efficiency middle IR parametricsuperradiance in ZnGeP2and GaSe crystals pumped by an erbium laser. Opt.Commun.83(5-6),322-326(1991)
    [64] N. P. Narnes, R. C. Eckardt, D. J. Gettemy, L. B. Edgett. Absorptioncoefficients and the temperature variation of he refractive index difference ofnonlinear optical crystals. IEEE J. Quant. Electr. QE-15(10),1074-1076(1979)
    [65] J. J. Zondy. Experimental investigation of single and twin AgGaSe2crystalsfor CW10.2μm SHG. Opt. Commun.119(3-4),320-326(1995)
    [66] G. B. Abdullaev, K. R. Allakhverdiev, M. E. Karasev, V. I. Konov, L. A.Kulevskii, N. B. Mustafaev, P. P. Pashinin, A. M. Prokhorov, Y. M.Starodumov, N. I. Chapliev. Efficient generation of the second harmonic ofCO2laser radiation in a GaSe crystal. Sov. J. Quantum Electron.19(4),494-498(1989)
    [67] R. G. Harrison, P. K. Gupta, M. R. Taghizadeh, A. K. Kar. Efficientmultikilowatt mid infrared difference frequency generation in CdGeAs2.IEEE J. Quant. Electr. QE-18(8),1239-1242(1982)
    [68] P. G. Schunemann, T. M. Pollak. Ultralow gradient HGF-grown ZnGeP2andCdGeAs2and their optical properties. MRS Bulletin23(7),23-27(1998)
    [69] R. L. Byer, H. Kildal, R. S. Feigelson. CdGeAs2—a new nonlinear crystalphasematchable at10.6μm. Appl. Phys. Lett.19(7),237-240(1971)
    [70] A. Harasaki, K. Kato. New data on the nonlinear optical constant,phase-matching, and optical damage of AgGaS2. Jpn. J. Appl. Phys.36(2),700-703(1997)
    [71] I. S. Grigoriev, E. Z. Meilikhov. Physical Quantities. Handbook,Energoatomizdat, Moscow,1991
    [72] B. H. T. Chai. optical Crystals. In: CRC Handbook of Laser Science andTechnology, Suppplement2: Optical Materials, ed. by M. J. Weber (CRCPress, Boca Raton,1995), P.13-65.
    [73] R. G. Wenzel, G. P. Arnold: Parametric oscillator. HF oscillator-amplifierpumped CdSe parametric oscillator tunable from14.1μm to16.4μm. Appl.Opt.15(5),1322-1326(1976)
    [74] D. C. Hanna, B. Luther-Davies, H. N. RUtt, T. C. Smith, C. R. Stanley.Q-switched laser damage of infrared nonlinear materials. IEEE J. Quant.Electr. QE-8(3),317-324(1972)
    [75] G. D. Guseinov, A. I. Rasulov. Heat conductivity of GaSe monocrystals.Physica Status Solidi,1966, V.18, P.911-912.
    [76] G. B. Abdullaev, L. A. Kulevskii, A. M. Prokhorov, A. D. Savel’ev, E. Yu.Salaev, V. V. Smirnov. GaSe, a new effective material for nonlinear optics.JETP Lett.16,90-92(1972)
    [77] K. Liu, J. Xu, and X.-C. Zhang. GaSe crystals for broadband terahertz wavedetection. Appl. Phys. Lett.85,863(2004).
    [78] C. Kubler, R. Huber, and A. Leitenstorfer. Ultrabroadband terahertz pulses:generation and field-resolved detection. Semicond. Sci. Technol.20, S128(2005).
    [79] Yun-Shik Lee, Principle of Terahertz Science and Technology (Springer,New York,2008)
    [80] Yu. M. Andreev, V. V. Zuev, G. V. Lanski, and A. V. Sha duko. Frequencydoubling and mixing of the radiation of carbon monoxide lasers in nonlinearZnGeP2and GaSe crystals. J. Opt. Technol.78(2),P.102-104.(2011)
    [81] Wei Shi, Yujie J. Ding, Peter G. Schunemann Coherent terahertz waves basedon difference-frequency generation in an annealed zinc-germaniumphosphide crystal: improvements on tuning ranges and peak powers//OpticsCommunications233(2004)183–189
    [82] Yu.M. Andreev, V.V. Atuchin, G.V. Lanskii, A.N. Morozov, L.D. Pokrovsky,S.Yu. Sarkisov, O.V. Voevodina. Growth, real structure and applications ofGaSe1-xSx crystals. Materials Science&Engeneering B.,2006,128:205-210.
    [83] S. Das, C. Ghosh, O.G. Voevodina, Yu.M. Andreev, S.Yu. Sarkisov. ModifiedGaSe crystal as a parametric frequency converter. Applied PhysicsB.,2006,82:43-46.
    [84] Valeriy G. Voevodin, Olga V. Voevodina, Svetlana A. Bereznaya, Zoya V.Korotchenko, Aleksander N. Morozov, Sergey Yu. Sarkisov, Nils C. Ferneliusand Jonathan T. Goldstein. Large single crystals of gallium selenide: growing,doping by In and characterization. Opt. Mater.,2004,26:495-499.
    [85] S. Das, C. Ghosh, S. Gangopadhyay, U. Chatterjee, G. C. Bhar, V. G..Voevodin, O. G. Voevodina. Tunable coherent infrared source from5-16μmbased on difference-frequency mixing in an indium-doped GaSe crystal. J.Opt. Soc. Am. B,2006,23:282-288.
    [86] A.A. Tikhomirov, Yu.M. Andreev, G.V. Lanskii, O.V. Voevodina, S.Yu.Sarkisov. Doped GaSe nonlinear crystals. Proc. SPIE.6258.64-72.2006.
    [87] S. Shigetomi, T. Ikari. Optical and electrical characteristics of p-GaSe dopedwith Te. J. Appl. Phys.,2004,95(11):6480-6482.
    [88] Ch. W. Chen, Yu. K. Hsu, J.Y. Huang, Ch. Sh. Chang, J. Yu. Zhang, C. L. Pan.Er doped GaSe crystal for mid-IR applications. Opt. Exp.14(2006)1063610644.
    [89] M. Zerrouki, J. P. Lacharme, M. Ghamnia, C. A. Sebenne, M. Eddrief, B.Abidri. Study of Fe deposition opon a layered compound: GaSe. AppliedSurface Science,2000,166:143-148.
    [90] Chang-Dae Kim, Ki-Wan Jang, Yong-Ill Lee. Optical properties of Tm-dopedGaSe single crystals. Solid state communications,2004,130:701-704.
    [91] Tae-Young Park and Sun-Chan So, Moon-Seog Jin. PhotoluminescenceSpectra of Undoped and Cd-Doped GaSe Single Crystals. Journal of theKorean Physical Society,2001,38(6):754-757.
    [92] Reiner Rudolph, Christian Pettenkofer, Aaron A Bostwick, Jonathan A Adams,Fumio Ohuchi, Marjorie A. Olmstead, Bengt Jaeckel, Andreas Klein,Wolfram Jaegermann. Electronic structure of the Si(111):GaSe van derWaals-like surface termination. New Journal of Physics.7(108):1-20.2005.
    [93] G. M. Mamedov, M. Karabulut, A. O. Kodolbas,. ktü. Excitonphotoconductivity in Ge-doped GaSe crystals. Phys. Stat. Sol.(b).242(14):2885-2891.2005.
    [94] H. Karaa□a, M. Parlak, O. Karabulut, U. Serincan, R. Turan, B. G. Ak□no□lu. Structural, electrical and optical properties of Ge implanted GaSe singlecrystals grown by Bridgman technique. Cryst. Res. Technol.41(12)1159-1166.2006.
    [95] M. M. Abdullah, G. Bhagavannarayana, M. A. Wahab. Growth andcharacterization of GaSe single crystal. Journal of Crystal Growth. V.312.P.1535-1537(2010)
    [96] N. C. Fernelius. Properties of gallium selenide single crystal. Prog. Cryst.Growth Charact.,1994,28(4):275-353.
    [97] G. N. Aliev, I. G. Kerimov, M. M. Kurbanov and T. A. Mamedov. Anisotropiclinear expansion and the isothermal compressibility of a GaSe single crystal.Soviet Physics Solid State.,1972,14:1304-1305. Russian Ref.: FizikaTverdogo Tela.1972,14:1522-1524.
    [98] N.B. Singh, D.R. Suhre, V. Balakrishna, M. Marable, R. Meyer, N. Fernelius,F.K. Hopkins and D. Zelmon. Far-infrared conversion materials: galliumselenide for far-infrared conversion applications. Prog. Cryst. Growth Charact.Mater.,1998,37(1):47-102.
    [99] K. R. Allakhverdiev, T. Baykara, A. Kulibekov Gulubayov, A. A. Kaya, J.Goldshtein, N. Frnelius, S. Hanna, Z. Salaeva. Corrected infrared Sellmeiercoefficients for gallium selenide. J. Appl. Phys.,2005,98:093515.
    [100] M. Sreckovic, P. Osmocrovic, B. Vedlin, V. Sikacki-Zeravcic and A.Rozaj-Brvar. Laser damage of solid target. Revue Roumaine de Physique,1986,31:1065-1068.
    [101] K. L. Vodopyanov, S.B. Mirov, V. G. Voevodin, P. G. Shunemann.Two-photon absorption in GaSe and CdGeAs2. Optics Communications,1998,155:47-50.
    [102] G. B. Abdullaev, L. A. Kulevskii, P. V. Nikles, A. M. Prokhorov, A. D.Savel’ev, E. Yu. Salaev, V. V. Smirnov. Kvantovaya Elektron. Far-infraredconversion materials: gallium selenide for far-infrared conversionapplications. Sov. J. Quantum Eletron.,1976,6:88-90.
    [103] A. O. Okogoru, S. B. Virov, W. Lee, D. I. Crouthamel, N. Jenkis, A.Yu.Dergachev, K. L. Vodopyanov, V. V. Badikov. Tunable middle infrareddown-conversion in GaSe and AgGaS2. Optics Communications.,1998,155:307-312.
    [104] T. Dahinten, U. Plodereder, A. Seilmeier, K. L. Vodopyanov, K. R.Allakhverdiev, Z. A. Ibragimov. Infrared pulses of1picosecond durationtunable between4um and18um. IEEE Journal of Quantum Electronics,1993,29(7):2245-2250.
    [105] G. B. Abdullaev, K. R. Allakhverdiev, L. A. Kulevskii, A. M. Prokhorov, E.Yu. Salaev, A. D. Savel’ev, V. V. Smirnov. Kvantovaya Elektron. Parametricconversion of infrared radiation in a GaSe crystal.1975,2:1228-1233.English transl.: Sov. J. Quantum Eletron.1975,5:665-668.
    [106] K. L. Vodopyanov, V. G. Voevodin.2.8μm laser pumped type I and type IItravelling-wave optical parametric generator in GaSe. OpticsCommunications,114(3-4),333-335,1995.
    [107] Y. M. Andreev, V. V. Badikov, V. G. Voevodin, L. G. Geiko, P. P. Geiko, M. V.Ivashchenko, A. I. Karapuzikov, I. V. Sherstov. Radiation resistance ofnonlinear crystals at a wavelength of9.55μm. Quantum electron.31(12),1075-1078(2001)]
    [108]介万奇. Bridgman法晶体生长技术的研究进展.人工晶体学报. V.41.P.24(2012)
    [109] Yu. M. Andreev, V. V. Atuchin, G. V. Lanskii, A. N. Morozov, L. D.Pokrovsky, S. Yu. Sarkisov, O. V. Voevodina. Growth, real structure andapplications of GaSe1-xSxcrystals. Materials Science&Engeneering B.,2006,128:205-210.
    [110] Y.-K. Hsu, C.-S. Chang, W.-F. Hsien. Photoluminescence study of GaSedoped with Er. Jpn. J. Appl. Phys. V.42, P.4222-4225,2003.
    [111] Yu-Kuei Hsu, Chen-Shiung Chang, Wen-Chang Huang Electrical propertiesof GaSe doped with Er. J. Appl. Phys.2004. V.96, No.3. P.1563-1567.
    [112] Fischer,W. H lg, F. Hulliger. Magnetic ordering in HoBi, HoS, ErS and ErSe.Physica B+C, V.130, Issue1□3, P.551□554,1985.
    [113] Yu.M. Andreev, K.A. Kokh, G.V. Lanskii, A.N. Morozov Structuralcharacterization of pure and doped GaSe by nonlinear optical method. J.Cryst. Growth2011. V.318, No.1. P.1164-1166.
    [114] I. Evtodiev, L. Leontie, M. Caraman, M. Stamate, and E. Arama, Opticalproperties of p-GaSe single crystals doped with Te. J. App. Phys.105,023524-1-5(2009).1993.
    [115] Elmira Cuculescu, Igor Evtodiev, Iuliana Caraman The anisotropy of theoptical properties of ternary semiconductors formed by elements of III and VIgroups. Phys. Stat. Sol.(b)2009. V.6, No.5. P.1207-1212.
    [116] K. Allakhverdiev, T. Baykara, S. Ellialtioglu, F. Hashimzade, D. Huseinova,K. Kawamura, A.A. Kaya, A.M. Kulibekov, S. OnariLattice vibrations ofpure and doped GaSe. Materials Research Bulletin.2006. V.41. P.751-763
    [117] H. Yoshida, S. Nakashima, A. Mitsuishi. Phonon Ramar spectra of layercompound GaSe. Phys. Stat. Sol.(b).1973. V.59. N.2. P.655-666
    [118] K. L. Vodopyanov, L. A. Kulevskii. New dispersion relationships for GaSein the0.65-18μm spectral region. Optics Communications. V.118. P.375-378.1995.
    [119] E. Takaoka, K. Kato. Temperature phase-matching properties for harmonicgeneration in GaSe. Jap. J. Appl. Phys. V.38. P.2755-2759.1999.
    [120] M. J. Weber, Handbook of Lasers, CRC Press LLC,2001.
    [121] S. D. Jackson, Towards high-power mid-infrared emission from a fibre laser,Nat. Photonics V.6. P.423–451.2012.
    [122] E.D. Palik, Handbook of optical constants of solids III (Academic Press,1998)
    [123] A. Gouskov, J. Camassel and L. Gouskov. Growth and characterization ofIII-VI layered like GaSe, GaTe, InSe, GaSe1-xTexand GaxIn1-xSex. Prog.Cryst. Growth Charact. Mater.5,1982,323-413.
    [124] J. Camassel, P. Merle, H. Mathieu, A. Gouskov. Near-band-edge opticalproperties of GaSexTe1-xmixed crystals. Phys. Rev. B19(2),1060-1068(1979)
    [125] I. Evtodiev. Anisotropy of the Exciton Processes in GaSe Crystals with LowS and Te Concentrations. J. Nanoelectr. Optoelectr. V.4, N.1P.1-13(2009)
    [126] E. A. Meneses, N. Jannuzzi, J. R. Freitas, A. Gouskov. Photoluminescenceof layered GaSe1-xTex crystals. Phys. Stat. Sol.(b)78, K35-K38.(1976)
    [127] S. A. Ku, C. W. Luo, H. L. Lio, K. H. Wu, J. Y. Juang, A. I. Potekaev, O. P.Tolbanov, S. Yu. Sarkisov, Yu. M. Andreev, G. V. Lanskii, Optical propertiesof nonlinear solid solution GaSe1-xSx(0    [128] V. L. Panyutin, A. I. Zagumennyi, A. F. Zerrouk, F. Noack, V. Petrov.GaSxSe1-xcompounds for nonlinear optics. Proc. Conf. Lasers andElectro-Optics. Int. Quantum Electron. Conf., CLEO/IQEC’09Baltimore,paper CWJ1(2009)
    [129] V. Petrov, V. L. Panyutin, A. Tyazhev, G. Marchev, A. I. Zagumennyi, F.Rotermund, F. Noack, GaS0.4Se0.6: relevant properties and potential for1064nm pumped mid-IR OPOs and OPGs operating above5μm. Proc.17th Int.Conf. on Advanced Laser Technologies,26September–01October2009,Antalya/Turkey2009. P.210.
    [130] G. C. Bhar, S. Das, K. L. Vodopyanov. Nonlinear optical laser devices usingGaSe. Appl. Phys. B61,187-190(1995)
    [131] Feng-Guang Wu, Yu.M. Andreev, G.V. Lanskii, V.V. Atuchin, T.A. Gavrilova,S.Yu. Sarkisov. Modified GaSe crystals for laser systems applications.9thInternational Conference on Modification of Materials with Particle Beamsand Plasma Flows/Tomsk, Russia,21-26September2008. P.257-260.
    [132] Y.-F. Zhang, R. Wang, Z.-H. Kang, L.-L. Qu, Y. Jiang, J.-Y. Gao, Yu.M.Andreev, G.V. Lanskii, K. Kokh, A.N. Morozov, A.V. Shaiduko, V.V. Zuev.AgGaS2-and Al-doped GaSe Crystals for IR Applications Opt. Commun.2011, V.284, P.1677-1681.
    [133] Petrov V., Panyutin V. L., Tyazhev A., Marchev G., Zagumennyi A. I.,Rotermund F., Noack F., Miyata K., Iskhakova L.D., Zerrouk A.F. GaS0.4Se0.6:Relevant properties and potential for1064nm pumped mid-IR OPOs andOPGs operating above5μm. Las. Phys.2011. V.21, No.4. P.774-781.
    [134] A.E. Telminov, A.G. Sitnikov, A.N. Panchenko, D.E. Genin, S.Yu. Sarkisov,S.A. Beremaya, Z.V. Korotchenko, and E.V. Vavilin. Damage Threshold ofModified GaSe Crystals under Irradiation of Pulsed CO2Laser with InductiveEnergy Storage and SOS-diodes. Proc. of10thConf. on modification ofMaterials with Particle Beams and Plasma Flows.1924September,2010,Tomsk, Russia. P.323-324.
    [135] A. Va ko. On the absorption and reflection spectrum of amorphous seleniumin the infrared region. Czech. J. Phys. B,1965, V.15, No.1, P.170–177.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700