锌掺杂铌酸锂和钽酸锂晶体的生长和结构及性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铌酸锂和钽酸锂晶体具有优良的电学及光学性能,已经在全息存储和准相位匹配等方面得到了广泛的应用。然而铌酸锂和钽酸锂晶体在高光强照射的情况下会产生光致散射,导致全息存储图像质量严重下降。同时铌酸锂和钽酸锂晶体高的矫顽场使其很难在常温下实现周期极化,使周期极化工艺变得复杂。本文采用掺杂ZnO的方法提高晶体的抗光致散射能力和降低晶体的矫顽场。
     本文采用最优的工艺参数,利用提拉方法,从中频加热炉中生长出无明显宏观缺陷、光学均匀性好的同成份Zn:LiNbO_3和Zn:LiTaO_3单晶。生长出晶体的尺寸为Φ40×20mm。通过气相交换平衡(VTE)技术制备了近化学计量比铌酸锂和钽酸锂晶片。
     X射线粉末衍射实验结果表明同成份Zn:LiNbO_3和Zn:LiTaO_3晶体掺Zn后晶格结构未有变化。对Zn:LiNbO_3和Zn:LiTaO_3晶体的晶胞参数进行计算后发现,晶格常数随着ZnO含量的增加而增加。
     Zn:LiNbO_3或Zn:LiTaO_3晶体的紫外吸收边和红外吸收峰的变化机理也在本文中被讨论。分析显示LiNbO_3晶体中掺入Zn2+离子优先取代反位铌( Nb L4+i)。当ZnO含量达到其阈值浓度后,所有的反位铌被完全取代,Zn2+离子开始同时占据正常的锂和铌位,形成( Zn 3N-b-3 Zn +Li)自补偿结构。而对于LiTaO_3晶体,当掺入ZnO掺杂量小于阈值浓度时,Zn2+首先取代反位钽( Ta L4+i)的位置,当超过阈值浓度后Zn2+开始取代正常晶格的Li位。利用差热分析测试Zn:LiNbO_3和Zn:LiTaO_3晶体晶体的居里温度,发现当ZnO含量低于其阈值浓度时,晶体的居里温度随ZnO含量的增加而上升。相反地,当ZnO含量达到其阈值浓度后,其居里温度开始下降。
     测量了Zn:LiNbO_3和Zn:LiTaO_3晶体的铁电性能,自发极化对ZnO含量变化不敏感。电滞回线测试结果呈现明显的不对称性,即晶体存在内场。通过同成份与化学计量比LiNbO_3和LiTaO_3晶体的矫顽场和内场相比较可以得出,同成份晶体中高的矫顽场和内场是由晶体的本征缺陷造成的。晶体的矫顽场和内场对ZnO含量的变化十分敏感。
     利用二波耦合实验测试了同成份和近化学计量比Zn:LiNbO_3和Zn:LiTaO_3晶体的光折变性能,如衍射效率、光折变响应时间及擦除时间。实验结果表明随着ZnO含量的增加,晶体的光电导增加,晶体的衍射效率降低,光折变响应速度变快,同时擦除时间也缩短。近化学计量比晶体的衍射效率要低于同成份晶体衍射效率,光折变响应时间及擦除时间也小于同成份晶体。
     利用透射光斑畸变法测试了Zn:LiNbO_3和Zn:LiTaO_3晶体的抗光致散射能力。纯的LiTaO_3要比LiNbO_3晶体抗光致散射能力高二个数量级。当ZnO掺杂进入晶体后,掺杂量低于其阈值浓度时,晶体的抗光致散射能力变化不大。相反地,当ZnO掺杂量达到其阈值浓度后,晶体的抗光致散射能力显著增加,与同成份晶体相比提高了二个数量级。近化学计量比铌酸锂和钽酸锂晶体的抗光损伤性能要明显优于同成份的铌酸锂和钽酸锂晶体。分析表明光电导是晶体抗光致散射性能变化的重要原因。
Lithium niobium and Lithium tantalum, due to excellent electrics and optical properties, have been widely applied to volume holographic memory. However, light scattering can be induced by high light intensity in lithium niobium and lithium tantalum, which results in serious holograph distortion. simultaneously, because of its high coercive field, periodic polarization wasn’t achieved at room temperature in LiNbO_3 and LiTaO_3 crystals. In this dissertation, in order to improve the resistant ability to optical damage and coercive field, ZnO were doped into LiNbO_3 and LiTaO_3 .
     In this dissertation, Zn:LiNbO_3 and Zn:LiTaO_3 single crystals were grown by the Czochraski method with intermediate frequency heating. The optimum technological parameters were adopted. There were no macroscopic defects and good optical homogeneity in the as-grown boules. Size of as-grown boules was aboutΦ40×20mm. Vapor transport equilibration method was used to fabricate the near-stoichiometric crystal.
     X-ray powder diffraction experiment showed that lattice structure of the Zn:LiNbO_3 and Zn:LiTaO_3 crystals was similar to that of the congruent sample. In Zn:LiNbO_3 and Zn:LiTaO_3 crystals, results of unit cell parameters indicated that the lattice constant increased with the ZnO concentration increasing. The change mechanism of the UV-Vis absorption edge and the IR absorption peak was also discussed in the Zn:LiNbO_3 and Zn:LiTaO_3 single crystals.
     Analysis results showed that Zn2+ ions took priority of replacing anti-site Nb ( Nb L4+i). When the ZnO concentration reaches the threshold concentration, all of the Nb L4+i ions were completely replaced, and Zn2+ ions begin to occupy the normal Li and Nb sites simultaneously, thus self-compensation defect structure ( Zn 3N-b-3 Zn L+i) was formed. In LiTaO_3 crystals, Zn2+ ions replace anti-site Ta ( Ta L4+i). All of the Ta L4+i were completely replaced when ZnO concentration reached the threshold concentration, and Zn2+ ions had to replace the normal Li site.
     Curie temperature of the Zn:LiNbO_3 and Zn:LiTaO_3 crystals was obtained from DTA measurement. Curie temperature increased with ZnO concentration increasing when ZnO concentration was below the threshold concentration. However, when ZnO concentration was over the threshold concentration, the curie temperature began to decrease.
     Z-cut Zn:LiNbO_3 and Zn:LiTaO_3 were polished to make polarization hysteresis loop measurements. The spontaneous polarization was insensitive to the concentration of ZnO. The hysteresis loops of all samples were asymmetric due to existence of the internal field. The influence of ZnO content on the coercive field and internal field was investigated. The high coercive field and internal field in the congruent crystal were resulted from high concentration of the anti-site Nb and anti-site Ta in comparison with near-stoichiometric crystal.
     The photorefractive properties of the Zn:LiNbO_3 and Zn:LiTaO_3 crystals, including diffraction efficiency and photorefractive response time, were obtained by two-beam coupling experiments. With the ZnO concentration increasing, diffraction efficiency and erasure time decreased, and the photorefractive response speed increased. In near stoichiometric LiNbO_3 and LiTaO_3 crystals, diffraction efficiency and erasure time were lower than those of congruent crystals.
     The light scattering resistance of the Zn:LiNbO_3 and Zn:LiTaO_3 crystals was studied by the transmission facula distortion method. When the ZnO concentration was below threshold concentration, the light scattering resistance of samples showed no obvious change. In contrast, when the ZnO concentration reached threshold concentration, the light scattering resistance of samples increased sharply. The light scattering resistance was two orders of magnitude higher than that of pure LiNbO_3 and LiTaO_3 crystals. The light scattering resistance of the near-stoichiometric LiNbO_3 and LiTaO_3 crystals is better than that of congruent crystals. Analysis results indicated the photoconductivity was mainly responsible for the light scattering resistance.
引文
1 Y. Wang and Y. J. Jiang. Crystal orientation dependence of piezoelectric properties in LiNbO_3 and LiTaO_3. Opt. Mater. 2003, 23:403-408
    2 I. Reinhard, M. Gabrysch, B. F. V. Weikersthal, K. Jungmann, G. Z. Putlitz. Measurement and compensation of frequency chirping in pulsed dye laser amplifiers. Appl. Phys. B. 1996, 63:467–472
    3 A. Holm, Q. Stürzer, Y. Xu, R. Weigel. Investigation of surface acoustic waves on LiNbO_3, quartz, and LiTaO_3 by laser probing. Microelectron Eng. 1996, 31:123-127
    4 M. K. Kuneva, S. H. Tonchev and P. A. Atanasov. Infrared spectra of proton-exchanged waveguides in LiNbO_3 and LiTaO_3. Mater. Sci. Eng. B-Solid. 2005, 118:301-305
    5 Y. N. Korkishko, V. A. Fedorov, S. M. Kostritskii, A. N. Alkaev, E. I. Maslennikov, E. M. Paderin, D. V. Apraksin, F. Laurell. Proton exchanged LiNbO_3 and LiTaO_3 optical waveguides and integrated optic devices. Microelectron Eng. 2003, 69:228-236
    6 宋磊,李铭华,徐玉恒. 钽酸锂晶体的生长及其物理性能的研究. 人工晶体学报. 1994, 23(2):146-150
    7 K. Kitamura, Y. Furukawa and K. Niwa et al, Crystal growth and low coercive field 180o domain switching characteristics of stoichiometric LiTaO_3. Appl. Phys. Let. 1998, 73(21):3073-3075
    8 A. Rauber. Chemistry and Physics of Lithium Niobate. In: Current Topics in Materials Science, Vol1 edited by Kaldis, North-Holland, Amsterdam, 1978:481
    9 张福学, 孙慷. 压电学. 国防工业出版社, 1984:158
    10 S. Q. Fang, B. Wang, T. Zhang, F. R. Ling. Growth and photorefractive properties of Zn, Fe double–doped LiTaO_3 crystal. Opt. Mater. 2006, 28:207-211
    11 S. Q. Fang, D. C. Ma, T. Zhang, F. R. Ling, B. Wang. Growth and optical properties of Mg, Fe co–doped LiTaO_3 crystal. Optik. 2007, 28:207-211
    12 T. Fukuda, S. Matsumura, H. Hirano, T. Ito. Growth of LiTaO_3 single-crystal for saw device applications. J. Cryst. Growth. 1979, 46:179-184
    13 钟维烈, 铁电物理学. 科学出版社, 2000:27-29,
    14 S. C. Abrahams, W.C. Hamiltion and J.M. Reddy. Single Crystal Neutron Diffraction Study at 24°. J. Phys. Chem. Solids. 1966, 27: 1013-1018
    15 S. C. Abrahams, E. Buchler, W.C. Hamilton, S.J. Laplac. Ferroelectric lithium tantalate-III. Temperature dependence of the structure in the ferroelectric phase and the paraelectric structure at 940 K. J. Phys. Chem. Solids. 1973, 34:521-532
    16 S. C. Abrahams. Ferroelectric Lithium Niobate 3. Single Crystal X-Ray Diffraction Slady. J. Phys. Chem. Solids, 1996, 7: 997-1012
    17 S. C. Abrahams. Ferroelectric Lithium Niobate 4.Single Crystal X-Ray Diffraction Slady at 24℃. J. Phys. Chem. Solids, 1996, 7: 1013-1018
    18 S. C. Abrahams. Ferroelectric Lithium Niobate 5. Polycyrstal X-Ray Diffraction Study Between 24℃ and 1200℃. J. Phys. Chem. Solids, 1996, 27: 1021-1026
    19 马春荣, 郑桂泉, 王诚毕译. 全息记录材料. 科学出版社, 1984:148
    20 Liu Simin, Zhang Guoquan, Zhang Guangyin. Anisotropic Scattering Light Cones Generated by Photorefractive. Crystals proceding of ICNDPA’93, Bpz, 1993,10:40
    21 H.Fay, W.J.Alford and H.M.Dess. Dependence of Second Harmonicphase Matching Temperature in LiNbO_3 Crystals on Melt-composition. Appl. Phys. Lett. 1968, 12:89
    22 S. Miyazawa, H. Iwasaki. Congruent melting composition of lithium metatantalate. J. Cryst. Growth, 1971, 10:276-278
    23 J. J. Amodei, D. L. Staebler and A. N. Stephaphens. Holographic Pattern Fixing in ElectroopticCrystals. Appl. Phys. Lett. 1971, 18(12):540-542
    24 W. Philliphs, J. J. Amodei and D. L. Staebler. Optical and Holographic Storage Properties of Transition Metal Doped Lithium Niobate. RCA Review. 1972, 33:94-109
    25 K. Buse. Light-Induced Charge Transport Process in Photorefractive Crystals Ⅱ: Materials. Appl. Phys. B. 1997, 64:391-407
    26 Zhong Jiguo, Jin Jian and Wu Zhongkang. Measurement of Optically Induced Refractive-Index Damage of Lithium Niobate Doped with Different Concentrateion of MgO. 11th International Quantum Electronics Conference, New York, IEEE Catalog. No. 80, CH 1561-0, 1980:631
    27 T. R. Volk, V. I. Pryalkin and N. M. Rubinina. Optical-Damage-Resistant LiNbO_3:Zn Crystal. Opt. Lett. 1990, 15(18):996-998
    28 T. Volk, N. Rubinina and M. W?helcke. Optical-Damage-Resistance Impurities in Lithium Niobate. J. Opt. Soc. Am. B. 1994, 11(9):1681-1687
    29 Yongfa Kong, Jinke Wen and Huafu Wang. New Doped Lithium Niobate Crystal with High Resistance to Photorefraction-LiNbO_3:In. Appl. Phys. Lett. 1995, 66(3):280-281
    30 J. K. Yamamoto, K. Kitamura, N. Lyi, S. Kimura, Y. Furukawa. Increased Optical Damage Resistance in Sc2O_3-Doped LiNbO_3. Appl. Phys. Lett. 1992, 61(18):2156-2158
    31 J. K. Yamamoto, T. Yamazaki, and K. Yamagishi. Noncritical Phase Matching and Photorefractive Damage in Sc2O_3:LiNbO_3. Appl. Phys. Lett., 1994, 64(24):3228-3230
    32 张国权. 掺杂铌酸锂的光折变光放大及不同掺杂对晶体光折变性能的调控. 南开大学博士学位论文. 1998:47-49
    33 Wang Huafu, Shi Guotong, and Wu Zhongkang. Photovoltaic Effect in LiNbO_3:Mg. Phys. Stat. Solidi. 1985, 89:k211-k214
    34 吴仲康, 王韦, 王华馥, 李冠芳, 吕永彬. 掺镁铌酸锂的抗光损伤增强. 硅酸盐学报. 1987, 15(2):175-178
    35 冯锡淇, 张启仁, 应继锋. 掺镁铌酸锂晶体阈值效应的研究. 中国科学 A辑, 1989, 18(6):665-669
    36 H. D. Megaw. Ferroelectricity and crystal structure II. Acta Cryst. 1954, 7:187–193
    37 M. Yamada, N. Nada, M. Saitoh, K. Watanabe. First-order quasi-phase matched LiNbO_3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation. Appl. Phys. Lett. 1993, 62:435-436
    38 V. Gopalan, T. E. Mitchell, Y. Furukawa, K. Kitamura. The role ofnonstoichiometry in 180o domain switching of LiNbO_3 crystals. Appl. Phys. Lett. 1998, 72:1981-1983
    39 L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer. Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO_3. J. Opt. Soc. Am. B. 1995, 12:2102-2116
    40 F. Yazdani, M. L. Sundheimer, S. L. Gomes. The Internal Electric Field and Backswitching in Congruent Lithium Niobate. Ferroelectrics. 2004, 304:105-109
    41 V. Gopalan, M. C. Gupta. Origin and characteristics of internal fields in LiNbO_3 crystals. 1997, 198:49-59
    42 H. F. Wang, Y. Y. Zhu, S. N. Zhu, N.B. Ming. Investigation of ferroelectric coercive field in LiNbO_3. Appl. Phys. A. 1997, 65:437-438
    43 S. Kim, V. Gopalan, A. Gruverman. Coercive field in ferroelectrics: A case study in lithium niobate and lithium tantalite. Appl. Phys. Lett. 2002, 80:2740-2742
    44 M. Angelis, S. Nicola, A. Finizio, G. Pierattini, P. Ferraro, S. Grilli, M. Paturzo. Evaluation of the internal field in lithium niobate ferroelectric domains by an interferometric method. Applied Physics Letters. 2004, 85:2785-2787
    45 C. C. Battle, S. Kim, V. Gopalan, K. Barkocy, M. C. Gupta, Q. X. Jia, T. E. Mitchell. Ferroelectric domain reversal in congruent LiTaO 3 crystals at elevated temperatures. Applied Physics Letters. 2000, 76: 2436-2438
    46 A. Agronin, Y. Rosenwaks, G. Rosenman. Ferroelectric domain reversal in LiNbO crystals using high-voltage atomic force microscopy. Applied Physics Letters. 2004, 85:452-454
    47 M. Paturzo, D. Alfieri, S. Grilli, P. Ferraro, P. Natale, M. Angelis, S. Nicola, A. Fińizio, G. Pierattini. Investigation of electric internal field in congruent LiNbO by electro-optic effect. Applied Physics Letters. 2004, 85:5652-5654
    48 V. Dierolf, C. Sandmann. Direct-write method for domain inversion patterns in LiNbO_3. Applied Physics Letters. 2004, 84:3987-3989
    49 B. J. Rodriguez. Domain growth kinetics in lithium niobate single crystals studied by piezoresponse force microscopy. Applied Physics Letters. 2005,86:012906
    50 B. F. Johnston, M. J. Withford. Dynamics of domain inversion in LiNbO_3 poled using topographic electrode geometries. Applied Physics Letters. 2005, 86: 262901
    51 Y. Chen, W. Yan, J. Guo, S. Chen, G. Zhang, Z. Xia. Effect of Mg concentration on the domain reversal of Mg-doped LiNbO_3. Applied Physics Letters. 2005, 87: 212904
    52 V. Gopalan, T. E. Mitchell, Y. Furukawa, K. Kitamura. Appl. Phys. Lett. 1998, 72:1981
    53 Venkatraman gopalan, M. C. Gupta. Observation of internal field in LiTaO_3 single crystals: Its origin and time-temperature dependence. Appl. Phys. Lett. 1996, 68:888-890
    54 C. C. Battle, S. Kim, V. Gopalan, K. barkocy, M. C. Gupta. Ferroelectric domain reversal in congruent LiTaO_3 crystals at elevated temperatures. 2000, 76:2436-2438
    55 K. Kitamura, Y. Furukawa, K. Niwa. Crystal growth and low coercive field 180o domain switching characteristics of stoichiometric LiTaO_3. Appl. Phys. Lett. 1998, 73:3073-3075
    56 V. Gopalan, M. C. Gupta. Origin of internal field and visualization of 180o domains in congruent LiTaO_3 crystals. J. Appl. Phys. 1996, 80:6099-6106
    57 S.Erdei, F.W.Ainger. Trends in the growth of stoichiometric single crystals. J. Cryst. Growth. 1997, 174:293-300
    58 K.Polgár, A.Péter, I.F?ldvári. Crystal growth and stoichiometry of LiNbO_3 prepared by the flux method. Opt. Mater. 2002, 19:7-11
    59 K. Kitamura, J. K. Yamamoto, N. Iyi, S. Kimura, T. Hayahi. Stoichiometric LiNbO_3 Single Crystal Growth by Double Crucible Czochralski Method Using Automatic Powder Supply System. J. Cryst. Growth. 1992, 116:327-331
    60 K. Polgár, A. Péter, L. Kovács, G. Corradi, Z. Szaller. Growth of stoichiometric LiNbO_3 single crystals by top seeded solution growth method. J. Cryst. Growth. 1997, 177:211-216
    61 K. Polgár, A. Péter, L. P?ppl, M. Ferriol, I. F?ldvári. Chemical and thermalconditions for the formation of stoichiometric LiNbO_3. J. Cryst. Growth. 2002, 237-239:682-686
    62 陆宝亮, 徐家跃, 范世骥, 夏宗仁. 近化学计量比 LiNbO_3 晶体的坩埚下降法生长. 硅酸盐学报. 2004, 32:255-258
    63 倪代秦, 宋友庭, 吴星. 区熔法生长近化学计量比铌酸锂晶体. 人工晶体学报. 2000, 29:94
    64 D. Q. Ni, W. Y. Wang, D. F. Zhang, X. Wu, X. L. Chen, K. Q. Lu. Near-stoichiometric LiNbO_3 single-crystal growth by metal strip-heated zone melting technique. J. Cryst. Growth. 2004, 263:421-426
    65 朱登松, 陈晓军, 李兵, 张万林, 黄自恒, 陈绍林, 吴仲康, 朱圣星. 气相交换平衡技术在获得近化学计量比 LiNbO_3 晶体中的应用. 南开大学学报(自然科学). 2002, 35:23-27
    66 V. Y. Shur, E. B. Blankova, E. L. Rumyantsev, E. V. Nikolaeva, E. I. Shishkin, A. V. Barannikov, R. K. Route, M. M. Fejer, R. L. Byer. X-ray-induced phase transformation in congruent and vapor-transport-equilibrated lithium tantalite and lithium niobate. Appl. Phys. Lett. 2002, 80:1037-1039
    67 J. W. Shur, W. S. Yang, S. J. Suh, J. H. Lee, T. Fukuda, D. H. Yoon. Growth and characterization of Er-doped stoichiometric LiNbO_3 single crystal fibers by the micro-pulling down method. J. Cryst. Growth. 2001, 239:223-227
    68 R.G Smith, D.B. Fraser, R.T. Denton, T.C. Rich. Correlation of Reduction in Optically Induced Refractive-index Inhomogeneity with OH Content in LiTaO_3 and LiNbO_3. J. Appl. Phys. 1968. 39:4600-460
    69 L. Kovacs, M. Wohlecke, A. Jovanovic, K. Polgar, S. Kapphan. Infrared Absorption Study of the OH Vibrational Band in LiNbO_3 Crystals. J. Phys. Chem. Solids. 1991, 52:797-803
    70 L. Kovacs, Zs. Szaller, I. Cravero, I. Foldvari, C. Zaldo. OH-Related Defects in LiNbO_3:Mg,M (M=Nd, Ti, Mn) Crystals. J. Phys. Chem. Solids. 1990, 51:417-521
    71 L. Kovacs, I. Foldvari. Properties of Lithium Niobate. EMIS Datareview Series No. 5 (London: INSPEC) RN16018. 1989:189
    72 O.F. Schirmer, O. Thiemann, M. Wochlecke. Defects in LiNbO_3 experiment-al aspects. J. Phys. Chem. Solids. 1991, 52:185-200
    73 J. M. Cabrera, J. Olivares, M. Carrascosa, J. Rams, R. Muller, E. Dieguez. Hydrogen in Lithium Niobate. Advances in Physics. 1996, 454:349-353
    74 张玥. 锌系列铌酸锂晶体抗光折变增强的研究. 哈尔滨工业大学硕士论文. 1997:37
    75 李宗和. 结构化学. 高等教育出版社, 2002:154
    76 G.I. Malovichko, V.G. Grachev, L.P. Yurchemko, V.Y. Proshko, E.P. Kokanyan, V.T. Grbrielyan. Improvement of LiNbO_3 Microstructure by Crystal Growth with Potassium. Phys. Stat. Sol. (a). 1992, 133:K29-K32
    77 J. Imbrock, A. Wirp, D. Kip and E. Kratzig. Photorefractive Properties of Lithium Niobate and Copper In-diffused Lithium Niobate Crystals. J. Opt. Soc. Am. B. 2002, 19:1822-1829
    78 H. Kogelnik. Coupled Wave Theory for Thick Hologram Gratings. Bell Sys. Tech. J. 1969, 48:2909-2947
    79 朱文革. 钽酸锂晶体生长中铂坩埚的应用. 中国资源综合利用. 2001, 9:8-9
    80 H.Vormann. Hydrogen As Origin of Thermal Fixing in LiNbO_3:Fe. J. Solid State comm 1981, 40:543-545.
    81 S.Klauer, M. Whlecke, S.Kapphan. Isotopic Effect Protonic Conductivity in LiNbO_3. Radiat. Effects Defects Solids. 1991,119:699-704.
    82 D. H. Jundt, M. M. Fejer, R. L. Byer. Optical properties of lithium-rich lithium niobate fabricated by vapor transport equilibration. IEEE J. Quantum Electron. 1990, 26(1):135-138
    83 P. F. Bordui, F. G. Notwood, C. D. Bird, J. T. Carella. Stoichiornetry issues in single-crystal lithium tantalite. J. Appl. Phys. 1995, 78:4647-4650
    84 H. M. O'Bryan, P. K. Gallagher, C. D. Brandle. Congruent composition and Li-rich phase boundary of LiNbO_3. J. Am. Ceram. Soc. 1985, 68:493-496
    85 P. F. Bordui, R. G. Norwood, C. D. Bird, J. T. Carella. Stoichiometry issues in single-crystal lithium tantalite. J. Appl. Phys. 1995, 78:4647-4650
    86 C. Baumer, C. David, A. Tunyagi, K. Betzler, H. Hesse, E. Kratzig, M. Wohlecke. Composition Dependence of the Ultraviolet Absorption Edge in Lithium Tantalate. J. Appl. Phys. 2003, 93:3102-3104
    87 H. Fay, W. J. Alford, H. M. Dess. Dependence of Second Harmonic Phase-Matching Temperature in LiNbO_3 Crystals on Melt-compostion. Appl. Phys. Lett. 1968, 12:69-71
    88 D. M. Smyth. Defects and Transport in LiNbO_3. Ferroelectrics. 1983, 50:93-102
    89 S. C. Abrahams, P. Marsh. Defect Structure Dependence on Composition in Lithium Niobate. Acta. Crystallogr. Sec. B. 1986, 42:61-64
    90 P. Lerner, C. Legras, and J. P. Duman, Stoechiometrie Des Monocristaux De Metaniobate De Lithium. J. Cryst. Growth. 1968, 3/4:231-235
    91 N. Iyi, K. Kitamura, F. Izumi, J. K. Yamamoto, T. Hayshi, H. Asano, S. Kimura. Comparitive Study of Defects Structures in Lithium Niobate with Different Compositions. J. Solid State Chem. 1992, 101:340-352
    92 J. Blumel, E. Born and T. Metzger. Solid State NMR Study Supporting the Lithium Vacancy Defect Model in Congruent Lithium Niobate. J. Phys. Chem. Solids. 1994, 55:589-593
    93 S. Kojima. Composition Variation of Optical Phonon Damping in Lithium Niobate Crystals. Jpn. J. Appl. Phys. 1993, 32:4273-4376
    94 N. Zotov, H. Boysen, F. Frey, T. Metzger, E. Born. Cation Substitution Models of Models of Congruent LiNbO_3 Investigated by X-Ray and Neutron Powder Diffraction. J. Phys. Chem. Solids. 1994, 55:145-152
    95 A. P. Wilkinosn, A. K. Cheetharm, R. H. Jarman. The Defect Structure of Congruently Melting Lithium Niobate. J. Appl. Phys. 1993, 74:3080-3082
    96 冯少新. 晶体缺陷能学计算及铌酸怩的缺陷结构. 南开大学博士学位论文. 1998:47-48
    97 G. E. Peterson, A. Carnevale. 93Nb NMR Linewidths in Nonstoichiometric Lithium Niobate. J. Chem. Phys. 1972, 56:4848-4852
    98 N. Iyi, K. Kitamura, Y. Yajima and S. Kimura. Defect Structure Model of MgO-Doped LiNbO_3. J. Solid State Chem. 1995, 118:148-152
    99 B. C. Grabmaier, W. Wersing and W. Koestler. Properties of Undoped and MgO-Doped LiNbO_3, Correlation to the Defect Structure. J. Cryst. Growth. 1991, 110:339-343
    100 A. P. Wilkinson, A. K. Cheetham and R. H. Jarman. The Defect Structure of Congruently Melting Lithium Niobate. J. Appl. Phys. 1993, 74(5):3080-3083
    101 Wei Zheng, Naidong Zhang, Liancheng Zhao, Yuheng Xu. The Role of Zn in Holographic Storage in Zn:Fe:LiNbO_3. Opt. Commu. 2003, 227:259-263
    102 X. H. Zhen, L. C. Zhao, Y. H. Xu. Defect Stucture and Optical Damage Resistance of Zn:Fe:LiNbO_3 Crystals. Appl. Phys. B. 2003, 76:655-659
    103 李铭华. 双掺杂铌酸锂晶体光折变增强效应的研究. 哈尔滨工业大学博士学位论文. 1998:28
    104 O. F. Schirmer, O. Thiemann and M. Wohlecke. Defects in LiNbO_3-Ι. Experimental Aspects. J. Phys. Chem. Solids. 1991, 52(1):185-200
    105 王洒颖. 化学元素. 贵州人民出版社, 1987:40, 210, 284, 435
    106 薛东峰. 铌酸锂、钽酸锂晶体的结构特征. 化学研究. 2002, 13:1-3
    107 Y. Kong, J. Xu, W. Zhang, et al. The Site Occupation of Protons in Lithium Niobate Crystals. J. Phys. Chem. Solids. 2000, 61(8):1331-1336
    108 Yongfa Kong, Jingjun Xu, Wanlin Zhang, et al. The Proton Site Occupation in Congruent Lithium Niobate Crystal Determined by Nuclear Magnetic Resonance. Phys. Lett. A. 1998, 250:211-213
    109 I. W. Kim, B. G. Moon, J. J. Jeong, H. L. Park, V. F. Pichugin. Configuration of (MgNb) defects in heavily Mg-doped LiNbO_3 single crystals. Mater. Lett. 2001, 49:324-326
    110 Y. Furukawa, K. Kitamura, S. Takekawa, K. Niwa, Y. Yajima, N. Iyi, I. Mnushkina, P. Guggenheim, J.M. Martin. The correlateion of MgO-doped near-stoichiometric LiNbO_3 composition to the defect structure. J. Cryst. Growth. 2000, 211: 230-236
    111 Dragan, Damjanovic. Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep. Prog. Phys. 1998, 61:1267-1324
    112 V. Gopalan, M. C. Gupta. Observation of internal field in LiTaO_3 single crystals: Its origin and time-temperature dependence. Appl. Phys. Lett. 1996, 68:888-890
    113 V. Gopalan, M. C. Gupta. Origin of internal field and visualization of 180o domains in congruent LiTaO_3 crystals. J. Appl. Phys. 1996, 80:6099-6106
    114 姚江宏, 陈亚辉, 许京军. 近化学计量比铌酸锂晶体周期极化畴反转特性研究. 物理学报. 2002, 51:192-196
    115 C. C. Battle, S. Kim, V. Gopalan, K. Barkocy, M. Gupta, Q. X. Jia, T. E.Mitchell. Ferroelectric domain reversal in congruent LiTaO_3 crystals at elevated temperatures. Appl. Phys. Lett. 2000, 76:2436-2438
    116 刘思敏, 郭儒, 凌振芳编著, 张光寅审. 光折变非线性光学. 标准出版社, 1992: 5-10
    117 J. Feinberg, D. Heiman, A. R. Tanguay. Jr, and R. Hellwarth. Photorefractive effects and light-induced charge migration in barium titanate. J. Appl. Phys.. 1980, 51(3): 1297-1282
    118 N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii. Holographic storage in electrooptic crystals. Ferroelectrics. 1979, 22(4): 949-953
    119 D. A. Bryan, R. Gerson and H. E. Tomaschke. Increased Optical Damage Resistance in Lithium Niobate. Appl. Phys. Lett. 1984, 44(9):847-851
    120 T.R. Volk, V.I. Pryalkin, N.M. Rubinina. Optical-Damage-Resistant LiNbO_3:Zn. Crystal. Opt. Lett.. 1990, 15(18):996-998
    121 T. Volk, B. Maximov, T. Chernaya, N. Rubinina, M. Wohlecke, V. simonov. Photorefractive properties of LiNbO_3:Zn crystals related to the defect structure. Applied Physics B. 2001, 72:647-652
    122 S. M. Kostritskii, O. G. Sevostyanov. Influence of intrinsic defects on light-induced changes in the refractive index of lithium niobate crystals. Appl. Phys. B. 1997, 65:527-533
    123 Yasunori Furukawa, Kenji Kitamura, Shunji Takekawa, Kazuo Niwa, Hideki Hatano. Stoichiometric Mg:LiNbO_3 as an effective material for nonlinear optics. Opt. Lett. 1998, 23: 1892-1894
    124 T.Volk, B.Maximov, S.Sulyanov, N.Rubinina, M.W?hlecke. Relaiton of the photorefraction and optical-damage resistance to the intrinsic defect structure in LiNbO_3 crystals. Opt. Mater. 2003, 23:229-233

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700