Cs-K离子交换结合离子注入技术制备磷酸钛氧钾晶体光波导的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光技术的发展离不开各种性能优良的光学材料的支持,其中最令人瞩目的材料之一就是磷酸钛氧钾(KTiOPO_4,KTP)晶体。磷酸钛氧钾晶体是一种性能非常优良的非线性光学材料,具有较高的非线性光学系数、较高的抗光伤阈值、大的线性电光系数、良好的热稳定性等优点,是非线性领域不可或缺的材料。KTP晶体被广泛应用于多个领域,例如激光倍频、参量振荡、电光调制和声光调制等。尤其是准相位匹配技术的出现,使得KTP晶体在非线性光学领域有了更大的应用空间。此外,KTP晶体还被广泛应用于电光波导、倍频波导等集成光学领域,这对于实现器件的小型化具有很大的促进作用,而且光波导结构作为集成光路的最基本的组成单元在现代光通信领域具有十分重要的用途。
     所谓的波导结构就是指由折射率较低的区域包裹的折射率较高的区域。这种结构可以把光限制在较小的区域传播,从而提高传输光的能量密度,更好地利用晶体的非线性性质。光波导是集成光学的基本单元,是全光网络的基础,在各种光器件的制造中起着重要的作用。
     人们一直在探索制备性能优良的光波导的有效方法。鉴于KTP晶体结构的特殊性,人们可以利用离子交换技术来制备光波导结构。离子交换可以使样品表面的折射率升高从而形成波导结构。离子注入技术是一种制备光波导的有效方法,由于注入离子在晶体内部的沉积可以产生一个折射率降低的光学位垒,在光学位垒和空气之间的区域就构成了光波导结构。
     条形光波导是光波耦合器、波导调制器、波导开关以及波导激光器等无源器件和有源器件的基础。探讨条形光波导的制备不但是光波导应用研究的基础,还可以拓展该技术在光电子领域的应用。
     相比其它的离子交换过程如Rb—K交换,有关Cs—K交换制备光波导的研究报道要少的多,尤其是在制备条形波导方面。由于Cs—K交换要求有较高的交换温度,对光刻掩膜材料的选择和成膜条件提出了很高的要求。
     本论文主要研究了利用Cs—K离子交换技术在KTP晶体上制备平面和条形光波导,并进一步研究了离子注入技术对离子交换波导结构的调制。主要内容包括:
     (1)用硝酸铯作为交换源,用离子交换技术在KTP晶体上制备了平面光波导,交换温度从420℃到470℃,交换时间从15分钟到2个小时;用棱镜耦合法研究了所制备的平面波导在633nm和1539nm下的暗模特性。交换波导在633nm下均为多模波导,且模式数随着交换时间的增加而增多。根据测量得到的各阶导模的有效折射率,用iWKB(inverse Wenzel-Kramers-Brillouin)方法拟合了波导层的折射率分布。离子交换波导的折射率分布为指数分布,通过计算可以得到离子交换波导的有效深度和表面折射率增量。研究结果表明,随着交换时间的增加,波导表面折射率增量逐渐增大并趋于饱和,而提高交换的温度则有利于提高离子交换的速度。
     在1539nm波长下,交换温度为430℃,交换时间为15min的样品呈现单模特性,提高交换温度使得波导承载的TE模式增加而TM模数目不变。用椭圆偏振技术研究了单模波导在1539nm波长下的折射率分布。利用WKB方法优化了椭偏参量的计算过程,计算得到该单模波导的有效深度为2.8μm,三个主轴方向波导表面折射率增量分别为0.0151,0.0127和0.0139。该方法也可以用于研究其他波导的折射率分布。
     对交换温度为430℃,交换时间分别为60分钟和22分钟的样品进行了退火处理。退火温度从200℃到410℃,退火时间最长达3个小时。退火前后用棱镜耦合仪测量了波导的模式特性,发现随着退火温度的提高和退火时间的延长,波导中基模的有效折射率逐渐降低;模式的有效折射率之间的间隔减小。用iWKB方法拟合了波导层的折射率分布,发现退火后波导表面折射率逐渐降低,同时波导的有效深度逐渐增加,波导层的折射率分布逐渐变得平缓。
     (2)为了研究离子注入对离子交换的影响,我们分别用H、C和Cu离子注入KTP晶体,注入能量分别为:0.3keV、5MeV和1.5MeV,在对离子注入样品进行退火处理后,再将样品放入熔融的硝酸铯中进行离子交换,交换时间为15分钟到2个小时,交换温度为430℃。用棱镜耦合法测量了注入和交换前后KTP样品的暗模特性,通过对波导导模的变化和对应的有效折射率的大小进行分析,发现离子注入对离子交换有一定的阻挡作用,注入造成的损伤层类似于一个位垒,阻碍离子在晶体内部的扩散;同时,由于交换温度较高,交换的过程对注入后的样品同样相当于一个退火过程,而退火会造成离子注入引起的缺陷的扩散和晶格结构的恢复,对离子交换过程的影响较大。
     (3)一般的波导都以介质和空气的界面作为波导的一个界面,晶体表面的情况会直接影响波导区光场的分布和传输,而埋层波导可以获得相对对称的折射率分布,并且可以避免由于晶体表面的影响而引起额外的损耗,引起了人们广泛的关注。我们尝试利用Cs-K离子交换和Si离子注入相结合的方法,在KTP晶体上制备芯层折射率增加的埋层波导。Cs离子交换的温度为430℃,时间为60min。离子注入采用550keV的Si离子注入,注入剂量为1×10~(15)ions/cm~2。用端面耦合技术研究了埋层波导的近场光强分布。
     (4)我们利用离子交换技术在KTP晶体上制备条形波导,利用光刻工艺和溅射法在KTP晶体表面生长了一层Cr作为掩膜。用硝酸铯作为交换源,发现由于交换温度较高,作为掩模的Cr膜在交换过程中会脱落,但是脱落在交换盐中的Cr离子并不参与交换过程。能量色散X射线荧光光谱(EDX)测试发现在覆盖有金属Cr膜的区域,交换过后在晶体表面发现有Cr离子的存在,这说明金属Cr以离子的形式进入了KTP晶体内部,造成了掺杂。用棱镜耦合技术测量了交换之后波导的暗模特性,用iWKB方法拟合了波导的折射率分布。结果发现,在覆盖有Cr膜的地方,晶体表面的折射率也有增加,但只发生在晶体表面很薄的一层。
     我们用显微镜和扫描电镜观察了交换之后晶体表面的条形结构。利用端面耦合技术测量了1550nm和633nm的光在条形波导中传输的近场光强分布。通过对交换样品进行刻蚀,我们发现在覆盖有Cr膜的地方和没有Cr膜覆盖的地方,晶体的刻蚀速度不同,这种选择性刻蚀可能与交换过程中Cr离子进入KTP晶体内部而导致晶体表面的铁电畴极化方向发生变化有关。这为下一步研究通过离子交换实现晶体周期性极化反转提供了重要的信息。
High-performance optical materials are indispensable to the developments of laser technology. Potassium titanyl phosphate (KTiOPO_4, KTP) is one of the most attractive materials. KTP is a nonlinear optical crystal with superior properties, such as high optical damage threshold, large linear electro-optical coefficient, high thermal stability etc. Due to the high non-linear optical coefficients, KTP is an important and necessary material in the non-linear optics field. Moreover KTP has been widely used in many fields, for examples, electro-optical modulations, acoustic-optical modulations, frequency doubling and optical parametric oscillation. Especially the quasi-phase match technology extends the applications of KTP crystals in non-linear optics field. On another hand, KTP crystal can be used as an integrated optical device such as an electro-optical waveguide or a frequency doubling waveguide, which are benefit to achieve the miniaturization of optical devices. As the most fundamental integral unit of the integrated optics circuits, the optical waveguide structure is of great importance in the field of modern optical communication.
     A waveguide is characterized by a region of high refractive index surrounded by regions of lower index. In this structure the optical energy can be restricted in a small space, thereby enhancing the optical energy density and make better use of the non-linear optical properties of crystal. Optical waveguide is the basic unit of integrated optics and the all-optical network. It also plays an important role in the fabrication of various optical devices.
     Many researchers apply themselves to explore the effective method to fabricate the waveguide on crystal. Due to the special lattice structure of KTP, the ion exchange method is commonly used to fabricate waveguide on KTP crystal. Ion exchange process results in a refractive index increment at the surface thus forming waveguide on crystal. The ion implantation is an effective method to fabricate optical waveguide. Ion implantation can generate a barrier with a reduced refractive index in the depth region of high nuclear energy deposition and the region between the barrier and the atmosphere composes a waveguide structure.
     Most optoelectronics devices such as optical coupler, modulator, optical switch and waveguide laser are based on channel waveguide structure. Investigation on the fabrication of channel waveguide is the foundation of application of waveguide device, and is also helpful to the application in optic-electric field.
     Compared with Rb-K ion exchange, few research reports about fabricating waveguides by Cs-K ion exchange can be found, especially about fabricating channel waveguide. Higher ion exchange temperature is needed for Cs-K exchange, which put very high demands for the selection of lithography mask material and conditions of the film deposition.
     In this dissertation, we report the formation and the properties of the planar and channel waveguide on KTP crystal fabricated by Cs-K ion exchange. Furthermore, the modulation of ion exchange waveguide structure by ion implantation is also investigated. The main contents include:
     (1) Planar waveguides are fabricated on KTP crystal by ion exchange in molten CsNO_3. The exchange temperature ranges from 420℃to 470℃and the time from 15 minutes to 2 hours. The prism coupling method is used to measure the dark mode spectra of the waveguide at the wavelength 633 nm and 1539 nm, respectively. The samples exhibit multi-mode waveguide at 633 nm and the number of guide modes increases with the exchange time increasing. Based on the effective index of the guide mode measured, the refractive index profiles are obtained by inverse WKB method. The exponent distribution is used to fit the refractive index profile of the waveguide, and the effective depth and the increment of the refractive at the surface are obtained. The results show that along with the ion exchange increase, the refractive index increment of the waveguide at surface will increase gradually and achieve saturation. But raising the temperature is helpful to enhancing the ion exchange.
     After exchange at 430℃for 15 min, the sample exhibits a single mode waveguide at 1.54μm. Higher temperature leads a larger number of TE modes. The refractive index profiles of this single mode waveguide are investigated by ellipsometry method. The WKB approximation is used to simplify the calculating process. The results show that the effective depth of the waveguide is 2.8μm and the refractive index increments in three principal directions are 0.0151, 0.0127 and 0.0139, respectively. This method can be also used to reconstruct the profile of other waveguide.
     The annealing behavior of samples exchanged for 60 min and 22 min are studied. The anneal temperature rises gradually from 200℃to 410℃, and process last for 3 hours. The prism coupling method is used to measure the dark mode spectra of the waveguide after each anneal. The effective index of the first mode decreases with the enhancement of annealing temperature and time, and the interval of the modes also decreases. The index profiles of waveguides are reconstructed by iWKB method. The refractive index increment at surface reduces and the effective depth increases gradually, which make the refractive distribution smooth.
     (2) The influence of ion implantation on the ion exchange waveguide is also studied. H, C, Cu ions are implanted into KTP crystal with the energy of 0.3keW 5MeV and 1.5MeV, respectively. After annealing, Cs-K ion exchanges are performed on these samples. The dark mode spectra of samples are measured by prism coupling method. Compared with the results of sample without suffering ion irradiation, we can find that the damage layer generated by ion implantation act as a barrier to block the diffusion of the Cs ions. On the other hand, the ion exchange exerts an anneal-like process to the samples. This anneal-like process can induce the diffusion of defects and the repair of the lattice damage, which will affect the ion exchange greatly.
     (3) The atmosphere usually acts as a part of waveguide to confine the propagation of light. In this case, the propagation of light and its field pattern in the waveguide will be directly affected by the surface situation of the sample. For buried waveguide, no loss from surface is introduced and usually it has relatively symmetrical refractive distribution, which makes them attractive to researchers. We fabricate the buried waveguide on KTP crystal by combining the Cs-K ion exchange and Si ion implantation. The temperature of ion exchange is 430℃and the time is 60 min. The energy and the dose of Si~+ ion implantation are 550keV and 1×10~(15)ions/cm~2 respectively. The end fire method is used to measure the near field pattern of the buried waveguide.
     (4) The channel waveguide is formed by ion exchange in molten CsNO_3. Cr film is applied to the z face of KTP sample by sputtering and patterned using standard photolithography techniques. During the ion exchange process, the Cr will be dissolved in molten salt because of the high temperature. The results of the energy dispersion X ray fluorescence measurement show that Cr can be detected in the region that covered with Cr film after ion exchange. That is to say, chromium can be doped into KTP in ionic form through exchange. The dark mode spectra are measured by prism coupling method and the refractive index profiles are reconstructed by iWKB method. The refractive index increase also in the region covered by Cr film, but it only exists at a very thin layer.
     The channel structure of the waveguide is observed by microscope and scanning electron microscope after ion exchange. The end fire method is used to measure the near field pattern of the channel waveguide at 1550 nm and 633 nm. The etching results of an ion exchange KTP channel waveguide show a different etch rate between the region covered by Cr film and that without Cr film. The fact of selective etching indicates that the doping of Cr ions may result in the change of the ferroelectric domain of crystal. The results provide some important information about fabricating periodically domain inverse KTP crystal by ion exchange.
引文
1.M.Roth,M.Tseitlin,N.Angert,"Composition-dependent electro-optic and nonlinear optical properties of KTP-family crystals," Optical Materials,2006,28:71-17.
    2.Jiyang Wang,Jingqian Wei,Yaogan Liu,Xin Yin,Xiaobo Hu,Zongsu Shao and Minhua Jiang,"A survey of research on KTP and its analogue crystals," Progress in Crystal Growth and Characterization of Materials,2000,40:3-15.
    3.D.Y.Zhang,H.Y.Shen,W.Liu,G.F.Zhang,W.Z.Chen,G.Zhang,R.R.Zeng,C.H.Huang,W.X.Liu,J.K.Liang,"The principal refractive indices and nonlinear optical phase matched properties of Nb:KTP crystals," Optical Materials,2000,15:99-102.
    4.张德颖,沈鸿元,刘文,张国芳,陈文志,张戈,曾瑞荣,黄呈辉,林文雄,“7.5mol%Nb:KTP和KTP晶体的主折射率和主折射率温度系数的比较”,功能材料,2000,31(5):539-540。
    5.A.Dudelzak,P.P.Proulx,V.Denks,V.Murk,and V.Nagimyi,"Anisotropic fundamental absorption edge of KTiOPO_4 crystals," Journal of Applied Physics.2000,87(5):2110-2113.
    6.L.T.Cheng,L.K.Cheng,R.L.Harlow,and J.D.Bierlein,"Blue light generation using bulk single crystals of niobium-doped KTiOPO4," Appl.Phys.Lett.199464(2):155-157.
    7.M.J.Jongerius,R.J.Bolt and N.A.Sweep,"Blue second-harmonic generation in waveguides fabricated in undoped and scandium-doped KTiOPO_4," J.Appl.Phys.1994,75(7):3316-3325
    8.S.Wang,V.Pasiskevicius,and F.Laurell,"Dynamics of green light-induced infrared absorption in KTiOPO_4 and periodically poled KTiOPO_4," J.Appl.Physics,2004,96(4):2023-2028
    9.Zhao Baozhen,Liang Xiaoyao,Leng Yuxin,Wang Cheng,Xu Zhizhan,"Investigation of noncollinear QPM optical parametric amplification based on periodically poled KTP," Optics Communications,2005,248:387-394.
    10.L.Carrion,J.P.Girardeau-Montaut,"Performance of a new picosecond KTP optical parametric generator and amplifier," Optics Communications,1998,152:347-350.
    11.W.P.Risk,"Fabrication and characterization of planar ion-exchanged KTiOPO_4waveguides for frequency doubling,"Appl.Phys.Lett.,1991,58(1):19-21
    12.David K.T.Chu,"Acoustic and optical properties of thallium ion-exchanged KTiOPO_4," Appl.Phys.Lett.,1994,65(16):1989-1991.
    13.Ke-Ming Wang,Bo-Rong Shi,Nelson Cue,Yong-Yuan Zhu,Rong-Fu Xiao,Fei Lu and Wei Li and Yao-Gang Liu,"Waveguide laser film in erbium-doped KTiOPO_4by pulsed laser deposition," Applied Physics Letters.1998,73(8):1020-1022.
    14.Xiaodong Mu,Ioulia B.Zotova,Yujie J.Ding,William P.Risk,"Backward second-harmonic generation in submicron-period ion-exchanged KTiOPO_4waveguide," Optics Communications,2000,181:153-159.
    15.R.Masse,J.C.Genier,Bull.Soc.Frand.Mineral Crystallogr.,1971,94:437-439.
    16.I.Tordjman,R.Masse,J.C.Guited,Z.Kirst.,1974,139:103-105.
    17.F.C.Zumsteg,J.D.Berlein,T.E.Gier,"K_xRb_(1-x)TiOPO_4:A new nonlinear optical material",J.Appl.Phys.,1976,47(11):4980-4985.
    18.R.A.Laudise,R.J.Cava,A.J.aporaso,"Phase relations,solubility and growth of potassium titanyl phosphate,KTP" J.Crystal Growth.,1986,74:275-280.
    19.Jia Shou-quan,Jiang Pei-zhi,et al."The solubility of KTiOPO_4(KTP)in KF aqueous solution under high temperature and high pressure" J.Crystal Growth,1986,79:970-973.
    20.J.C.Jacco,et al.,"Flux growth and properties of KTiOPO_4" J.Crystal Growth,1984,70:484-488.
    21.V.I.Voionkova,et al.,Sov.J.Quantum.Electron,1985,27(7):2185.
    22.V.K.Yanovski.,et al.,"Ferroelectric phase transitions and properties of crystals of the KTiOPO_4 family" Phys,State Sol.(a),1986,93(2):665-668.
    23.Y.S.Liu,D.Dentz,R.Belt,"High-average-power intracavity second-harmonic generation using KTiOPO4 in an acousto-optically Q-switched Nd:YAG laser oscillator at 5 kHz" Opt.Lett.,1984,9:76.
    24.V.A.Dyakov,V.V.Krasnikov,et al.,Sov.J.Quantum Electron.1988,18:1059.
    25.B.V.Bokut,J.Appl.Spectrosc.,1967,7:425.
    26.B.Vanherzeele,J.D.Bierlein,F.C.Zumsteg,"Rapid Communications" Appl.Opt.,1988,27(16):3314.
    27.F.C.Zumsteg,Laser Focus,1978,14(7):18.
    28.T.A.Driscoll,et al.,"Efficient second-harmonic generation in KTP crystals" J.Opt.Soc.Am.,B 1986,3:683.
    29.D.J.Gettemy,et al.,"Some optical properties of KTP,LiIO_3,and LiNbO_3" IEEE.J.QE-24,2231 1988.
    30.R.F.Belt,G.Gashurov,Y.S.Liu,Laser focus,1985,21(10):110.
    31.M.Domenech,G.V.Vazquez,E.Cantelar,G.lifante,Continuous-wave laser action at λ=1064.3r nm in proton-and carbon-implanted Nd:YAG waveguides,Appl.Phys.Lett.,2003,83(20):4110-4112.
    32.R.E.Di Paolo,E.Cantelar,P.L.Pernas,G.Lifante,F.Cusso,Continuous wave waveguide laser at room temperature in Nd~(3+)-doped Zn:LiNbO_3,Appl.Phys.Lett.,2001,79(25):4088-4090
    33.H.Suche,T.Oesselke,J.Pandavenes,R.Richen,K.Rochhausen,W.Sohler,S.Balsamo,I.Montrosset,K.K.Wong,Efficient Q-switched Ti:Er:LiNbO_3waveguide laser,Electronics Letters,1998,34(12):1228-1230
    34.D.Barbie.Erbium-Doped Waveguide Amplifiers Promote Optical-Networking Evolution.Penn Well Corp,2000
    35.K.Hattori,T.Kitagawa,M.Oguma,M.Wada,J.Temmyo,M.Horiguchi,Erbium -doped silica-based planar waveguide amplifier pumped by 0.98μm laserdiodes,Electronics Letters,1993,29(4):357-358
    36.行松健一,光开关与光互联,北京:科学出版社,2002
    37.Y.Chen,W.T.Joines,Enhanced WDM performance using curved waveguide couplers,Optics Communications,2003,228:319-330
    38.V.Delisle,U.Trutschel,M.A.Duguay,F.Lederer,L.Leine,Antiresonant waveguide add/drop filer using Fabry-Perot interference,Optics Communications,1995,113:389-394
    39.陈峰,山东大学博士学位论文,离子注入光电晶体光波导的折射率分布研究,2002.
    40.王磊,离子注入平面与条形光波导的优化条件研究,山东大学博士学位论文,2007.
    41.J.D.Berlein and C.B.Arweiler,"Electro-optic and dielectric properties of KTiOPO_4,"Appl.Phys.Lett.1986,49(15):917-919..
    42.J.D.Bierlein,A.Ferretti,L.H.Brixner,and W.Y.Hsu,"Fabrication and characterization of optical waveguides in KTiOPO_4," Appl.Phys.Lett.1987,50:1216.
    43.J.D.Bierlein,A.Ferretti,and M.Roelofs,"KTiOPO_4(KTP):a new material for optical waveguide applications," Proc.-Soc.Photo-Opt.Instrum.Eng.1989,994:160.
    44.J.D.Bierlein and H.Vannherzeele,"Potassium titanyl phosphate:properties and nes applications," J.Opt.Soc.Am.B,1989,6(4):622-633.
    45.K.S.Buritskii,E.M.Dianov,V.A.Maslov,V.A.Chernykh and E.A.Shcherbakov,Kvant.Electr.17 1369(1990a)
    46.K.S.Buritskii,E.M.Dianov,V.A.Maslov,S.V.Tsygankov,V.A.Chernykh and V.A.Shcherbakov,Kvant.Electr.17 494(1990b)
    47.V.V.Atuchin,I.N.Bobkov,C.C.Ziling,E.A.Plotnikov,V.N.Semenenko and N.V.Terpugov,Avtometrya,1,52(1991).
    48.V.V.Atuchin,I.V.Bobkov,C.C.Ziling,E.A.Plotnikov,V.N.Semenenko and N.V.Terpugov,Proc.SPIE:Guided-Wave Optics ed A.M.prohorov and E.M.Zolotov 1932 152(1993)
    49.I.Savatinova,S.Tonchev,T.Popov,E.Liarokapis and C.C.Ziling,"Raman study of Cs:KTiOPO_4 waveguides," J.Phys.D:Appl.Phys.1994,27:1384-1389.
    50.I.Savatinova,I.Savova,E.Liarokapis,C.C.Ziling,V.V.Atuchin,M.N.Armenise and V.M.N.Passaro,"A comparative analysis of Rb:KTP and Cs:KTP optical waveguides," J.Phys.D:Appl.Phys.1998,31:1667-1672.
    51.戴达煌,周克菘,袁镇海。现代材料表面技术科学。冶金工业出版社,2004
    52.朱唯干,背散射分析技术。原子能出版社,1978。
    53.G.L.Destefanis,P.D.Townsend,J.P.Gailliard,Optical waveguides in LiNbO_3 formed by ion implantation of helium,Appl.Phys.Lett.,1978,32(5):293-295.
    54.A.Polman,Erbium implanted thin film photonic materials,J.Appl.Phys.,1997,82(1):1-39.
    55.F.Chen,K.M.Wang,X.L.Wang,X.S.Li,Q.M.Lu,D.Y.Shen,R.Nui,Monomode,nonleaky planar waveguides in a Nd~(3+)-doped silicate glass produced by silicon ion implantation at low doses,J.Appl.Phys.,2002,92(6);2959-2961
    56.L.Zhang,P.J.Chandler,P.D.Townsedn and P.A.Thomas,"Helium ion implanted optical waveguide in KTiOPO_4," Electronics Letters,1992,28(7):650-651
    57.L.Zhang,P.J.Chandler,P.D.Townsend,Z.T.Alwahabi,S.L.Pityana,and A.J.Mccaffery,"Frequency doubling in ion-implanted KTiOPO_4 planar waveguides with 25%conversion efficiengy," J.Appl.Phys.1993,73(6):2695-2699
    58.P.Bindner,A.Boudrioa,P.Moretti,J.C.Loulergue,"Refractive index behaviors of helium implanted optical planar waveguides in LiNbO_3,KTiOPO_4 and Li_2B_4O_7,"Nucl.Instr.And Meth.B 1998,142(3):329-337.
    59.Th.Opfermann,T.Bachmann,W.Wesch,M.Rottschalk,"He~+ implantation for waveguide fabrication in KTP and Rb:KTP," Nucl.Instr.And Meth.B 1999,148:710-714.
    60.K.M.Wang,B.Shi,P.Ding,W.Wang,W.A.Lanford,Z.Zhuo,Y.Liu,"Waveguide formation of KTiOPO_4 by multienergy MeV He~+ implantatlon,J.Mater.Res.1996,11(6):1333-1335.
    61.K.M.Wang,M.Meng,F.Lu,X.Wang,W.Wang,P.Ding,Y.Liu,"Analysis of refractive index profile in KTiOPO_4 waveguide formed by 3.0 MeV He~+implantation," Opt.Commun.1997,134:55-58
    62.F.Schrempel,T.h.Hoche,J.-P.Ruske,U.Grusemann,W.Wesch,"Depth dependence of radiation damage in Li~+-implanted KTiOPO_4," Nucl.Instr.And Meth.B 2002,191:202-207.
    63.Chen Feng,Wang Xue-Lin,Wang Ke-Ming,Wang Lei,JiaoYang,Wang Liang-Ling,Lu Qing-Ming,Ma Hong-Ji,Nie Rui,"Optical planar waveguides in KTiOPO_4crystals by MeV oxygen ion implantation," Chin.Phys.Lett.2006,23(6):1501-1503
    64.Ke-Ming Wang,Hui Hu,Feng Chen,Bo-Rong Shi,N.Cue,Philip C.L.Wong,Catherine Y.C.Wong,Ding-Yu Shen,"Concentration profile of MeV Ni~+ ions in LiNbO_3 and KTiOPO_4 determined by SIMS," Solid State Communication,2000,116:551-111
    65.K.M.Wang,Wei Li,Fei Lu,Ming-Qi Meng,Bo-Rong Shi,Xiang Wang,Ding-Yu Shen and Yao-Gang Liu,"Double barrier waveguides in KTiOPO_4 fromed by MeV He ion implantation," Solid State Communication,1998,106(3):173-175
    66.Feng Chen,Hui Hu,Qing-Ming Lu,Ke-Ming Wang,Fei Lu,Bo-Rong Shi,Ding-Yu Shen,"Refractive index profiles of MeV phosphor ion implanted planar waveguide in KTP," Applied Surface Science,2000,183:39-42.
    67.Thomas Opfermann,Thomas Hoche,Wemer Wesch,"Radiation damage in KTiOPO_4 by ion implantation of light elements," Nuclear Instruments and Methods in Physics Research B, 2000,166-167: 309-313
    68. F.Schrempel, Ch.Beeker, J.Fick, W.Wesch, "Waveguide barriers with adjustable refractive index produced in KTP by irradiation with He- and Li-ions," Nuclear Instruments and Methods in Physics Research B, 2007,257:484-487
    69. L.Laversenne, P.Hoffmann, M.Pollnau, P.Moretti and J.Mugnier, "Designable buried waveguides in sapphire by proton implantation," Applied Physics Letters, 2004, 85(22):5167-5169
    70. F.Schrempel, Th.Opfermann, J.P.Ruske, U.Grusemann, W.Wesch, "Properties of buried waveguides produced by He-irradiation in KTP and Rb:KTP," Nuclear Instruments and Methods in Physics Research B, 2004,218: 209-216.
    1.许政权.介质光波导器件原理.上海:上海交通大学出版社,1989.
    2.曹庄琪.导波光学中的转移矩阵方法.上海:上海交通大学出版社,2000.
    3.叶培大等.光波导技术基本理论,北京:人民邮电出版社,1981
    4.A.W.Synder等著,周幼龙等译.光波导理论.北京:人民邮电出版社,1991
    5.易明.光学.北京:高等教育出版社,1999。
    6.范崇澄,彭吉虎.导波光学.北京:北京理工大学出版社,1988.
    7.陈临新.集成光学.上海:上海交通大学出版社,1985.
    8.郭硕鸿.电动力学.北京:高等教育出版社.1994.
    9.吴重庆.光波导理论.北京:清华大学出版社,2000.
    10.李家泽,阎吉祥.光电子学基础.北京:北京理工大学出版社,1998.
    11.马春生,刘式墉.光波导模式理论.吉林大学出版社,2006.
    12.李玉权,崔敏.光波导理论与技术.人民邮电出版社,2002.
    13.赵策洲,高勇.半导体硅基材料及其光波导.电子工业出版社,1997.
    14.陈义万,廖耀发,杨听.湖北工学院学报,2003,18:71.
    1.陈叙,玻璃基光波导离子交换技术的研究,浙江大学硕士学位论文,2005
    2.李士玲,光学材料光波导的制备和特性研究,山东大学博士学位论文,2005
    3.田贺斌,离子交换玻璃光波导及其应用的研究,天津大学硕士学位论文,2002
    4.王贻华,胡正琼.离子注入与分析基础.北京:航空工业出版社,1992。
    5.戴达煌,周克菘,袁镇海.现代材料表面技术科学.冶金工业出版社,2004。
    6.王广厚.粒子同固体相互作用物理学.科学出版社,1991。
    7.朱唯干.背散射分析技术.原子能出版社,1978.
    8.L.C.Feldman,J.M.Mayer and S.T.Pieraux,Materials Analysis by Ion Channeling,Academic Press,1994.
    9.张清敏,徐濮.扫描电子显微镜和X射线微区分析.天津:南开大学出版社,1988。
    10.朱宜,汪裕苹,陈文雄.扫描电镜图像的形成处理和显微分析.北京:北京大学出版社,1991。
    11.J.I.戈尔茨坦.扫描电子显微技术与X射线显微分析.北京:科学出版社,1988。
    12.P.D.Townsend,P.J.Chandler and L.Zhang,Optical Effects of Ion Implantation,Cambridge University Press,1994.
    13.P.K.Tien,R.Ulrich and R.J.Martin,"Modes of propagating light waves in thin deposited semiconductor films," Appl.Phys.Lett.1969,14:291-294.
    14.J.H.Harris,R.Shubert and J.N.Polky,"Beam coupling to films," J.Opt.Soc.Amer.1970,60:1007-1016.
    15.R.Shubert and J.H.Harris,"Optical surface waves on thin films and their application to integrated data processors," IEEE Trans.Microwave Theory Tech.1968,16(12):1048-1054.
    16.R.G..Hunsperger,Integrated optics:theory and technology,Springer-Verlag,forth edition,1995.
    17.焦扬,离子注入与离子束刻蚀制备平面和条形光波导的研究,山东大学博士学位论文,2007.
    18.朱小平,离子交换波导的研究,江西师范大学硕士学位论文,2006.
    19.J.M.White and P.F.Heidrich,Optical waveguide refractive index profiles determined from measurement of mode indices: a simple analysis, Applied Optics. 1976, 15(1):151-155.
    20. K.Kawano and T.Kitoh, "Introduction to optical waveguide analysis: Solving Maxwell's Equations and the Schrodinger Equation." John Wiley & Sons, INC. 2004.
    21. P.J.Chandler and F.L.Lama, "A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation," Optica Acta, 1986,33(2):127-143.
    1.张克从,王希敏.非线性光学晶体材料科学.北京:科学出版社,1996
    2.张克从,王希敏,“磷酸钛氧钾(KTP)型晶体结构敏感性能,”科学通报,2001,46(10):793-801.
    3.K.Daneshvaar,E.A.Giess,D.Kang,J.R.Williams,D.Dawes,"Rb ion-exchange profile in potassium titanyl phosphate(KTP)," Optical Materials,1999,12:453-457.
    4.R.Duhlev,C.W.Pitt,P.A.Thomas,A.G.James,G.W.Grime,"Studies of Rb ion-exchanged KTiOPO_4 waveguides by X-ray diffraction,SIMS,electron and proton microprobe analysis and comparison with optical refractive index profiles,"SPIE,1985:767-773.
    5.J.M.White and P.F.Heidrich,"Optical waveguide refractive index profiles determined from measurement of mode indices:a simple analysis," Applied Optics,1976,15(1):151-155.
    6.I.Savatinova,S.Tonchev,T.Popov,E.Liarokapis and C.C.Ziling,"Raman study of Cs:KTiOPO_4 waveguides," J.Phys.D:Appl.Phys.1994,27:1384-1389.
    7.I.Savatinova,I.Savova,E.Liarokapis,C.C.Ziling,V.V.Atuchin,M.N.Armenise and V.M.N.Passaro,"A comparative analysis of Rb:KTP and Cs:KTP optical waveguides," J.Phys.D:Appl.Phys.1998,31:1667-1672.
    8.D.Tonova,A.Paneva,B.Pantchev,"Determination of refractive index profiles of gradient optical waveguides by ellipsometry," Optics Communications,1998,150:121-125.
    9.L.P.Shi,W.Karthe and A.Rasch,"Effects of Annealing in Rb:KTiOPO_4Waveguides," Jpn.J.Appl.Phys.1994,33:L730-L732.
    10.Fei Lu,Feng Xiang Wang,Wei Li,Jian Hua Zhang and Ke Ming Wang,"Annealing behavior of barriers in ion-implanted LiNbO_3 and LiTaO_3 planar waveguides,"Applied Optics,1999,38(24):5122-5126.
    11.戴基智,孙守瑶,“LiNbO_3质子交换光波导退火特性的研究”电子学报,1995,23(5):109-111。
    12.陈险峰,谢绳武,夏宇兴,陈玉萍,钟晓霞,陈英礼,“z—切割铌酸锂质子交换平板波导的退火过程研究”中国激光,2000,A27(7):611-615。
    1.Zhao Baozhen,Liang Xiaoyan,Leng Yuxin,Wang Cheng,Xu Zhizhan,"Investigation of noncollinear QPM optical parametric amplification based on periodically poled KTP," Optics Communications,2005,248:387-394.
    2.于建,倪文俊,薛挺,桑梅,纪磊,耿凡,赵玉强,李世忱,“周期极化铌酸锂绿光倍频器的研究,”光电子激光,2002,13(4):339-342。
    3.桑梅,于建,倪文俊,薛挺,李世忱,胡永岚,黄朝恩,师瑞泽,“周期极化KTP晶体532nm倍频连续绿光输出,”光电子激光,2003,14(6):574-576。
    4.Q.Chen and W.P.Risk,"Periodic poling of KTiOPO_4 using an applied electric field," Electron.Lett.1994,30:1516-1517.
    5.C.J.Vander Poel,J.D.Bierlein,J.B.Brown and S.Colak,"Efficient type Ⅰ blue second-harmonic generation in periodically segmented KTiOPO_4 waveguides,"Appl.Phys.Lett.1990,57(20):2074-2076.
    6.Q.Chen and W.P.Risk,"High efficiency quasi-phase matched frequency doubling waveguides in KTiOPO_4 fabricated by electric field poling," Electronics Letters,1996,32(2):107-108.
    7.Ziegler J F,Biesack J P and Littmark U,"Computer code TRIM,"http://www.srim.org
    8.Fei Lu,Fengxiang Wang,Wei Li,Jianhua Zhang,Keming Wang,"Annealing behavior of barriers ion-implanted LiNbO_3 and LiTaO_3 planar waveguide," Applied Optics,1999,38:5122-5126.
    9.卢霏,孟鸣岐,李伟,王凤翔,王克明,邴永红,“退火对离子注入铌酸锂平面波导中折射率分布的影响,”中国激光,1998,25(8):699-702。
    10.K.Kawano,T.Kitoh,Introduction to Optical Waveguide Analysis:Solving Maxwell's Equation and the Schrodinger Equation,John Wiley and Sons,2001.
    11.J.M.White,P.F.Heidrich,"optical waveguide refractive index profiles determined from measurement of mode indices:a simple analysis," Appl.Opt.1976,15:151-155.
    12.P.J.Chandler and F.L.Lama,"A new approach to the determination of planar waveguide profile by means of a non-stationary mode index calculation," Optica Acta,1986,33(2):127-143.
    1.K.R.Parameswaran,R.K.Route,J.R.Kurz,R.V.Roussev,M.M.Fejer and M.Fujimura,"Highly efficient second-harmonic generation in buffed waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate," Optics Letters,2002,27(3):179-181.
    2.V.Apostolopoulos,L.Laversenne,T.Colomb,C.Depeursinge,R.P.Salathe,M.Pollnau,R.Wsellame,G.Cerullo and P.Laporta,"Femtosecond-irradiation-induced refractive index changes and channel waveguiding in bulk Ti~(3+):Sapphire," Applied Physics Letters,2004,85:1122-1124.
    3.Ke-Ming Wang,Wei Li,Fei Lu,Ming-Qi Meng,Bo-Rong Shi,Xiang Wang,Ding-Yu Shen and Yao-Gang Liu,"Double barrier waveguides in KTiOPO_4 formed by MeV He ion implantation," Solid State Communications,1998,106(3):173-175.
    4.L.Laversenne,P.Hoffmann,M.Pollnau,P.Moretti and J.M ugnier,"Designable buried waveguides in sapphire by proton implantation," Applied Physics Letters,2004,85(22):5167-5169.
    5.P.J.Chandler,F.L.Lama,P.D.Townsend,and L.Zhang,"Buried double waveguides by ion implantation in quartz," Appl.Phys.Lett.1988,53(2):89-91.
    6.Ming-Jun Li,Seppo Honkanen,Wei-Jian Wang,S.Iraj Najafi,Ari Tervonen,Pekka Poyhonen,"Buried glass waveguides by ion exchange through ionic barrier," SPIE Micro-Optics Ⅱ,1991,1506:52-57.
    7.K.Liu and E.Y.B.Pun,"Buried channel waveguides using ion exchange and field-assisted annealing in glass:modeling and experiments," Proc.Of SPIE,2004,5595:404-412.
    8.P.Madasamy,B.R.West,M.M.Morrell,D.F.Geraghty,S.Honkanen,and N.Peyghambarian,"Buried ion exchange glass waveguides:burial-depth dependence on waveguide width," Opt.Lett.,2003,28:1132-1134.
    9.K.Baba,K.Shiraishi,O.Hanaizumi,and S.Kawakami,"Buried ion-exchanged optical waveguides with refractive index profiles controlled by rediffusion," Appl.Phys.Lett.1984,45(8):815-817.
    10.M.L.von Bibra,J.Canning,A.Roberts,"Mode profile modification of H+ ion beam irradiated waveguides using UV processing," Journal of Non-Crystalline Solids,1998,239:121-125.
    11.M.L.von Bibra,A.Roberts,S.D.Dods,"Ion beam energy attenuation for fabrication of buried,variable-depth,optical waveguides," Nuclear Instruments and Methods in Physics Research B,2000,168:47-52.
    12.M.Marangoni,R.Osellame,and R.Ramponi,"Reverse-proton-exchange in stoichiometric lithium tantalate," Optics Express,2004,12(12):2754-2761.
    13.M.Marangoni,M.Lobino,R.Ramponi,E.Cianci,and V.Foglietti,"High quality buried waveguides in stoichiometric LiTaO_3 for nonlinear frequency conversion,"Optics Express,2006,14(1):248-253.
    14.F.Schrempel,Th.opfermann,J.-P.Ruske,U.Grusemann,W.Wesch,"Properties of buried waveguides produced by He-irradiation in KTP and Rb:KTP," Nuclear Instruments and Methods in Physics Research B,2004,218:209-216.
    15.Ke-Ming Wang,Fei Lu,Ming-Qi Meng,Wei Li,Xiang Wang,Bo-Rong Shi,Zhuang Zhou,Xue-Yan Gao,"Double barrier structures in LiNbO_3 waveguide created by MeV He~+ implantation," Optics Communications,1997,141:141-144.
    16.C.B.E.Gawith,A.Fu,T.Bhutta,P.Hua,D.P.Shepherd,D.Milanese and M.Ferraris,"Direct-UV-written buried channel waveguide lasers in direct-bonded intersubstrate ion-exchanged neodymium-doped germano-borosilicate glass," Applied Physics Letters,2001,81(19):3522-3524.
    17.Ziegler J F,Biesack J P and Littmark U,"Computer code TRIM,"http://www.srim.org
    1.D.Barbier and R.Hyde:Integrated Optical Circuits and Components,Macel Dekker Inc.,1999.
    2.S.O.Kasap:Optoelectronics and Photonics:Principles and Practices,Publishing House of Electronic Industry,2003.
    3.Matthias Rottschalk,Jens-Peter Ruske,Kay Homig and Andreas Rasch,"Fabrication and characterization of Singlemode Channel Waveguides and Modulators in KTiOPO_4 for the Short Visible Wavelength Region," SPIE,1994,2213:152-163.
    4.K.Liu and E.Y.B.Pun,"Buried channel waveguides using ion-exchange and field-assisted annealing in glass:modeling and experiments," SPIE,2004,5595:404-412.
    5.M.Rottschalk,J.-P.Ruske,B.Unterschutz,A.Rasch and V.Grober,"Single mode integrated-optical wide-band channel waveguides and junction splitters in KTiOPO_4for visible light," J.Appl.Phys.1997,81(6):2504-2510.
    6.《半导体器件制造技术丛书》编写组编,光刻技术.国防工业出版社,1972.
    7.王磊,离子注入平面与条形光波导的优化条件研究,山东大学博士学位论文,2007.
    8.焦扬,离子束刻蚀制备平面和条形光波导的研究,山东大学博士学位论文,2007.
    9.J.M.White and P.EHeidrich,"Optical waveguide refractive index profiles determined from measurement of mode indices::a simple analysis," Applied Optics,1976,15(1):151-155.
    10.张克从,刘军,王希敏,“Cr:KTP晶体生长及其有关性能研究,”北京工业大学学报,1995,21(3):1-11.
    11.张克从,刘晓峰,王希敏,“激光自倍频Cr:KTP晶体的研究,”科学通报,1994,39(18):1679-1682.
    12.F.Laurell,M.G.Roelofs,W.Bindloss,H.Hsiung,A.Suna,and J.D.Bierlein,"Detection of ferroelectric domain reversal in KTiOPO_4 waveguides," J.Appl.Phys.1992,71(10):4664-4670.
    13.C.J.Van der Poel,J.D.Bierlein,J.B.Brown,and S.Colak,"Efficient type Ⅰ blue second-harmonic generation in periodically segmented KTiOPO_4," Appl.Phys.Lett., 1990,57(20): 2074-2076.
    14. D.Eger, M.Oron, M.Katz, and A.Zussman, "Highly efficient blue light generation in KTiOPO_4 waveguides," Appl. Phys. Lett, 1994,64(24): 3208-3209.
    15. W.P.Risk, S.D.Lau, R.Fontana, L.Lane, and Ch.Nadler, "Type-II second-harmonic generation and sum-frequency mixing in uniform KTiOPO_4 channel waveguides," Appl. Phys. Lett, 1993, 63(10): 1301-1303.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700