一次风扩口对中心给粉燃烧器气固流动影响的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对中心给粉旋流煤粉燃烧器的不同一次风扩口位置和一次风扩口角度下的气固两相流动特性进行了试验研究。
     采用相似模化的原理,设计并建立了气固两相试验台系统,采用三维相位多普勒颗粒分析仪对燃烧器出口区域的气固两相流场进行了测量。
     中心给粉燃烧器在两种扩口位置下,从燃烧器出口至x/d=0.5的截面,颗粒体积流量呈双峰分布,在燃烧器中心形成较高的颗粒浓度分布。与径向浓淡燃烧器和蜗壳燃烧器相比,中心给粉燃烧器靠近中心线的颗粒体积流量的峰值位置更加靠近燃烧器的中心线,靠近边壁颗粒体积流量的峰值要低。实际扩口位置的燃烧器在中心线处的气固两相轴向速度衰减速度快;从x/d=1.5的截面开始,出现了颗粒穿越了部分回流区。扩口外伸的燃烧器中心回流区的尺寸大,回流区的起点距离喷口较近,更适合于燃用贫煤等较差煤质。实际扩口位置燃烧器中心回流区的尺寸相对小一些,中心回流区的起点距离喷口稍远,因此实际扩口位置的中心给粉燃烧器适合燃烧烟煤等含有较高挥发分的较好煤质。
     在两种扩口角度下,在燃烧器中心线附近存在着较大的颗粒体积流量和颗粒相对数密度,此区域烟气温度高,轴向RMS脉动速度大,与回流区的对流换热强烈,有利于颗粒的加热、着火和稳定燃烧。
     一次风扩口角度为0°时,燃烧器的中心回流区的尺寸大,中心回流区的起点距离喷口近,适合于燃用贫煤等较差煤质。一次风扩口角度为25°时,燃烧器的中心回流区的尺寸相对小一些,含有多个内部回流区,回流区的起点距离喷口稍远,适合燃烧烟煤等含有较高挥发份的较好煤质。
     两种扩口位置和两种扩口角度下的中心给粉燃烧器的气固两相轴向RMS脉动速度分布、径向RMS脉动速度分布和切向RMS脉动速度以及粒径分布规律基本相同。
The experimental study of the characteristics of gas-particle two phase flows with the centrally-fuel-rich swirl coal combustion (CSCC) burner at two different positions and two different angles of primary air outlet are carried out.
     The gas-solid two phase testing system is designed according to similarity-simulation principle, and the gas-particle two phase flow field is measured by Phase Doppler Anemometry system.
     With the two different positions of CSSS burner, we find, from the burner jet to x/d=0.5 cross section, particle relative volume fraction profiles for air and particles have two crest zones. In the centerline, there is a large volume fraction distribution. Compared to Radial Bias Combustion burner and Volute burner, the position of the near burner relative volume fraction crest zone is much nearer to the burner center, and the peak of the relative volume fraction near the wall is much smaller.
     Axial mean velocities for air and particles with the actual position reduce faster and particles penetrate some central recirculation zone (CRZ) beginning from x/d=1.5 cross section. The size of CRZ is bigger and the begging of CRZ is closer to the burner jet with the stretched primary outlet, so the CSCC burner with stretched primary outlet fits combust low grade coal like lean-coal. The size of CRZ is smaller and the beginning of CRZ is far to the burner jet with the actual primary outlet, so the CSCC burner with actual primary outlet fits combust high grade coal with high volatile like lean-coal.
     The two different angles of CSSS burner form a high particle volume flux in the near centerline region. In this region, there is a high gas temperature and the axial RMS velocities are large.
     We find that from the burner jet to x/d=0.5 cross section, particle relative volume fraction profiles for air and particles have two crest zones; in the centerline, there is a large volume fraction distribution. Compared to Radial Bias Combustion burner and Volute burner, the position of the near burner relative volume fraction crest zone is much nearer to the burner center ,and the peak of the relative volume fraction near the wall is much slower ,the heat convection with CRZ is intensive, these factors are advantageous to heating particles ,combustion and flame stability.
     The size of CRZ is bigger and the begging of CRZ is closer to the burner jet with 0°primary outlet, so the CSCC burner with 0°primary outlet fits combust low grade coal like lean-coal; The size of CRZ is smaller and the beginning of CRZ is far to the burner jet with 25°primary outlet, so the CSCC burner with 25°primary outlet fits combust high grade coal with high volatile like lean-coal.
     The CSCC burners with two different positions and two different angles of primary air outlet have the similar distributions of axial RMS velocities, tangential RMS velocities, radial RMS velocities and particle mean diameter.
引文
1张晓鲁.推动电力发展和电力结构调整创建国际一流电力企业.中国电力. 2001, (9): 6~7
    2王恩禄,张海燕.低NOx燃烧技术及其在我国燃煤电站锅炉中的应用.动力工程. 2004, 24(1): 23~27
    3朱全利,聂明距.大型燃用贫煤和烟煤锅炉NOx排放特性的研究.电力环境保护. 1998, 14(4): 1~4
    4成庆刚,李争起.低NOx排放燃烧技术及燃烧优化的试验研究.锅炉技术. 2005, 36(5):32~36
    5王军,李如祥.低NOx燃烧器的新发展及在我国的应用前景.华北电力技术. 1995, (3):59~62
    6秦欲琨,吴少华,孙少增,等.风包粉煤粉燃烧原理及试验研究.中国电机工程学报. 2000, 20 (5): 59~64
    7童艳,孙博.低NOx旋流燃烧器的研究进展.节能, 2005, (3):11~16
    8程俊峰,曾汉才,熊蔚立,等.降低300MW贫煤锅炉NOx排放的试验研究.中国电机工程学报. 2002, 22(5):157~160
    9张宇,周力行,张健.进口堵塞对旋流煤粉燃烧器NOx生成影响的数值模拟.中国电机工程学报. 2003, 23 (9):162~166
    10许昌,吕剑虹,曾庆广,等. 800MW锅炉旋流燃烧器空气动力场试验与数值仿真研究.中国电机工程学报. 2004, 24(8):201~205
    11 M.H. Xu, J. Yang, C.Y. Han.Investigation of Particle Dynamics and Pulverized Coal Combustion in a Cavity Bluff-body Burner. Fuel. 1995, 74(12): 1913~1920
    12刘建忠,姚强,曹欣玉,等.可控煤粉浓淡旋流燃烧器着火稳燃的简化模型及其在旋流回流区中的应用.中国电机工程学报. 1999, 19 (10):32~36
    13魏铜生,蒋宏利,惠世恩,等.新型低NOx浓淡型双调风旋流燃烧器的研究.动力工程. 2000, 20 (1):539~542
    14李志强,李荣先,崔龙铉,等.新型旋流煤粉燃烧器出口区域气固两相流场的PDA试验研究.电站系统工程. 1999, 15 (13):46~51
    15石伟,周志军,周俊虎,等.内二次风旋流强度对PAX燃烧器出口流场的影响.动力工程. 2003, 23(1):2169~2172
    16金燕,郑洽余,徐秀清,等.多功能旋流燃烧器的工业性试验研究.工程热物理学报. 2002, 23(4):526~528
    17何磊,范卫东,章明川,等.向分层燃烧可视化验究.热能动力工程. 2002,17(100):359~362
    18韩才元.高浓度煤粉燃烧理论和技术发展现状.电站系统工程. 1993, 9 (4):40~46
    19赵伶玲,周强泰.新型旋流燃烧器—花瓣燃烧器的研究与应用.中国电力. 2005, 38(11): 31~34
    20金燕,郑洽余,徐秀清,等.多功能旋流燃烧器的工业性试验研究.工程热物理学报. 2002, 23(4): 526~528
    21王汉封,姚斌,曾汉才,等.双通道煤粉燃烧器冷态流场的PIV测量.发电设备. 2003, 5:11~14
    22 M. Gu, M. Zhang, W. Fan. The Effect of the Mixing Characters of Primary and Secondary Air on NOx Formation in a Swirling Pulverized Coal Flame. Fuel. 2005, 84(8): 2093~2101
    23 M. Costa, P. Silva, and Azevedo, J.L.T. Measurements of Gas Species, Temperature and Char Burnout in a Low-NOx Pulverized-coal-fired Utility Boiler. Combust. Sci. Technol. 2003, 175, 271–289
    24何佩敖.旋流燃烧器.电站系统工程. 1988 (1) :4~19
    25李争起,陈智超,孙锐,等.适用于燃用贫煤1025t/h锅炉的中心给粉旋流燃烧器.机械工程学报. 2006, 42(3):221~226
    26陈智超,李争起,孙锐,等.采用旋流煤粉燃烧方式的1025t/h锅炉结渣原因的工业试验.燃烧科学与技术. 2006, 12(4):300~303
    27 G..Patel . Options for Effectively Reducing NOx Emissions in Power Boilers.Pulp and Paper. 2000, 74(8):50~54
    28 R. Patel, V. Robert, P. Craig. Reducing NOx Emissions to 0.15 LB/MMBTU with Babcock Borsig Power Inc. Latest CCV Registered Trade—mark Coal Burner Technology. Proceedings of the International Joint Power Generation Conference. 2001, 1, 375~380
    29 T. Toshikazu, O. Hirofumi, D. Pauli.Reducing the Minimum Load and N emissions for Lignite-fired Boiler by Applying a Stable-flame Concept. Applied Energy. 2003, 74(3):415—424
    30周俊虎.低NOx煤粉燃烧器技术的研究进展与前景展望.热力发电.2005(8).38~44
    31金振齐.浓淡型煤粉燃烧器述评.能源研究与利用. 2001,(2):9~12
    32包建锋,胡家震,姜义道,等.旋流式煤粉燃烧器应用分析.黑龙江电力. 2000, 22(6):28~45
    33秦裕琨,李争起,吴少华,等.旋流煤粉燃烧技术的发展.热能动力工程. 1997,(7):241~244
    34郑义,白大鸣.径向旋流浓淡煤粉燃烧器的试验研究.黑龙江电力. 1999,(12):31~33
    35童艳,孙博.低NOx旋流燃烧器的发展.节能技术. 2005,8:11~14
    36何季民.旋流燃烧器技术发展趋势.湖南电力. 1995 ,(2) :43 ~ 51
    37 T. Dixon. Aerodynamic Studies on Swirled Coaxial Jets from Nozzles with Divergent quarks. Journal of Fluids Engineer. 1983,105:197~203
    38 T. Bach. Flow Measurements in a Model Swirl Combustor. AIAA Journal. 1982 , 20 (5) : 642~651
    39 J. Bao, S.L. Soo. Measurement of Particle Flow Properties in a Suspension by a Laser System. Powder Technology. 1995,85:261~268
    40李争起,孙锐,孙绍增,等.径向浓淡旋流燃烧器气固流动特性的试验研究及其对燃烧的影响.中国电机工程学报. 1999,19(5): 18~25
    41李争起,孙锐,陈智超,等.一种中心给粉旋流煤粉燃烧器.中国发明专利:03111101.7
    42 R.P.van der Lans, P. Glarborg and K. Dam-Johansen. Influence of Process Parameters on Nitrogen Oxide Formation in Pulverized Coal Burners. Prog. Energy Combust. Sci. 1997, 23: 349 ~ 377
    43 C. You and Y. Zhou. Effect of Operation Parameters on the Slagging near Swirl Coal Burner Throat. Energy Fuels. 2006, 20: 1855– 1861
    44 Gerald P. Huffman, Frank E. Huggins and George R. Dunmyre. Investigation of the High-temperature Behavior of Coal Ash in Reducing and Oxidizing Atmospheres. Fuel. 1981, 60:585– 597
    45秦裕琨,王磊,李争起,等.淡一次风扩口角度对径向浓淡旋流煤粉燃烧器出口流场影响的试验研究.中国电机工程学报. 2000, 20(3):56~60
    46岑可法.燃烧流体力学,水利电力出版社出版,1991:27~50
    47李之光.相似与模化.国防工业出版社, 1982:203~213
    48王德忠,许鹏,扈黎光,等.二维LDA系统在液体流速测量中的修正及应用.激光技术. 2002, 26(5): 341~343
    49沈熊.激光多普勒测速技术及应用.清华大学出版社, 2003: 1~5
    50张梓华,仲志英,张华安,等.三维激光多普勒测速仪的极限准确度.量子电子学. 1991, (1): 173~174
    51吴利民,贺安之,阎大鹏.激光多普勒测速精度分析.光学技术. 1999, 2: 48~49
    52刘虎. PDA接收方式和参数对气固两相流场测量影响的研究.哈尔滨工业大学硕士学位论文. 2006:69~73
    53 R.K. Hanson, J.M. Seitzman, P.H. Paul. PlanarLaser-fluorescence Imaging of Combustion Gases. Apply Phys B. 1990, 50:441~454
    54 J.B Cole, G. Jagadeesh, K. Takayama. Optical Measurement of Hypersonic Micro-particles Using Mie Scattering. Proceedings of SPIE the International Society for Optical Engineering. 2001,4183:552~555
    55 Sawyer, B. E. Nicolas. Multitude and phase microscopy for sizing of spherical particles. Applied Optics. 2003,42(22):4488~4498
    56 K. Du. Mode Spectrum of Lasers with Stable Resonator at Large Fresnel Numbers. Optics Communications. 1994,104(1):345~349
    57 Z.Q. Li, Z.X. Wan, R. Sun, et al. Influence of Division Cone Angles between the Fuel-rich and the Fuel-lean Ducts on Gas-particle Flow and Combustion near Swirl Burners. Energy. 2002, 27: 1119~1130
    58 Z.Q. Li, R. Sun, Z.X. Wan, et al. Gas-particle Flow and Combustion in the Near-burner Zone of the Swirl-stabilized Pulverized Coal Burner. Combust. Sci. and Tech. 2003, 175: 1979– 2014
    59 Z.Q. Li, R. Sun, L.Z. Chen, et al. Effect of Primary Air Flow Types on Particle Distributions in the near Swirl Burner Region. Fuel. 81(2002): 829– 835
    60 M. Sommerfeld, H.H. Qiu. Characteristics of Gas-particle Laden Confined Swirling Flows by Phase-Doppler Anemometry and Numerical Calculation. Int. J Multiphase Flow. 1993, 19(6):1093~1220
    61翁卫国,周俊虎,董若凌,等.一次风扩口角对旋流燃烧器影响的数值模拟.浙江大学学报. 2006, 40(10):1819~1823
    62李争起.径向浓淡旋流煤粉燃烧器气固两相流动特性及应用的研究.哈尔滨工业大学博士学位论文. 1997:20~63
    63童秉钢.涡运动理论.中国科技大学出版社, 1994:77~81
    64孙锐.径向浓淡旋流煤粉燃烧器流动特性及数值模拟.哈尔滨工业大学博士学位论文. 1998:13~21
    65何季民.清洁稳燃的煤粉高浓度燃烧技术应用评述.东方电气评论. 1992, 6(4):203~209
    66 M. Wilson, R. Pilbrow, J.M. Owen. Flow and Heat Transfer in a Preswirl Rotor-stator System. J. of Turbomachinery. 1997 ,119:364~373

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700