傅里叶望远镜成像关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
傅里叶望远镜(Fourier Telescopy,简称FT)综合了激光主动照明和合成孔径成像技术的优势,使得成像分辨率和系统信噪比之间相互分离,易于系统扩展,采用光桶(不要求共相的拼接大面积反射镜)即可作为返回信号的接收装置,降低了系统研发难度和成本,可对远距离、暗、小目标高分辨率成像探测,分辨率理论上无穷大,是非常规光学成像技术的重要方向之一,特别是在对地球同步静止轨道卫星目标的高分辨率成像探测方面拥有独特的优势,具有较大的应用前景。本文在现有研究的基础上,主要就以下几个方面进行了深入的分析研究:
     1、介绍了FT成像系统基本原理:从时空编码入手,阐述了傅里叶望远镜可以突破成像衍射极限的理论依据;结合T型发射配置模式,介绍了相位闭合技术,阐述了其消除大气Piston和发射系统的粗大相位差异的基本原理;对图像重构算法进行了研究,进而完成了整个系统原理的搭建,为接下来的研究打下了理论基础。
     2、在基本原理的基础上,提出将发射望远镜非均匀间隔作为发射配置模式,在同等发射器数量的条件下,可以采集到目标的高频分量,还原目标更为精细。由补零到非均匀傅里叶变换,再到缺失频率估计,完善了非均匀配置重构算法。为了降低采样频率,引入非均匀采样技术,结合非均匀傅里叶变换和幅值衰减法,通过数值模拟验证了该方法的可行性。分析表明该方法不仅能降低采样频率,并且对噪声的敏感性和传统的FFT方法基本一致。
     3、作为主动成像技术,光束传输必然受到大气扰动的影响。分析指出:傅里叶望远镜可以忽略大气对光强的影响,并且当发射系统海拔在900m左右时,傅里叶望远镜成像系统主要受到大气2、3阶倾斜像差的影响,在此基础上,分析了倾斜项校正精度对系统的影响。
     4、分析了光束间移频频差及目标运动对FT系统的影响,采用全相位谱时移相位差方法对频差进行了校正,完成了静止目标的外场实验数据全处理,验证了方法的可行性,并对运动目标进行了成像模拟,发现该方法完全不受目标运动的影响,可用于实际工程系统的数据处理。
     5、结合理论分析,完成了实验室内和外场实验验证研究,证明了FT成像系统的可行性,验证了系统不受下行链路大气扰动的影响。为实际工程系统的最终实施提供了参考,并对大功率长相干激光器和光学延迟线进行了研究。
Fourier Telescopy, abbreviated as FT, integrates the advantages of laser activelighting and synthetic aperture imaging technique so that imaging resolution andsystem SNR are separated from each other. By the way, it is easy to expand thesystem. Using light buckets can be seen as the return signal receiving device,reducing the difficulties and costs for system research. As one of the most importantdirections of non-conventional optical imaging technique, it has a big applyingprospect in imaging and detecting the targets which are in a distant, dark and smallcondition with a high resolution. In theory, resolution is countless large, especially, ithas unique advantage in imaging and detecting GEO satellites with high resolution.On the basis of the existed research, this thesis mainly analyses and studies thefollowing aspects thoroughly:
     1. This thesis introduces the basic theory of FT imaging system. It states thetheoretical basis that Fourier Telescopy can be used to break through imagingdiffraction-limited, beginning from space-time encoded theory. Combining the Ttype emitter configuration mode, it gives an introduction about phase closure, andthe basic theory of eliminating the Piston phase difference has also been explained.The research on algorithms of reconstruction images has been studies and the theoryformation for the whole system has been completed as well. It has laid a theoreticalfoundation for the following research.
     2. Based on the fundamental theory, this thesis puts forward non-uniformspacing as launching configuration mode. Under the situation of using the emitters of the same number, it can collect the higher frequency of the target so that it will beelaborate to return to the original condition of it. From set zeros to non-uniformFourier transform (NFT) and estimating deficiency frequency, non-uniformconfiguration reconstruction algorithm has been perfect. In order to reduce samplingfrequency and import non-uniform sampling technique, it has validated thepracticability of the method combined with NFT and amplitude damping. From theanalysis, it is obvious that this method can not only decrease sampling frequency, butalso go to the same noise sensitivity with traditional Fourier Transform (FT)methods.
     3. As active imaging technique, it must be influenced by atmosphericdisturbance when light transmission. It can be seen from the analysis that FourierTelescopy can ignore the influence of disturbance on intensity. What is more, it’simaging system is mainly effected by2、3tilt modes when the altitude of thelaunching system is at about900m. On this basis, it has analyzed the influence ofaccuracy of tilt correction on the system.
     4. Having analyzed the effects of frequency errors of arbitrary two beams andthe target movement to FT system, it takes the method of all phase time shift phasedifference correcting spectrum to adjust frequency errors. Field experiment dataprocessing has been finished and the practicability also been checked. Furthermore,it has simulated the image aimed at the moving target. It is evident that this methodis not influenced by the target movement and it can be used in dealing with the datain the practical project system.
     5. Analyzed integrated with the theory, the experiment has been completed bothin the lab and outside. It testifies the feasibility of the system and checks thatimaging system is not influenced by down-link atmospheric disturbance. It hasoffered the reference to the practice of project system. Besides, this thesis hasstudied a lot optics delay thread and laser of high power and long coherence.
引文
[1]张景旭.国外地基光电系统空间目标探测的进展[J].中国光学与应用光学,2009,2(1):10-16
    [2]张景旭.地基大口径望远镜系统结构技术综述[J].中国光学,2012,5(4):327-336
    [3] VIGIL M L, DAVID J. Sensor suite for the Advanced Electro-Optical System(AEOS)3.6m telescope [J]. SPIE,1996,2819:151-16
    [4] FUGATE. R. Q. The starfire optical range3.5m adaptive optical telescope [J].SPIE,2003,4837:934-943
    [5] FUGATE. R. Q. The VLT enclosure design and construction [J]. SPIE,1997,2871:650
    [6] SZETO. K, ROBERTS. S, SUN. S, et al. TMT telescope structure system: designand development [J]. SPIE,2008,7012:70122G
    [7] ROBERTS. S. Systems engineering of the TMT through integratedopto-mechanical analysis [J]. SPIE,2010,7738:773818
    [8] MURGA. G. Detail design and construction plans for a dome for the E-ELT [J].SPIE,2010,7733:773324
    [9]范伟军.光学综合孔径图像重构技术研究[D]:[博士学位论文].南京:东南大学,2004
    [10]R. Holmes, A. MacGovern, A. Bhowmik, et al."An Active Imaging TechniqueThat Attains Ultra High Resolution with Ultra-Low Transmitter Power," Proceedingsof the1994Space Surveillance Workshop, K. P. Schwan,ed., pp.135-140(MITLincoln Laboratory, Lexington Massachussetts, April1994).
    [11]R. B. Holmes, S. Ma. A. Bhowmik, et al. Aperture-synthesis techniques that usevery-low-power illumination [J]. SPIE,1995,2566:177-185
    [12]B. F. Campbell, L. Rubin, R. B. Holmes.Synthetic-aperture imaging through anaberrating medium: experimental demonstration [J]. Applied Optics,1995,34(26):5932-5937
    [13]R. B. Holmes, S. Ma. A. Bhowmik, et al. Analysis and simulation of asynthetic-aperture technique for imaging through a turbulent medium [J]. OpticalSociety of America.1996,13(2):351-364
    [14]Michael C. Roggemann. Photon-noise limits to the detection of the closure phasein optical interferometry [J]. Applied Optics,1996,35(1):1809-1814
    [15]T. J. Brinkley, D. Sandler. Effect of Atmospheric Turbulence and Jitter on FourierTelescopy Imaging Systems [J]. SPIE,1999,3815:42-48
    [16]Valery I. Mandrosov. Fourier telescopy imaging through strongly inhomogeneousatmosphere at high level of additive noises [J]. SPIE,2002,4538:128-134
    [17]Mikhail Be1en'kii, Kevin Hughes, Tim Brinkley, et al. Effect of turbulence ondownlink and horizontal path on high-order coherence moments in Fourier telescopysystem [J]. SPIE,2002,4821:62-73
    [18]Valery I. Mandrosov. Compact Schematic of High Resolution Fourier TelescopyImaging in Strongly Inhomogeneous Atmosphere [J]. SPIE,2002,4726:295-303
    [19]Mikhail S. Belen'kii. Coherence degradation of a speckle field and turbulenceeffects on Fourier telescopy imaging system [J]. SPIE,2002,4489:48-59
    [20]Mikhail Belen'kii, Kevin Hughes, Tim Brinkley, et al. Residual TurbulentScintillation Effect and Impact of Turbulence on the Fourier Telescopy System [J].SPIE,2004,5160:56-67
    [21]Kenneth R. MacDonald, James K. Boger, Matthew Fetrow, et al. An experimentaldemonstration of Fourier telescopy [J]. SPIE,1999,3815:23-29
    [22]R. B. Holmes, T. Brinkley. Reconstruction of Images of Deep Space Objectsusing Fourier Telescopy [J]. SPIE,1999,3815:11-22
    [23]Stephen D. Ford, David G. Voelz, Victor L. Gamiz, et al. Geo Light ImagingNational Testbed (GLINT)past, present, and future [J]. SPIE,1999,3815:2-10
    [24]V. L. Gamiz, R. B. Holmes, S. R. Czyzak, et al. GLINT:Program overview andpotential science objectives [J]. SPIE,2000,4091:304-315
    [25]J. Mathis, J. Stapp, E. Louis Cuellar, et al. Field Experiment Performance of theReceiver Elements for a Fourier Telescopy Imaging System [J]. SPIE,2005,5896:58960F
    [26]Peter A. Bakut, Valery I. Mandrosov. Properties of the Fourier-telescopic imagesof the remote rough objects [J]. SPIE,1999,3815:49-57
    [27]Dr. Peter Alekseevich Bakut. Theoretical studies of fourier telescopy for deepspace imaging [R]. International Information Academy, Moscow, Russia, Laser andInformation Technologies Department,1999, A827863:1-44
    [28]E. Louis Cuellar, James Stapp, Justin Cooper, et al. Laboratory and FieldExperimental Demonstration of a Fourier Telescopy Imaging System [J]. SPIE,2005,5896:58960D
    [29]Brett Spivey, James Stapp, David Sandler. Phase closure and objectreconstruction algorithm for Fourier Telescopy applied to fast-moving targets [J].SPIE,2006,6307:630702
    [30]James Stapp, Brett Spivey, Laurence Chen, et al. Simulation of a FourierTelescopy Imaging System for Objects in Low Earth Orbit [J]. SPIE,2006,6307:630701
    [31]E. Louis Cuellar, Justin Cooper, James Mathis, et al. Laboratory demonstration ofa multiple beam Fourier telescopy imaging system [J]. SPIE,2008,7094:70940G
    [32]董磊,刘欣悦,王建立.实验室环境内傅里叶望远镜技术的实现[J].光学精密工程,2008,16(6):999-1002
    [33]董磊,刘欣悦,陈宝刚,等.傅里叶望远镜外场实验与结果分析[J].光子学报,2011,40(9):1317-1321
    [34]董磊,刘欣悦,林旭东,等.傅里叶望远镜外场实验性能改进和结果分析[J].光学学报,2012,32(4):0201004
    [35]孔新新,黄旻,张文喜.傅里叶望远镜中激光频移误差对成像质量影响的分析[J].光学学报,2012,32(2):1211001
    [36]孔新新,黄旻,张文喜,等.多光束傅里叶望远镜的移频设计[J].激光与光电子学进展,2013,011102
    [37]李扬,相里斌,张文喜.湍流大气中激光传输对傅里叶望远镜成像质量的影响[J].强激光与粒子束,2013,,25(3):292-296
    [38]李扬,相里斌,张文喜.从傅里叶望远镜接收信号中获取目标速度的方法[J].强激光与粒子束,2013,25(9):2193-2197
    [39]陆长明,王建军,高昕,等.傅里叶望远镜原理及改进研究[J].飞行器测控学报,2010,29(2):17-20
    [40]Lu Changming, Gao Xin, Tang Jia, et al. Adaptive Optics technology for FourierTelescopy [J]. SPIE,2012,8551:855110
    [41]董洪舟,吴健,刘艺,等.傅里叶望远术的实验室验证系统[J].光电工程,2011,38(11):40-44
    [42]张炎,杨春平,郭晶,等.实验室中傅里叶望远术频谱抽取方式[J].强激光与粒子束,2011,23(3):571-576
    [43]叶溯,刘艺,吴健.傅里叶望远术中天线阵列配置对成像质量的影响[J].强激光与粒子束,2011,23(3):611-616
    [44]金志德.多光束干涉条纹控制技术的研究[D]:[硕士学位论文].成都:电子科技大学,2010
    [45]叶溯.傅里叶望远术目标重建的研究[D]:[硕士学位论文].成都:电子科技大学,2010
    [46]张炎.基于傅里叶望远术信号处理研究[D]:[硕士学位论文].成都:电子科技大学,2011
    [47]王小伟,黎全,王雁桂,等.傅里叶望远术中的相位闭合分析及其仿真[J].国防科技大学学报,2009,31(1):38-42
    [48]陈卫,黎全,王雁桂.基于全相位谱分析的傅里叶望远术目标重构[J].光学学报,2010,30(12):3441-3446
    [49]陈卫.傅里叶望远术的理论和实验研究[D]:[硕士学位论文].湖南:国防科技大学,2010
    [50]于树海,王建立,董磊,等.非均匀采样的傅里叶望远镜数值模拟研究[J].光学学报,2013,33(8):0811001
    [51]Yang Li, Bin Xiangli, Wenxi Zhang, et al. Signal Demodulation of FourierTelescopy Based on Spectrum Correction [J]. SPIE,2013,8877,88770J
    [52]Sun P C, Leith E N. Superresolution by spatial temporal encoding methods [J].Applied Optics,1992,31(23):4857-4862
    [53]David F. Olson, Steve M. Long, Laura J. U1ibarri. Comparison of ComplexExponential and Least Squares Wavefront Reconstructors for Regular Square andNon-Square grid Arrays [J]. SPIE,2000,4091:323-332
    [54]郑君里,应启珩,杨为理.信号与系统(上册)[M].北京:高等教育出版社,2003,89-138
    [55]吕乃光.傅里叶光学[M].北京:机械工业出版社,2008,29-93
    [56]耿泽勋,陈波,王振国,等.自适应光学图像复原理论与方法[M].北京:科学出版社,2010,30-78
    [57]谢正祥,王志芳,熊兴良,等.基于视觉感知噪声模型的彩色图像质量评价和彩色图像质量最佳化[J].中国图象图形学报,2010,15(10):1454-1464
    [58]贺宁.基于非均匀傅里叶变换的超声层析成像研究[D]:[硕士学位论文].合肥:中国科学技术大学,2011
    [59]谢玲.基于非均匀傅立叶变换的量化音频水印算法研究[D]:[硕士学位论文].四川:西南交通大学,2007
    [60]Sonali Bagchi, SanjitK.Mitra. The nonuniform discrete fourier transform and itsapplications in filter design: Part一1-D,IEEE transactions on circuits andsystems-Π:Analog and digital signal Proeessing,1996:422-433
    [61]Xue Yuan Tang, Liu Q H. CG-FFT for Nonuniform Inverse Fast FourierTransforms(NU-IFFT's)[C]. IEEE Antennas and propagation society Internationalsymposium,1998, Las Cruces NM, USA,1785-1789
    [62]Q. H. Liu, N. Nguyen.An Accurate Algorithm for Nonuniform Fast FourierTransforms (NUFFT’s)[J]. IEEE MICROWAVE AND GUIDED WAVE LETTERS,1998,8(1):18-20
    [63]彭岁阳.弹载合成孔径雷达成像关键技术研究[D]:[博士学位论文].湖南:国防科学技术大学,2011
    [64]Jeffrey A. Fessler, Senior Member. Nonuniform Fast Fourier Transforms UsingMin-Max Interpolation [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING,2003,51(2):560-574
    [65]王海涛,朱永凯,蔡佳慧,等.光学综合孔径望远镜的UV覆盖和孔径排列的研究[J].光学学报,2009,29(4):1112-1116
    [66]于树海,王建立,董磊,等.基于T型稀疏发射阵列的傅里叶望远镜[J].红外与激光工程,2013,43(1):190-194
    [67]于树海,王建立,董磊,等.基于空域非均匀傅里叶变换的傅里叶望远镜[J].强激光与粒子束,2013,25(7):1661-1665
    [68]于树海,王建立,董磊,等.基于最小二乘法拟合估计缺失分量的傅里叶望远镜[J].光学精密工程(已录用)
    [69]汪安民.基于非均匀采样的信号频率检测方法及其实现[D]:[博士学位论文].武汉:华中科技大学,2004
    [70]汪安民,王殊,陈明欣.一种非均匀采样下小信号的检测方法[J].信号处理,2004,20(5):436-440
    [71]李进超,邓兆祥,姜艳军,等.基于非均匀采样的频谱分析和弱信号检测[J].数据采集与处理,2012,27(3):320-326
    [72]于树海,王建立,董磊,等.基于全相位谱分析的傅里叶望远镜外场实验数据处理[J].光学精密工程,2012,20(10):2275-2282
    [73]汪安民,王殊,陈明欣.一种抗混叠的非均匀周期采样及其频谱分析方法[J].信号处理,2005,21(3):240-243
    [74]于树海,王建立,董磊,等.基于非均匀周期采样的傅里叶望远镜时域信号采集方法[J].中国光学,2013,42(7):395-401
    [75]R G Lane, A Glindemann, J C Dainty. Simulation of a Kolmogorov phase screen[J]. Wave in Random Media2,1992:209-224
    [76]张惠敏,李新阳.大气湍流畸变相位屏的数值模拟方法研究[J].光电工程,2006,33(1):14-19
    [77]Robert J. Noll. Zernike polynomials and atmosphere turbulence [J]. OpticalSociety of America,1976,66(3):207-211
    [78]Guang-ming Dai. Wavefront simulation for atmosphere turbulence [J]. SPIE,1994, image reconstruction and restoration, Vol.2302:62-72
    [79]Guang-ming Dai. Modal compensation of atmospheric turbulence with the use ofZernike polynomials and Karhunen-Loeve functions [J]. Optical Society of America,1995,12(10):2182-2193
    [80]陆长明,黄惠明,饶长辉,等.大气相位屏的协方差冲激函数产生法[J].光电工程,2005,32(8):16-27
    [81]张建柱,张飞舟,吴毅.大气湍流随机相位屏模拟方法研究[J].强激光与粒子束,2012,24(10):2318-2324
    [82]曹青华.光束通过湍流大气干涉的初步探讨[D]:[硕士学位论文].四川:电子科技大学,2006
    [83]Rod Frehlich. Simulation of laser propagation in a turbulent atmosphere [J].applied optics,2000,39(3):393-397
    [84]David Voelz. Computational Fourier Optics [M]. Bellingham, Washington USA:SPIE,2011:53-93
    [85]Jason D.Schmidt. Numerical Simulation of Optical Wave Propagation [M].Bellingham, Washington USA: SPIE,2010:87-146
    [86]Dojong Kim, Jae Jun Kim, Duane Frist, et al. High Energy Laser Testbed forAccurate Beam Pointing Control [J]. SPIE,2010, Vol.7587:75870G
    [87]谭逢富,陈修涛,姚佰栋,等.激光大气传输倾斜校正系统[J].红外与激光工程,2011,40(3):429-432
    [88]王恒坤,张国玉,郭立红,等.高精度动载体激光发射系统光束控制反射镜[J].光学精密工程,2012,20(12):336-341
    [89]邓耀初.基于快速反射镜的光束指向稳定技术[D]:[硕士论文].西安:西安电子科技大学,2008
    [90]Sathyanarayana Prabhu Adepu, David Voelz, Shashank Avula et al. Estimation ofbeam pointing parameters using return signal statistics: atmospheric turbulence effects[J]. SPIE,2006, Vol.6307:630705
    [91]Jure Skvarc, Simon Tulloch. On-sky performance of the tip-tilt correction systemfor GLAS using an EMCCD camera [J]. SPIE,2008, Vol.7015:70154B
    [92]Yourui Huang, Liuyi Ling. The control of a fast reflection mirror based on animmune genetic PID algorithm [J]. SPIE,2005, Vol.6042:60420L
    [93]John Young, David Buscher, Martin Fisher, et al. The MROI fast tip-tiltcorrection and target acquisition system [J]. SPIE,2012, Vol.8445:84451V
    [94]Naoko Ohishi, Ko Matsuda, Yasuo Torii, et al. Wavefront tilt correction systemfor MIRA-I.2[J]. SPIE,2003, Vol.4838:736-747
    [95]Robert K. Tyson. Adaptive optics engineering handbook [M]. North Carolina,USA:240-244
    [96]Robert K. Tyson. Priciples of Adaptive Optics [M]. Charlotte, USA, CRC:177-196
    [97]于树海,王建立,董磊,等.大气高阶扰动对傅里叶望远镜成像的影响分析[J].红外与激光工程,2013,42(6):1582-1587
    [98]王鸣浩,董磊.傅里叶望远镜成像原理对比验证[J].红外与激光工程,2012,41(6):1646-1652
    [99]王兆华,黄翔东.数字信号全相位谱分析与滤波技术[M].北京:电子工业出版社,2009,1-71
    [100]黄翔东,王兆华.全相位时移相位差频谱校正法[J].天津大学学报,2008,41(7):815-820
    [101]王兆华,黄翔东.基于全相位谱分析的相位测量原理及其应用[J].数据采集与处理,2009,24(6):777-782
    [102]王兆华,侯正信,苏飞.全相位FFT频谱分析[J].通信学报,2003,Vol.24(11A):6-19
    [103]陈宝刚,张景旭,杨飞,等.傅里叶望远镜外场实验聚光镜子镜支撑模块的设计[J].中国光学与应用光学,2009,2(4):329-333
    [104]董磊,刘欣悦,张景旭,等.基于MOPA结构的光学外差干涉激光器的研究[J].红外与激光工程,2014,43(2):345-349
    [105]于前洋,曲宏松.实现同步轨道(GEO)高分辨力对地观测的技术途径(下)[J].中国光学,2009,2(1):1-9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700