太阳活动的非线性特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混沌和分形普遍存在于很多自然和社会现象中,是非线性科学重要的两大分支学科。近年来,随着非线性理论的不断完善,非线性分析方法的不断提出和计算机技术的迅猛发展,混沌和分形在很多领域已经得到广泛地研究和应用,比如生物学,经济学,物理学和天文学等等,当然也包括太阳活动关于混沌和分形特征的研究。
     太阳黑子相对数表征着太阳长期演化活动的特征,在太阳活动描述中占有重要的地位。基于黑子相对数,已经证实太阳活动受控于一个低维的混沌吸引子,这个混沌吸引子还具有分形结构。太阳活动在南北半球上具有不对称性,这是近年来太阳物理研究的主要内容之一,基于黑子相对数,太阳活动南北半球不对称性也得到广泛的研究。然而,黑子一般出现在太阳球面的低纬度区域(±30°)。到目前为止,关于高纬度的太阳活动非线性特征的研究还很少。本文首先总结了近年来提出的研究混沌和分形的方法,然后主要研究了高纬度太阳活动的混沌行为,在此基础上,运用新的非线性方法,进一步研究了高纬度太阳活动在南北半球之间的周期性和相位关系。研究结果表明:高纬度太阳活动同样受控于一个低维的混沌吸引子,但是南北半球之间的混沌吸引子具有不同强度的混沌行为,同时还证明了高纬度太阳活动只能进行短期和中期的活动预报,不能进行长期的活动预报;高纬度的太阳活动也具有Schwabe周期(11年周期),南北半球之间的活动也具有相位差异,本文同时得到了具体的相位差。
     Hoyt和Schatten(1998)提出的群黑子数,成功地选择了被黑子相对数遗漏的观测,改善了原始数据的质量,噪音比黑子相对数的低,能更准确、更可靠地描述太阳活动,因此被认为是黑子相对数的一种取代。基于群黑子数,运用时间序列的非线性分析方法,我们研究了群黑子数的非线性动力学性质,发现群黑子数的长期动力学行为也表现为一个低维的混沌吸引子,且表现出来的混沌强度与黑子相对数的几乎一致。群黑子数的混沌吸引子也表明,长期太阳活动预报是不可能的。
     本文还采用计算多重分形谱的方法,分析了每日相对黑子数的多重分形特征以确定太阳活动的复杂性。结果发现每日相对黑子数具有多重分形性质,且在活动周的极大,极小,上升和下降阶段表现出不同程度的复杂性,多重分形的强度和每个阶段的每日黑子相对数的总数反相关,这与前人的研究结果一致。每日黑子相对数还展现出低分形指数占优势,因此在太阳黑子相对数中,小波动是占优势的。
Chaos and fractal generally exist in many natural and social phenomena, and are the important embranchment of the nonlinear science. Recently, chaos and fractal have been widely studied and applied in many areas with the improvement of the nonlinear theory, the advancement of the nonlinear analysis method and the fast development of the computer, such as biology, economics, physics and astronomy, of course including solar activity.
     Sunspot relative number shows the evolution characteristics of the solar longterm activity, plays an important role for describing the solar activity. On the basis of the sunspot relative number, it's shown that the Sun is governed by a low-dimensional chaotic attractor with the fractal structure and the solar activities display a north-south asymmetry. However, the sunspot generally emerges in the regions at the low latitude (±30°). Little has been known up to now about nonlinear characteristics of high-latitude solar activity. Firstly, the methods that recently were introduced to investigate the chaos and fractal of time series have been generalized. Then the nonlinear behaviour of the high-latitude solar activity has been studied, and the periodicity of high-latitude solar activity in the northern and southern hemispheres, respectively, and the phase relationship between two hemispheres also have been investigated using the new nonlinear methods. The results show that the high-latitude solar activity is also governed by a low-dimensional chaotic attractor, while the strength of chaotic behaviour between the northern and southern solar hemispheres is different. And it's concluded that the solar activity forecast can be predicted only for a short to medium term, but not for a long term. The high-latitude solar activity also have the Schwabe periodicity (11 year cycle) and possess the phase difference between the northern and southern hemispheres. The exact phase difference is obtained.
     Hoyt and Schatten (1998) constructed a new index, called as Group sunspot numbers. He selected the observing data to cover the gap in the sunspot relative numbers and improved the quality of the original data. Hence the level of noise in Group sunspot number is low than the relative sunspot numbers. Group sunspot number can more exactly and reliably describe the solar activity. On the basis of Group sunspot numbers, their nonlinear properties are investigated using the nonlinear analysis methods. It's found that the long-term dynamical behavior of Group sunspot numbers also is governed by a low-dimensional chaotic attractor. And the degree of chaotic behavior is almost consistent with the sunspot relative numbers. The chaotic attractor also shows that it's impossible to predict the long-term solar activity.
     In addition, the multifractality of the daily sunspot relative numbers (from maximum of 22 cycle to minimum 23 cycle) is studied to determine the complexity of solar activity by computing the multifractal spectrum. The data is divided into six sections for northern and southern hemispheres, respectively. The results display that the daily sunspot relative numbers have the multifractal structures. And the maximum, the minimum, the ascending section and the descending section of the cycle display the complexity of the different degree, namely the strength of the multifractality is anti-correlated with the counts of each section of the daily sunspot relative numbers, which is consistent with the prevenient study. The low fractal exponents are dominant in daily sunspot relative numbers. Thus, the small fluctuations are prevalent in the daily sunspot relative numbers.
引文
[1]林元章,太阳物理导论,北京:科学出版社,2000
    [2]李可军,太阳整体行为研究(博士学位论文),昆明:中国科学院云南天文台,2000
    [3]Lam,L.,Introduction to Nonlinear Physics,New York:Springer-Verlag,1997
    [4]卢侃,孙建华,混沌学传奇,上海:上海翻译出版公司,1991
    [5]李浙生,悠忽之间:混沌与认识,北京:冶金工业出版社,2002
    [6]黄润生,混沌及其运用,武汉:武汉大学出版社,2000
    [7]Lorenz,E.N.,Deterministic nonperiodic flow,J.Atmos.Sci.,1963,20:130-141
    [8]刘秉正,彭建华,非线性动力学,北京:高等教育出版社,2004
    [9]葛晓慧,混沌理论在电机及其系统中的应用(博士学位论文),杭州:浙江大学,2007
    [10]Ruelle,D.,Takens,F.,On the Nature of Turbulence,Communication in mathematical physics,1971,20:167-192
    [11]Wiggins,S.,Introduction to Applied Nonlinear Dynamical System and Chaos,New York:Springer-Verlag,1990
    [12]Li,T.Y.,Yorke,J.A.,Period Three Implies Chaos,Amer.Math Monthly,1975,82:985-992
    [13]May,R.M.,Simple Mathematical Models with Very Complicated Dynamics,Nature,1976,261:459-467
    [14]Feigenbaum,M.J.,Quantitative universality for a class of nonlinear transformations,Journal of Statistical Physics,1978,19:25-52
    [15]Rossler,O.E.,An equation for continuous chaos,Phys.Lett.A,1976,57:397-398
    [16]Rossler,O.E.,Continuous chaos-four prototype equations,Ann.N.Y.Acad.Sci.,1978,316:376-392
    [17]Ott,E.,Grebogi,C.,Yorke J.A.,Controlling chaos,Phys.Rev.Lett.,1990,64:1196-1199
    [18]Mandelbrot,B.B.,大自然的分形几何学,陈守吉,陵复华译,上海:上海远东出版社,1998
    [19]葛世荣,朱华,摩擦学的分形,北京:机械工业出版社,2005
    [20]Feder,J.,Fractals,New York:Plenum Press,1988
    [21]Falconer,K.J.,分形几何:数学基础及其运用。曾文曲,刘世曜,戴连贵等译,沈阳:东北大学出版社,1991
    [22]Theiler,J.,Estimating fractal dimension,J.Optical Soc.Am.,1990,7:1055-1073
    [23]Falconer,K.J.,分形几何:数学基础及其运用(第二版),曾文曲译,北京:人民邮电出版社,2007
    [24]Hentschel,H.G.E.,Procaccia,I.,The infinite number of generalized dimensions of fractals and strange attractors,Physica D,1983,8:435-444
    [25]Halsey,T.C.,Jensen,M.J.,Kadanoff,L.P.,Procaccia,I.,Shraiman,B.,Fractal measures and their singularities - The characterization of strange sets,Physica Review A,1986,33:1141-1151
    [26]Grassberger,P.,Badii,R.,Politi,A.,Scaling laws for invariant measures on hyperbolic and nonhyperbolie atractors,J.Stat.Phys.,1988,51:135-178
    [27]王元兴,复杂非线性系统中的混沌,北京:电子工业出版社,2003
    [28]Packard,N.H.,Crutchfield,J.P.,Farmer J.D.,Shaw,R.S.,Geometry from a time series,Phys.Rev.Lett.,1980,45:712-716
    [29]Takens,F.,On the numberical determination of the dimension of an attractor.In:Rand,D.and Young,L.-S.eds.,Dynamical Systems and Turbullence.Warwick,1980,Lecture Notes in Mathematics,Berlin:Springer Verlag,1981,898:366-381
    [30]Mane,R.,On the dimension of the compact invariant sets of certain nonlinear maps,In:Rand,D.,Young,L.S.eds.,Dynamical System and Turbulence.Warwick,1980,Lecture Notes in Mathematics,SpringerVerlag,1981,898:230
    [31]Sauer,T.,1orke,J.A.,Casdagli,M.,Embedology,Journal of Statistical Physics,1991,65:579-616
    [32]王海燕,卢山,非线性时间序列分析及其应用,北京:科学出版社,2006
    [33]Kennel,M.B.,Brown,R.,Abarbanel,H.D.,Determining embedding dimension for phase-space reconstruction using a geometrical construction,Physical Review A,1992,45:3403-3411
    [34]Kim,H.S.,Eykholt,R.,Salas J.D.,Nonlinear dynamics,delay times,and embedding windows,Physica D,1999,127:48-60
    [35]Broomhead,D.S.,King,G.P.,Extracting qualitative dynamics from experimental data,Physica D,1986,20:217-236
    [36]Abarbanel,H.D.I.,Brown,R.,Sidorowich,J.J.,Tsimring,L.Sh.,The analysis of observed chaotic data in physical systems,Reviews of Modern Physics,1993,65:1331-1392
    [37]Fraser,A.M.,Swinney,H.,Independent coordinates for strange attractors from mutual information,Physical Review A,1986,33:1134-1140
    [38]Rosenstein,M.T.,Collins,J.J.,Deluca,C.J.,Reconstuction expansion as a geometry-based framework for choosing proper delay times,Physica D,1994,73:82-98
    [39]Albano,A.M.,Passamante,A.,Farrell,M.E.,Using higher-order correlations to define an embedding window,Physica D,1991,54:85-97
    [40]Buzug,T.,Pfister,G.,Farrell,M.E.,Optimal delay time and embedding dimension for delay-time coordinates by analysis of the global static and local dynamical behavior of strange attractors,Physical Review A,1992,45:7073-7084
    [41]Kantz,H.,Schreiber,T.,Nonlinear Time Series Analysis,2ed.,Cambridge:Cambridge University Press,2004
    [42]Wolf,A.,Swift,B.,Swinney,H.L.,Vastano,J.A.,Determining Lyapunov exponents from a time series,Physica D,1985,16:285-317
    [43]Rosenstein,M.T.,Collins,J.J.,Deluca,C.J.,A practical method for calculating largest Lyapunov exponents from small data sets,Physica D,1993,65:117-134
    [44]Eckmann,j.-P,Kamphorst,S.O.,Ruelle,D.,Ciliberto,S.,Liapunov exponents from time series,Phys.Rev.A,1986,34:4971-4979
    [45]Sano,M.,Sawada,Y.,Measurement of the Lyapunov spectrum from a chaotic time series,Phys.Rev.Lett.,1985,55:1082-1085
    [46]Brown,R.,Bryant,P.,Abarbanel,H.D.,Computing the Lyapunov spectrum of a dynamical system from an observed time series,Phys.Rev.A,1991,43:2787-2806
    [47]Zeng,X.,Eykholt,R.,Pielke,A.,Estimating the Lyapunov-exponent spectrum from short time serios of low precision,Phys.Rev.Lett.,1991,66:3229-3232
    [48] Grassberger, P., Procaccia, I., Estimation of the Kolmogorov entropy from a chaotic signal, Phys. Rev. A, 1983c, 28: 2591-2593
    
    [49] Eckmann, J. -P., Kamphorst, S.O., Ruelle, D., Euro-physics Letters, 1987, 4: 973-977
    
    [50] Zbilut, J.P., Giulian, A., Webber, C.L., Jr., Detecting deterministic signals in exceptionally noisy environments using cross-recurrence quantification, Phys. Lett. A, 1998, 246: 122-128
    
    [51] Marwan, N., Wessel, N., Meyerfeldt, U., Schirdewan, A., Kurths, J., 2002a, Recurrence-plot-based measures of complexity and their application to heart-rate-variability data, Phys. Rev. E, 66: 026702
    
    [52] Marwan, N., Thiel, M., Nowaczyk, N.R., Cross recurrence plot based synchronization of time series, Nonlinear Processes in Geophysics, 2002b, 9: 325-331
    
    [53] Marwan, N., Kurths, J., Nonlinear analysis of bivariate data with cross recurrence plots, Phys. Lett. A, 2002c, 302: 299-307
    
    [54] Marwan, N., Kurths, J., Line structures in recurrence plots, Phys. Lett. A, 2005, 336: 349-357
    
    [55] Groth, A., Visualization of coupling in time series by order recurrence plots, Phys. Rev. E, 2005, 72: 046220
    
    [56] Chhabra, A., Jensen, R., Direct determination of the f( α ) singularity spectrum, Phys. Rev. Lett., 1989, 62: 1327-1330
    
    [57] Muzy, J.F., Bacry, E., Arneodo, A., Wavelets and multifractal formalism for singular signals: Application to turbulence data, Phys. Rev. Lett., 1991, 67: 3515-3518
    
    [58] Muzy, J.F., Bacry, E., Arneodo, A., Multifractal formalism for fractal signals: The structure-function approach versus the wavelet-transform modulus-maxima method, Phys. Rev. E, 1993, 47: 875-884
    [59]Parisi,G.,Frisch,U.,On the singularity nature of fully developed turbulence,In:Ghil,M.,Benzi,R.,Parisi,G.eds.,Proceedings of the International School on Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics,North-Holland,Amsterdam,1985,P.84-87
    [60]Muzy,J.F.,Bacry,E.,Arneodo,A.,The multifractal formalism revisited withwavelets,Int.J.Bifurcation and Chaos,1994,4:245-302
    [61]Kantelhardt,J.W.,Zschiegner,S.A.,Koscielny-Bunde,E.,Havlin,S.,Bunde,A.,Stanley,H.E.,Multifractal detrended fluctuation analysis of nonstationary time series,Physica A,2002,316:87-114
    [62]Benzi,R.,Biferale,L.,Crisanti,A.,Paladin,G.,Vergassola,M.,Vulpiani,A,A random process for the construction of multiaffine fields,Physica D,1994,65:352-358
    [63]Struzik,Z.R.,Determining local singularity strengths and their spectra with the wavelet transform,2000,Fractals,8:163-179
    [64]Turiel,A.,Pérez-Vicente,C.J.,Grazzini,J.,Numerical methods for the estimation of multifractal singularity spectra on sampled data:A comparative study,J.Computational Physics,2006,216:362-390
    [65]Schwabe,H.S.,Sonnen-Beobachtungen im Jahre 1843,Astronomische Nachrichten,1844,21:254-256,no.495
    [66]Waldmeir,M.,The Sunspot-Activity in the Years 1610-1960,Schulthess &Company AG,Zurich,1961
    [67]Kurths,J.,Pre-ZIAP,1987,87-02
    [68]Spiegel,E.A and Wolf,A.,Chaos and the Solar Cycle,In:Chaotic Phenomenona in Astrophysics ed.by Buchler,J.R.and Eichhorn,H.,Annals of the New York Academy of Sciences,1987,497:55-60
    [69]Grassberger,P.,Procaccia,I.,Characterization of strange attractors,Phys.Rev.Lett.,1983a,50:346-349
    [70] Grassberger, P., Procaccia, I., Measuring the strangeness of strange attractors, Physica D, 1983b, 9: 189-208
    
    [71] Contopoulos, G., Voglis, N. (eds.): LNP 626, Berlin Heidelberg: Springer-Verlag, 2003, 3-29
    
    [72] Ostryakov, V.M., Usoskin, I.G., On the dimension of solar attractor, Solar Phys., 1990, 127: 405-412
    
    [73] Gizzatullina, S.M., Rukavishnikov, V.D., Ruzmaikin, A.A., Tavastsherna, K.S., Radiocarbon evidence of the global stochasticity of solar activity, Solar Phys., 1990, 127: 281-288
    
    [74] Morfill, G.E., Scheingraber, H., Voges, W., Sonnett, C.P., in The Sun in Time, Sonnett, C., Giampapa, M., Matthews M. (eds.), Tucson: University of Arizona Press, 1991
    
    [75] Mundt, M.D., Maguire, II W.B., Chase, R.R.P., Chaos in the sunspot cycle-Analysis and prediction, J. Geophys. Res., 1991, 96: 1705-1716
    
    [76] Price, C.P., Prichard, D., Hogeson, E.A., Do the sunspot numbers form a 'chaotic' set?, J. Geophys. Res., 1992, 97: 19113-19120
    
    [77] Carbonell, M., Oliver, R., Ballester, J.L., A search for chaotic behaviour in solar activity, A & A, 1994, 290: 983-994
    
    [78] Kremlevskii, M.N., Blinov, A.V., Chervyakov, T.B., Reconstructing the Phase-Space Trajectory of Solar Activity from Sunspot Numbers, SOVIET Astron. Lett., 1992, 18: 423-426
    
    [79] Rozelot, J.P., On the chaotic behaviour of the solar activity, A & A, 1995, 297, L45-L48
    
    [80] Sugihara, G., May, R.M., Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series, Nature, 1990, 344: 734-741
    
    [81] Lawrence, J.K., Cadavid, A.C., Ruzmaikin A.A., Turbulent and Chaotic Dynamics Underlying Solar Magnetic Variability, ApJ, 1995, 455: 366-375
    [82]Kremliovsky,M.N.,Can we understand time scales of solar activity?,Solar Phys.,1994,151:351-370
    [83]张勤,天体物理学报,1995,15:84-89
    [84]Zhang,Q.,A nonlinear prediction of the smoothed monthly sunspot numbers,A & A,1996,310:646-650
    [85]Casdagli,M.,Nonlinear prediction of chaotic time series,Physica D,1989,35:335-356
    [86]Zhang,Q.,The transitional time scale from stochastic to chaotic behavior for solar activity,Solar Phys.,1998,178:423-431
    [87]Kontor,N.N.,Long term variability of solar activity,Advances in Space Research,1993,13:417-427
    [88]Sello,S.,Solar cycle forecasting:A nonlinear dynamics approach,A & A,2001,377:312-320
    [89]Thompson,R.J.,1999,IPS Radio and Space Services,Sydney http://www.ips.gov.au/asfc/current/solar.html
    [90]Jevtic,N.,Schweitzer,J.S.,Cellucci,C.J.,Nonlinear time series analysis of northern and southern solar hemisphere daily sunspot numbers in search of short-term chaotic behavior,A & A,2001,379:611-615
    [91]Letellier,C.,Aguirre,L.A.,Maquet,J.,Gilmore,R.,Evidence for low dimensional chaos in sunspot cycles,A & A,2006,449:379-387
    [92]Bracewell,R.N.,The Sunspot Number Series,Nature,1953,171,649-650
    [93]Letellier,C.,Gilmore,R.,Covering dynamical systems:Twofold covers,Phys.Rev.E,2001,63:16206
    [94]Sammis,I.,Tang,F.,Zirin,H.,The Dependence of Large Flare Occurrence on the Magnetic Structure of Sunspots,ApJ,2000,540:583-587
    [95] Lawrence, J.K., Diffusion of magnetic flux elements on a fractal geometry, Solar Phys., 1991, 135: 249-259
    
    [96] McAteer, R.T.J., Gallagher, P.T., Ireland, J., Statistics of Active Region Complexity: A Large-Scale Fractal Dimension Survey, ApJ, 2005, 631: 628- 635
    
    [97] Roudier, Th., Muller, R., Structure of the solar granulation, Solar Phys., 1986, 107: 11-26
    
    [98] Karpinsky, V.N., in Solar Photosphere: Structure, Convection, and Magnetic Fields, ed. J.O. Stenflo (Dordrecht, Holland: Kluwer), 1990, IAU Symp., 138, 67
    
    [99] Greimel, R., Brandt, P.N., Guenther, E., Mattig, W., On the fractal dimension of the solar granulation, Vistas Astron., 1990, 33: 413-421 .
    
    [100] Hirzberger, J., Vazquez, M., Bonet, A., Hanslmeier, A., Time Series of Solar Granulation Images. I. Differences between Small and Large Granules in Quiet Regions, ApJ, 1997, 480: 406-419
    
    [101] Bovelet, B., Wiehr, E., A New Algorithm for Pattern Recognition and its Application to Granulation and Limb Faculae, Solar Phys., 2001, 201: 13-26
    
    [102] Janssen, K., Vogler, A., Kneer, F., On the fractal dimension of small-scale magnetic structures in the Sun, A & A, 2003, 409: 1127-1134
    
    [103] Lawrence, J.K., Schrijver, C.J., Anomalous diffusion of magnetic elements across the solar surface, ApJ, 1993, 411: 402-405
    
    [104] Meunier, N., Fractal Analysis of Michelson Doppler Imager Magnetograms: A Contribution to the Study of the Formation of Solar Active Regions, ApJ, 1999, 515: 801-811
    
    [105] Meunier, N., Complexity of magnetic structures: Flares and cycle phase dependence, A & A, 2004, 420: 333-342
    [106]Tarbell,T.,Acton,D.,Topka,K.,Title,A.,Schmidt,W.,Scharmer,G.,Intermittency of Fine Scale Solar Magnetic Fields in the Photosphere,BAAS,1990,22:878
    [107]Schrijver,C.J.,Zwaan,C.,Balke,A.C.,Tarbell,T.D.,Lawrence,J.K.,Patterns in the photospheric magnetic field and percolation theory,A & A,1992,253:L1-L4
    [108]Balke,A.C.,Schrijver,C.J.,Zwaan,C.,Tarbell,T.D.,Percolation theory and the geometry of photospheric magnetic flux concentrations,Solar Phys.,1993,143:215-227
    [109]Hilborn,R.C.,Chaos and Nonlinear Dynamics,Oxford:Oxford University Press,2000
    [110]Gallagher,P.T.,Phillips,K.J.H.,Harra-Murnion,L.K.,Keenan,F.P.,Properties of the quiet Sun EUV network,A & A,1998,335:733-745
    [111]Georgoulis,M.K.,Phillips,K.J.,Rust,D.M.,Bernasconi,P.N.,Schmieder,B.,Statistics,Morphology,and Energetics of Ellerman Bombs,ApJ,2002,575:506-528
    [112]Fragos,T.,Rantsiou,E.,Vlahos,L.,On the distribution of magnetic energy storage in solar active regions,A & A,2004,420:719-728
    [113]Vlahos,L.,Fragos,T.,Isliker,H.,Georgoulis,M.,Statistical Properties of the Energy Release in Emerging and Evolving Active Regions,ApJ,2002,575:L87-L90
    [114]Paniveni,U.,Krishan,V.,Singh,J.,On the Fractal Structure of Solar Supergranulation,Solar Phys.,2005,231:1-10
    [115]Aschwanden,M.J.,Aschwanden,P.D.,Solar Flare Geometries.Ⅰ.The Area Fractal Dimension,ApJ,2008,674:530-543
    [116]Aschwanden,M.J.,Aschwanden,P.D.,Solar Flare Geometries.Ⅱ.The Volume Fractal Dimension,ApJ,2008,674:544-553
    [117]Lawrence,J.K.,Ruzmaikin,A.A.,Cadavid,A.C.,Multifractal Measure of the Solar Magnetic Field,ApJ,1993,417:805-811
    [118]Cadavid,A.C.,Lawrence,J.K.,Ruzmaikin,A.A.,Kayleng-Knight,A.,Multifractal models of small-scale solar magnetic fields,ApJ,1994,429:391-399
    [119]Abramenko,Ⅴ.Ⅰ.,Multifractal Analysis Of Solar Magnetograms,Solar Phys.,2005,228:29-42
    [120]Kolmogorov,A.N.,The Local Structure of Turbulence in Incompressible Viscous Fluid for Very Large Reynolds' Numbers,CR Acad.Sci.USSR,1941,30,301 Dokl.Akad.Nauk SSSR
    [121]Abramenko,Ⅴ.Ⅰ.,Yurchyshyn,V.B,Wang,H.M.,Spirock,T.J.,Goode,P.R.,Scaling Behavior of Structure Functions of the Longitudinal Magnetic Field in Active Regions on the Sun,ApJ,2002,577:487-495
    [122]Conlon,P.A.,Gallagher,P.T.,McAteer,R.T.J.,Irehan,J.,Young,C.A.,Kestener,P.,Hewett,R.T.,Maguire,K.,Multifractal Properties of Evolving Active Regions,Solar Phys.,2008,248:297-309
    [123]Hewett,R.J.,Gallagher,P.T.,McAteer,R.T.J.,Young,C.A.,Irehan,J.,Conlon,P.A.,Maguire,K.,Multiscale Analysis of Active Region Evolution,Solar Phys.,2008,248:311-322
    [124]Criscuoli,S.,Rast,M.P.,Ermolli,I.,Centrone,M.,On the reliability of the fractal dimension measure of solar magnetic features and on its variation with solar activity,A & A,2007,461:331-338
    [125]Zhang,Q.,Research on Fractal Dimension for Sunspot Relative Number,Acta Astron.Sin.,1994,35:27-32
    [126]Gizzatullina,S.M.,Rukavishnikov,V.D.,Ruzmaikin,A.A.,Tavastsherna,K.S.,Radiocarbon evidence of the global stochasticity of solar activity,Solar Phys.,1990,127:281-288
    [127]Watari,S.,Fractal dimensions of solar activity,Solar Phys.,1995,158:365-377
    [128]Higuchi,T.,Approach to an irregular time series on the basis of the fractal theory,Physica D,1988,31:277-283
    [129]Watari,S.,Fractal Dimensions of the Time Variation of Solar Radio Emission,Solar Phys.,1996,163:371-381
    [130]Veronig,A.,Messerotti,M.,Hanslmeier,A.,Determination of fractal dimensions of solar radio bursts,A & A,2000,357:337-350
    [131]Osborne,A.R.,Kirwan,A.D.,Provezale,A.,Bergamasco,L.,A search for chaotic behavior in large and mesoscale motions in the Pacific Ocean,Physica D,1986,23:75-83
    [132]Theiler,J.,Eubank,S.,Longtin,A.,Galdrikian,B.,Farmer,J.D.,Testing for nonlinearity in time series:the method of surrogate data,Physica D,1992,58:77-94
    [133]Kim,R.-S.,Yi,Y.,Kim,S.-W.,Cho,K.-S.,Moon,Y.-J.,Fractal Dimension and Maximum Sunspot Number in Solar Cycle,JASS,2006,23:227-236
    [134]Voros,Z.,Pastorek,L.,Dorotovic,L.,Multi-scale aspects of solar cycle variability,ESA SP,2003,535:173-175
    [135]Voros,Z.Baumjohann,W.,Nakamura,R.et al.,Multi-scale magnetic field intermittence in the plasma sheet,Ann.Geophys.,2003,21:1955-1964
    [136]Rybak,J.,Ozguc,A.,Atac,Sozen,E.,Intermittence of the short-term periodicities of the flare index,Advances in Space Research,2005,35:406-409
    [137]Sadegh Movahed,M.,Jafari,G.R.,Ghasemi,F.,Rahvar,S.,Tabar,M.R.R.,Multifractal detrended fluctuation analysis of sunspot time series,J.Statiscal Mechanics:Theory and Experiment,2006,02:p02003
    [138]Sen,A.K.,Multifractality as a Measure of Complexity in Solar Flare Activity,Solar Phys.,2007,241:67-76
    [139]McAteer,R.T.J.,Young,C.A.,Ireland,J.,Gallagher,P.T.,The Bursty Nature of Solar Flare X-Ray Emission,ApJ,2007,662:691-700
    [140]Voros,Z.,On multifractality of high-latitude geomagnetic fluctuations,Ann.Geophysicae,2000,18:1273-1282
    [141]Voros,Z.,Jankovicova,D.,Kovacs,P.,Scaling and singularity characteristics of solar wind and magnetospheric fluctuations,Nonlinear Processes in Geophysics,2002,9:149-162
    [142]Macek,W.M.,Modeling Multifractality of the Solar Wind,Space Science Reviews,2006,122:329-337
    [143]Macek,W.M.,Bruno,R.,Consolini,G.,Testing for multifractality of the slow solar wind,Advances in Space Research,2006,37:461-466
    [144]Macek,W.M.,Multifractality and intermittency in the solar wind,Nonlinear Processes in Geophysics,2007,14:695-700
    [145]Ott,E.,Chaos in Dynamical System,Cambridge:Cambridge University Press,1993
    [146]Eddy,J.A.,In:Pepin,R.O.,Eddy,J.A.,Merrill,R.B.eds.,The Ancient Sun:Fossil Record in the Earth,Moon,and Meteorities,New York:Pergamon Press,1980,p119
    [147]Hoyt,D.V.,Schatten,K.H.,The Role of the Sun in Climate Change,New York:Oxford University Press,1997,p279
    [148]Wilson,R.M.,Hathaway,D.H.,Reichmann,J.A.,An estimate for the size of cycle 23 based on near minimum conditions,J.Geophys.Res.,1998,103:6595-6603
    [149]Hathaway,D.H.,Wilson,R.M.,Reichmann,J.A.,Group Sunspot Numbers:Sunspot Cycle Characteristics,Solar Phys.,2002,11:357-370
    [150]Weber,F.,Wochenschr.Astron.Met.Geogr.,1865a,8,38-39
    [151]Weber,F.,Wochenschr.Astron.Met.Geogr.,1865b,8,143-144
    [152]Makarov,Ⅴ.Ⅰ.,Makarova,Ⅴ.Ⅴ.,Polar Faculae and Sunspot Cycles,Solar Phys.,1996,163:267-289
    [153]Kiepenheuer,K.O.,1953,In:The Sun,Kuiper,G.P.(ed.),University of Chicago Press,368
    [154]Waldmeier,M.,Astron.Mitt.Zurich,1965,267:1
    [155]Saito,K.,Tanaka,Y.,Polar Faculae of the Sun(3rd Paper),Publ.Astron.Soc.Japan,1960,12:556
    [156]Sheeley,N.R.,Jr.,Polar faculae-1906-1990,ApJ,1991,374:386-389
    [157]Li,K.J.,Irie,M.,Wang,J.X.,Xiong,S.Y.,Yon,H.S.,Liang,H.F.,Zhan,L.S.,Zhao,H.J.,Activity Cycle of Polar Faculae,Publ.Astron.Soc.Japan,2002a,54:787-792
    [158]Li,K.J.,Wang,J.X.,Xiong,S.Y.,Liang,H.F.,Yon,H.S.,Gu,X.M.,Regularity of the north-south asymmetry of solar activity,A & A,2002b,383:648-652
    [159]Li,K.J.,Qiu,J.,Su,T.W.,Irie,M.,Gao,P.X.,Periods of Activity Cycle of Polar Faculae,Publ.Astron.Soc.Japan,2004,56:L49-L52
    [160]Sheeley,N.R.,Jr.,Polar Faculae during the Sunspot Cycle,ApJ,1964,140:731-735
    [161]Makarov,Ⅴ.Ⅰ.,Makarova,Ⅴ.Ⅴ.,On the relationship between polar faculae,X-ray bright points and ephemeral active regions on the sun,Soln.Dannye,1987,3:62-70
    [162]Sakurai,T.,1998,In:Balasubramaniam,K.S.,Harvey,J.,Rabin,D.(eds.),Synoptic Solar Physics,Astron.Soc.Pacific Conf.Ser.,140,483
    [163]Riehokainen,A.,Urpo,S.,Valtaoja,E.,Makarov,Ⅴ.Ⅰ.,Makarova,Ⅴ.Ⅴ.,Tlatov,A.G.,Millimeter-radio,SOHO/EIT 171 A features and the polar faculae in the polar zones of the Sun,A & A,2001,366:676-685
    [164]Li,K.J.,Liang,H.F.,Gao,P.X.,Su,T.W.,High- And Low-Latitude Solar Activities:Who Leads Whom In Time Phase?,Solar Phys.,2006,236:185-197
    [165]Hegger,R.,Kantz,H.,Schreiber,T.,Practical implementation of nonlinear time series methods:The TISEAN package,Chaos,1999,9:413-435
    [166]Torrence,C.,Compo,G.P.,A Practical Guide to Wavelet Analysis,Bull.Amer.Meteor.Soc.,1998,79:61-78
    [167]Liu,P.C.,1994,In:Foufoula-Georgiou,E.,Kumar,P.(eds.),Wavelets in Geophysics,Academic Press,151
    [168]Grinsted,A.,Moore,J.C.,Jevrejeva,S.,Application of the cross wavelet transform and wavelet coherence to geophysical time series,Nonlinear Processes in Geophysics,2004,11:561-566
    [169]Ponyavin,D.I.,Zolotova,N.V.,2004,In:Stepanov,A.V.,Benevolenskaya,E.E.,Kosovichev,A.G.(eds.),Multi-wavelength Investigations of Solar Activity,IAU Syrup.,223,141
    [170]Zolotova,N.V.,Ponyavin,D.I.,Phase asynchrony of the north-south sunspot activity,A & A,2006,449:L1-L4
    [171]Maraun,D.,Kurths,J.,Cross wavelet analysis:significance testing and pitfalls,Nonlinear Processes in Geophysics,2004,11:505-514
    [172]Li,Q.X.,Li,K.J.,Low-Dimensional Chaos of High-Latitude Solar Activity,Publ.Astron.Soc.Japan,2007,59:983-987
    [173]Hoyt,D.V.,Schatten,K.H.,Group Sunspot Numbers:A New Solar Activity Reconstruction,Solar Phys.,1998a,179:189-219
    [174]Hoyt,D.V.,Schatten,K.H.,Group Sunspot Numbers:A New Solar Activity Reconstruction,Solar Phys.,1998b,181:491-512

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700