直驱式永磁同步风力发电机在不平衡电网电压下的控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着直驱式永磁同步风电机组容量的不断增加,它对电网的重要性也日益明显,直接影响到所并电网运行的稳定性和电能质量,因此,电网运营商从电网安全角度出发,提出了风电机组在外部电网故障时还应有不脱网运行(穿越)能力。目前,我国现有的直驱式永磁同步风电机组控制仅局限于平衡电网下运行,但真实的电网时刻有可能存在着电压瞬变及不对称故障。直驱式永磁同步风电机组变速恒频运行采用理想大电网条件下的控制策略,不能适应我国风电机组一般所并弱电网的现实,也不能从控制上保证风电系统的运行安全,因此,必须建立适应故障穿越的控制新模型,确立新的控制策略和技术。在此背景下,本文选择直驱式永磁同步风力发电机为研究对象,将对直驱风电系统在不平衡电网电压下的运行与控制进行研究。
     本文利用空间矢量法建立了直驱式永磁同步风力发电机的统一数学模型,然后在此模型基础上研究了电网电压正常时,电网稳态小值不平衡电网电压时与电网发生不对称故障所引起的大值不平衡电网电压时的直驱式永磁同步风力发电机控制策略。
     本文以湘潭电机股份有限公司(XE-82型)2MW永磁同步风力电机为例,对不平衡电网电压下永磁同步风力发电机的运行与控制技术进行了仿真分析,同时以2kW背靠背双PWM变流器为例进行了实验分析,实现了采用背靠背全功变流器直驱式永磁同步风力发电机在小值与大值不平衡电网电压下的运行控制,仿真与实验表明本文所提的控制策略运用于永磁同步风力发电机的故障运行时可行的,对实现永磁同步风力发电机不对称故障穿越具有参考意义,本文主要研究内容和创新性的成果如下:
     (1)在直驱式永磁同步风力发电机数学模型的基础上研究了电网电压正常时适用于该系统的一种稳态控制策略并进行了仿真验证。为进一步研究直驱式永磁同步风力发电机在电网异常条件下的运行与控制奠定了基础。通过在直流侧母线侧加入能量泄放环节在仿真中实现了电网电压对称跌落至额定电压20%工况下的穿越运行。
     (2)通过对内置式永磁同步风力发电机数学模型的推导,本文提出了一种新型的通用型滑模观测模型,既适用于Ld=Lq的情况,又适用于Ld≠Lq的情况。并从观测系统中影响位置观测精度的因素出发,对观测器中滤波器的选择与角度补偿的原则进行较深入分析,并进行了仿真验证来证明所提算法的正确性。
     (3)对在正负序同步旋转坐标系下正序电流与负序电流分别采用PI控制器与在正序同步坐标系下采用比例积分谐振控制器两种抑制小值不平衡电网电压下并网电流中的负序含量的方法进行了详细的对比研究。提出一种机侧变流器电流控制策略来抑制在小值不平衡电网电压下直流侧母线电压2倍电网频率波动引起机侧变流器转矩2倍电网频率脉动。
     (4)提出了在电网电压发生不对称跌落故障时的逻辑控制,通过理论分析,将直流侧能量泄放回路分别与网侧变流器正负序电压分别定向正负序同步旋转坐标系正负序双电流环控制策略、正负序电压分别定向正序坐标系采用PI-RES控制器单电流环矢量控制策略以及本文提出的基于比例积分谐振控制器的空间矢量调制直接功率控制策略相结合实现了不平衡度超过50%的不对称故障穿越。。
     (5)本文在2MW永磁同步电机实验平台上对本文所提的对称电网电压下直驱式永磁同步风力发电机变流器网侧变流器控制策略与机侧变流器无位置传感器控制策略进行了实验验证,实验证明了控制策略的有效性。同时本文建立2kW背靠背双PWM变流器对本文所提在大值不平衡电网电压下的控制策略结合直流侧能量泄放回路进行了详细的实验研究,以实验结果来验证相关分析的正确性。
With the increasement of the capacity of the direct-driven permanent magnetsynchronous generator (D-PMSG), its importance to the grid has become increasinglyevident so that it would have a direct impact on the stability and power quality of theconnected grid. Therefore, considering the security of the grid, power authorityproposed that wind turbines should have the ability to operate without disconnectfrom the grid and ride through the grid fault when external grid was fault. Currently,the existing D-PMSG control methods are limited to running under the balanced gridvoltage, while the real grid always exists voltage transients and asymmetric fault. Thevariable speed constant frequency (VDCF) operation of D-PMSG uses traditioncontrol strategies under the condition of ideal large power grid, which could not meetthe reality that wind turbines in China was usually connected to the weak power grid,neither could ensure the security operation of the wind power system from thecontrolling. In that case, a new control model must be established to adapt the realgrid and new control strategies must be discussed to ride through the grid fault. In thiscontext, a D-PMSG was chosen for the study and research on its operation and controlstrategy under unbalanced grid voltage.
     In this dissertation, the unified mathematical model of D-PMSG was establishedby using space vector method. Then based on the model, the paper discussed theD-PMSG control strategy under such conditions: normal grid voltage, the small valueunbalanced grid voltage, and large value unbalance grid voltage caused by the gridasymmetric fault.
     By taking the2MW permanent magnet synchronous generator (PMSG)(XE-82)made by the Xiangtan Electric Manufacturing Group (XEMC) as an example, thethesis analyses the simulation of the operation and control strategy of the PMSGunder unbalanced grid voltage. At the same time, the thesis analyzed the experimentresult by taking a2kW back-to-back PWM converter as an example. And it achievedthe operation and control of the D-PMSG under small and large value unbalanced gridvoltage. The simulation and experiment results have shown that the proposed controlstrategy applied to the D-PMSG were correctness and availability, which has referentvalue to realize the asymmetry fault ride-through of the PMSG. The main researchcontents and innovation results of this thesis are listed as follows:
     (1) Based on the PMSG mathematical model, a steady-state control strategy suitable for the system under normal voltage was proposed and validated bysimulation, which laid the foundation of further study of the D-PMSG operation whenthe grid voltage under abnormal conditions. Then, the low voltage ride through withthe grid voltage symmetrically fall to the20%of rated voltage was achieved insimulation by adding an energy discharge unit on the DC bus.
     (2) By deducing the mathematical model of interior permanent magnetsynchronous wind turbine, the thesis proposed a new universal sliding mode observermodel which applied to conditions of both Ld=Lq and Ld≠Lq. Then starting fromthe factors affecting the observer’s precision of position from the observation system,the principle of filter selection and angle compensation in observer was deeplyanalyzed. Moreover, a simulation was carried out to prove the correctness of theproposed algorithm.
     (3) Dual current control loop by using PI controller in positive and negativesynchronous rotating coordinate and single current control loop by using PI-REScontroller in positive synchronous rotating coordinate were adopt respectively indetailed comparative study on inhibiting the negative sequence current under smallvalue unbalanced grid voltage. In this dissertation, a motor-side converter currentcontrol strategy to suppress generator torque pulsating caused by dc-bus voltagefluctuations under small value unbalanced grid voltage.
     (4) A control strategy in the asymmetry drop fault of grid voltage was putforward. By theoretical analysis, an energy discharge unit on the DC bus was usedrespectively with dual current control loop strategy by using PI controller in positiveand negative synchronous rotating coordinate, single current control loop strategy byusing PI-RES controller in positive synchronous rotating coordinate and a SVM-DPCcontrol strategy by using PI-RES proposed by this dissertation to achieve50%unbalanced grid voltage fault ride through.
     (5) In this dissertation, the control strategies of grid side converter and thenon-position-sensor control of machine side converter of the D-PMSG were verifiedby the experiment on a2MW PMSM experiment platform under the symmetricvoltage condition. The experiment proves the effectiveness of the proposed controlstrategy. At the same time,combining the energy discharging device of DC side withthe control strategy under large value unbalanced grid voltage,this thesis validatedthe proposed method by detailed experiment on a established2kW back-to-backdouble PWM converter. The experimental results verified the correctness of the correlation analysis.
引文
[1]江泽民.对中国能源问题的思考.上海交通大学学报,2008,42(3):345-359
    [2]中国能源展望.网址: www.cpr.cuhk.edu.hk/resources/press/pdf/070329speech.pdf,2007
    [3] BP石油公司. BP2030能源展望.2011
    [4]王庆一.中国能源现状与前景.中国煤炭.2005,(2):22-27
    [5] REN21. Renewables2011Global status report.2011.8
    [6]刘万琨,张志英,李银风,等.风能与风力发电技术.北京:化学工业出版社,2007:19-38
    [7]王晓蓉,王伟胜,戴慧珠,等.我国风力发电现状与展望.中国电力,2004,31(2):81-84
    [8] Global Wind Energy Council. Global wind report2011.2012
    [9]中国成世界风电装机容量最多国家.网址:http://finance.chinanews.com/ny/2012/03-05/3717322.shtml
    [10]2011年全球风电装机容量实现21%增长.网址http://www.21cbh.com/HTML/2012-2-7/yNNDE3XzM5OTkyNg.html
    [11]国家中长期科学和技术发展规划纲要(2006-2020年).网址:http://www.most.gov.cn/yw/t20060209_28601_0.doc
    [12]陈雷,邢作霞,潘建等.大型风力发电机组技术发展趋势.可再生能源,2003,(l):27-30
    [13]卫蜀作,蔡邠.中国电网高速发展与可再生能源发电的关系.电网技术,2008,32(5):26-30
    [14]许洪华,倪受元.独立运行风电机组的最佳叶尖速速比控制.太阳能学报,1998,19(1):30-35
    [15]薛玉石,韩力,李辉.直驱永磁同步风力发电机组研究现状与发展前景.电机与控制应用.2008,35(4):1-5,21
    [16]宋卓彦,王锡凡,滕予非,等.变速恒频风力发电机组控制技术综述.电力系统自动化,2010(10):8-17
    [17]凌禹,张同庄.变速风力发电系统控制技术综述.电力自动化设备,2008,28(3):122-125
    [18]杨俊华,吴捷,杨金明等.现代控制技术在风能转换系统中的应用.太阳能学报,2004,25(4):530-539
    [19]叶杭冶.风力发电机组的控制技术.北京:机械工业出版社,2006:51-75
    [20]耿华,杨耕,马小亮.并网型风力发电机组的控制技术综述.电力电子技术,2006,40(6):33-36
    [21]黄守道,孙延昭,黄科元.风电机组并网问题研究.电力科学与技术学报,2008,23(2):13-18
    [22] Baroudi J,Dinavahi V,Knight A.A review of power converter topologies forwind generators.Renewable Energy,2007,32(14):2369-2385
    [23] Polinder H, VanDer P, Frank F A. ComParison of direct-drive andgeared generator concepts for wind turbines. IEEE Transactions on EnergyConversion,2006,21(3):725-733
    [24]李建林,高志刚,等.并联背靠背PWM变流器在直驱风力发电系统的应用.电力系统自动化,2008,32(5):59-66
    [25]陈瑶,直驱型风力发电系统全功率并网变流技术的研究[北京交通大学博士学位论文].北京:北京交通大学,2008
    [26]苗立杰.直驱式变速变桨距永磁风力发电机组研制.上海电力,2007,(3):306-309
    [27]黄科元,佘峰,黄守道,孙延昭.基于磁场定向的永磁同步发电机功率控制.电力科学与技术学报,2008,23(2):9-12
    [28] Huang K Y, Huang S D, She F. A Control Strategy for Direct-drivePermanent-magnet Wind-power Generator Using Back-to-back PWMCoverter[C]. The11th International Conference on Electrical Machines andSystems, Wuhan,2008
    [29]廖勇,何金波,姚骏,等.基于变桨距和转矩动态控制的直驱永磁同步风力发电机功率平滑控制.中国电机工程学报,2009,29(18):71-77
    [30]胡家兵.双馈异步风力发电机系统电网故障穿越(不间断)运行研究——基础理论与关键技术[浙江大学博士学位论文].浙江杭州,浙江大学,2009:13-14
    [31]赵仁德.变速恒频双馈风力发电机交流励磁电源研究[浙江大学博士学位论文].浙江杭州,浙江大学,2005:43-87
    [32] Choi J W, Sul S K. Fast Current Controller in Three-Phase AC/DC BoostConverter Using d-q Axis Cross Coupling. IEEE Transactions on PowerElectronics,1998,19(1):179-185
    [33]赵仁德,贺益康,刘其辉.提高PWM整流器抗负载扰动性能研究.电工技术学报,2004,19(8):67-72
    [34]赵仁德,贺益康.无电网电压传感器三相PWM整流器虚拟电网磁链定向矢量控制研究.中国电机工程学报,2005,25(20):56-61
    [35] Kazmierkowski M P, Krishnan R, Blaabjerg F. Control in Power Electronics:Selected Problems.New York: Academic Press,2002
    [36]陈伟,三相电压型PWM整流器的直接功率控制技术研究与实现.[华中科技大学博士论文].湖北武汉,华中科技大学,2009
    [37] Xu L, Zhi D, Yao L. Direct Power Control of Grid Connected Voltage SourceConverters.In: Proc of Int Conf on IEEE Power Engineering Society GeneralMeeting,Tampa,2007:1-6
    [38] Zhi D, Xu L, Williams B W, et al. A New Direct Power Control Strategy forGrid Connected Voltage Source Converters. In:Proc of Int Conf on ElectricalMachines and Systems.Wuhan,2008:1157-1162
    [39]董晓鹏.三相PWM整流器及其控制方法的研究:[西安交通大学博士学位论文].西安:西安交通大学,1998
    [40] Choi J,Sul S. Fast current controller in three-phase AC/DC boost converterusing d-q axis cross coupling. IEEE Trans. on Power Electronics,1998,13(1):179-185
    [41]王久和,李华德.一种新的电压型PWM整流器直接功率控制策略.中国电机工程学报,2005,25(16):47-52
    [42] Lee D,Lee G,Lee K.DC-bus voltage control of three-phase AC/DC PWMconverters using feedback linearization. IEEE Transactions on IndustryApplications,2000,36(3):826-833
    [43] Jung J,Lim S,Nam K.A feedback linearizing control scheme for a PWMconverter-inverter having a very small DC-link capacitor.IEEE Transactions onIndustry Applications,1999,35(5):1124-1131
    [44]田淳,胡育文.永磁同步电机直接转矩控制系统理论及控制方案的研究,电工技术学报,2002,17(l):7-11
    [45]林伟杰.永磁同步电机两种磁场定向控制的比较.电力电子技术,2007,41(1):26-28
    [46] Morimoto S, Takeda Y, Hirasa T. Current Phase control methods for Permanentrnagnet synchronous motors.IEEE transactions on power electronics,1990,5(2):133-139
    [47] Morimoto S, Hatanaka K, Tong Y, et al. Servo drive system and controlcharacteristics of salient pole permanent magnet synchronous motor. IEEETransactions on Industry Applications,1993,29(2):338-343
    [48]李民红,陈明俊,吴小役. PMSM调速系统中最大转矩电流比控制方法的研究.中国电机工程学报,2005,25(21):169-174
    [49] Morimoto S, Tong Y, Hatanaka K, et al. Loss minimization control ofpermanent magnet synchronous motor drives. IEEE Transactions on IndustryApplications,1994,41(5):511-517
    [50]王晓磊,赵克友.永磁同步电机最小损耗的直接转矩控制.电机与控制学报,2007,11(4):331-334
    [51] Depenbrock M. Direct self-control (DSC) of inverter-fed induction machine.IEEE Trans on Power Electronics,1988,3(4):420-429
    [52] Takahashi, Isao, Noguchi, Toshihiko. A new quick-response and high-efficiencycontrol strategy of an inductio motor. IEEE Trans on Industry Applications,1986,22(5):820-827
    [53] Zhong L, Rahman M F, et al. Analysis of direct torque control in permanentmagnet synchronous motor drives.IEEE Trans. on Power Electronics,1997,12(3):528-536
    [54] Zhong L, Rahman. A Direct torque controller for permanent magnetsynchronous motor drives. IEEE Trans. on Energy Conversion,1999,14(3):637-642
    [55] Genduso F, Miceli R, Rando C, et al. Back EMF sensorless-control algorithmfor high-dynamic performance PMSM. IEEE Transactions on IndustrialApplications,2010,57(6):2092-2100
    [56] Shi J, Liu T, Chang Y. Position Control of an Interior Permanent-MagnetSynchronous Motor without Using a Shaft Position Sensor. IEEE Transactionson Industrial Electronics,2007,54(4):1989–2000
    [57]江俊,沈艳霞,纪志,基于EKF的永磁同步电机转子位置和速度估计,系统仿真学报,2005,17(7);1704-1707
    [58]石坚,汤宁平,谭超.永磁同步电机无位置传感器控制系统.电机与控制学报,2007,11(1):50-54
    [59]王丽梅,郭庆鼎.基于转子凸极跟踪的永磁同步电动机转子位置的自检测方法.电工技术学报,2001,22(2):14~17
    [60] KIM J S, SUL S K. Now approach for the low-speed operation of PMSM driveswithout rotational position sensors. IEEE Transactions on Power Electronics,1996,11(3):512-519
    [61]秦峰,贺益康,永磁同步电机转子位置的无传感器自检测.浙江大学学报:工学版,2004,38(4):465-469
    [62]尚喆,赵荣祥,窦汝振.基于自适应滑模观测器的永磁同步电机无位置传感器控制研究.中国电机工程学报,2007,27(3):23-27
    [63]陈振,刘向东,靳永强,等.采用扩展卡尔曼滤波磁链观测器的永磁同步电机直接转矩控制.中国电机工程学报,2008,28(25):75-81
    [64]王庆龙,张崇巍,张兴.基于变结构模型参考自适应系统的永磁同步电机转速辨识,中国电机工程学报,2008,28(9):71-75
    [65] Holtz J, Quan J. Drift and parameter compensated flux estimator for persistentzero stator frequency operation of sensorless controlled induction motors. IEEETransactions on Industry Applications,2003,39(4):1052-1060
    [66]尚喆.基于自适应滑膜观测器的永磁同步电机无位置传感器控制研究.中国电机工程学报,2007,27(3):23~27
    [67] Hongryel K, Jubum S, Lee J, et al. A High-Speed Sliding-Mode Observer forthe Sensorless Speed Control of a PMSM. IEEE Transactions on IndustrialElectronics,2011,58(9):4069–4077
    [68] Chen Z, Tomita M, Doki S, et al. An extended electromotive force model forsensorless control of interior permanent-magnet synchronous motors IEEETrans Ind. Electron,2003,50(2):288-295
    [69] Zhang Y, Vadim U. Sliding Mode Observers for Electric Machines-AnOverview. In:Proc of Int Conf on IEEE Industrial Electronics Societ28thAnnual Conference,2002, Sevilla:1842-1847
    [70] Hasegawa M, Matsui K. Position sensorless control for interior permanentmagnet synchronous motor using adaptive flux observer with inductanceidentification. IET Electric Power Applications,2009,3,(3):209–217
    [71] Ertugrul N, Acarnley P. A new algorithm for sensorless operation of permanentmagnet motors. In:Proc of Int Conf on IEEE Industrial Application SocietAnnual Conference,1992,New York:414-421
    [72] French C, Acarnley P, Control of permanent magnet motor drives using a newposition estimation technique. IEEE Trans. Ind. Applicat.,1996,32(5):1089–1097
    [73]李永东,张猛等,永磁同步电机模型参考自适应无速度传感器控制方法.电气传动,2004(34):302-306
    [74] Kojabadi H, Chang L. Sensorless PMSM drive with MRAS-based adaptivespeed estimator. In:Proc of Int Conf on IEEE37th PESC,2006,Malaga:1-5
    [75] Dhmuadi R, Mohan N. Design and Implementation of an Extended KalmanFilter for the State Estimation of A Permanent Magnet SynchronousMotor,IEEE Trans. on Power Electronics,1991,6(3):491-497
    [76] Bolognani S. Extended Kalman Filter Tuning in Sensorless PMSM Drives.IEEE Trans on Ind. Appl.,2003,39(6):1741-1747
    [77]肖湘宁.电能质量分析与控制.北京:中国电力出版社,2009:324-333
    [78] National Grid Transco. Extracts from the Grid Code-Connection Conditions,www.nationalgrid.com, Feb.2004
    [79]三相电压允许不平衡度,中华人民共和国国家标准-电能质量, GB/T15543-1995,1996
    [80] Bollen M H. Understanding Power Quality Problems: Voltage Sags andInterruptions. New York, IEEE Press,1999:234-252
    [81] Kezunovic M, Liao Y. A New Method for Classification and Characterization ofVoltage Sags. Electric Power Systems Research,2001,58(1):27-35
    [82] Bollen M H, Zhang L D. Different Methods for Classification of Three-PhaseUnbalanced Voltage Dips due to Faults. Electric Power Systems Research,2003,66(1):59-69
    [83] Muyeen S M, Takahashi R, Murata T, et al. Low voltage ride through capabilityenhancement of wind turbine generator system during network disturbance. IETRenewable Power Generation,2009,3(1):65-74
    [84] Carrasco J M, Franquelo L G, Bialasiewicz J T, et al, Power-electronic systemsfor the grid integration of renewable energy sources: A survey.IEEETransactions on Industrial Electronics.2006,53(4):1002-1016
    [85] Vincenti D, Jin H. A three phase regulated PWM rectifier using direct on-linefeed forward input unbalance correction control. IEEE Transactions onIndustrial Electronics,1994,41(5):526–532
    [86] Song H, Nam K. Dual Current Control Scheme for PWM Converter UnderUnbalanced Input Voltage Conditions. IEEE Transactions on IndustrialElectronics,1999,46(5):953-959
    [87]国家电网公司,风电场接入电网技术规定(修订版),2009年2月
    [88] Chong H N, Li R. Unbalanced-Grid-Fault Ride-Through Control for a WindTurbine Inverter. IEEE Transactions on Industry Applications,2008,44(3):845-856
    [89] Saccomando G, Svensson J, Sannino A. Improving Voltage DisturbanceRejection for Variable-Speed Wind Turbines. IEEE Transactions on EnergyConversion,2002,17(3):422-428
    [90] Saccomando G, Svensson J, Sannino A. Improving Voltage DisturbanceRejection for Variable-Speed Wind Turbines. IEEE transactions on energyconversion,2002,17(3):422-428
    [91] Yin B, Oruganti R, Panda S K, et al, An output-power-control strategy for athree-phase PWM rectifier under unbalanced supply conditions. IEEETransactions on Industrial Electronics,2008,55(5):2140–2151
    [92] Roiu D, Bojoi R I, Limongi L R, et al. New Stationary Frame Control Schemefor Three-Phase PWM Rectifiers Under Unbalanced Voltage DipsConditions.IEEE transactions on industry applications,2010,46(1):268-277
    [93] Li Z, Li Y, Wang P, et al. Control of Three-Phase Boost-Type PWM Rectifier inStationary Frame Under Unbalanced Input Voltage. IEEE Transactions onpower electronics,2010,(25)10:2521-2530
    [94] Zmood D N, Holmes D G. Stationary Frame Current Regulation of PWMInverters with ZeroSteady-State Error. IEEE Transactions on Power Electronics,2003,18(3):814-822
    [95] Yuan X, Merk W, Stemmler H, et al. Stationary-Frame Generalized Integratorsfor Current Control of Active Power Filters with Zero Steady-State Error forCurrent Harmonics of Concern Under Unbalanced and Distorted OperatingConditions. IEEE Transactions on Industry Application,2002,38(2):523-532
    [96] Escobar G, Martinez M, Torres R E, et al. An adaptive direct power control forthree phase pwm rectifier in the unbalanced case. in Proc. Int Conf on PowerElectronics Specialists Conference,2008, Rhodes:3150-3155
    [97] Eloy J, Arnaltes S, Rodriguez J L. Direct power control of voltage sourceinverters with unbalanced grid voltages. IET Power Electron,2008,1(3):395-407
    [98] Abad G, Rodriguez M A, Iwanski G, et al. Direct Power Control ofDoubly-Fed-Induction-Generator-Based Wind Turbines Under Unbalanced GridVoltage. IEEE Transactions on Power Electronics,2010,25(2):442-452
    [99] Malinowski M, Jasinski M, Kazmierkowski M P. Simple Direct Power Controlof Three-Phase PWM Rectifier Using Space-Vector Modulation (SVM-DPC).IEEE Transactions on Industrial Electronics,2004,51(2):447-454
    [100] Malinowski M, Marques G, Cichowlas M, et al. New Direct Power Control ofThree-phase PWM Boost Rectifiers under Distorted and Imbalanced LineVoltage Conditions. in Proc. Int Conf on IEEE International Symposium onIndustrial Electronics,2003,:438-443
    [101] Zhou P, He Y, Sun D. Improved Direct Power Control of a DFIG-Based WindTurbine During Network Unbalance. IEEE Transactions on Power Electronics,2009,24(11):2465-2474
    [102] Shang L, Sun D, Hu J. Sliding-mode-based direct power control ofgrid-connected voltage-sourced inverters under unbalanced network conditionsIET Power Electronics,2011,4(5):570–579
    [103] Bouafia A, Gaubert J, Krim F. Predictive Direct Power Control of Three-PhasePulsewidth Modulation (PWM) Rectifier Using Space-Vector Modulation(SVM), IEEE Transactions on Power Electronics,2010,25(1):228-236
    [104]张兴,张龙云,杨淑英,等.风力发电低电压穿越技术综述.电力系统及其自动化学报,2008,20(2):1-8
    [105]关宏亮,赵海翔,王伟胜,等.风电机组低电压穿越功能及其应用.电工技术学报,2007,22(10):173-177
    [106]胡书举,李建林,许洪华.直驱风电系统变流器建模和跌落特性仿真.高电压技术,2008,34(5):949-954
    [107]胡书举,李建林,许洪华.变速恒频风电系统应对电网故障的保护电路分析.变流技术与电力牵引,2008(1):45-50,55
    [108] Freitas W, Morelato A, Xu W. Improvement of induction generator stabilityusing braking resistors, IEEE Trans. Power Syst.,2004,19(2):1247-1249
    [109] Causebrook A, Atkinson D J, Jack A G.Fault ride-through of large wind farmsusing series dynamic braking resistors, IEEE Transactions on Power Systems,2007,22(3):966-975
    [110] Fatu M, Lascu C, Andreescu G D, et al. Voltage sags ride-through of motionsensorless controlled PMSG for wind turbines. in Proc. Int Conf on42nd IEEE-IAS Annual Meeting,2007,171-178
    [111] Erlich I, Kretschmann J, Fortmann J,et al, Modeling of wind turbines based ondoubly-fed induction generators for powersystem stability studies, IEEETransactions on Power Systems,2007,22(3):909-919
    [112] Conroy J F, Watson R, Low-voltage ride-through of a full converter windturbine with permanent magnet generator, IET Renew. Power Gener.,2007,1(3):182-189
    [113]李辉.采用串联网侧变流器的双馈异步风力发电系统运行和控制策略研究
    [重庆大学博士学位论文].重庆,重庆大学,2011:13-14
    [114] Enjeti P N, Choudhury S A.A new control strategy to improve the performanceof a PWM ac to dc converter under unbalanced operating conditions, IEEEtrans.on power Electronics,1993,8(1):493-500
    [115] Stankovic A V, Input-output harmonic elimination of the PWM boost typerectifier under unbalanced operating conditions,[Dissertation], Wisconsin,University of Wisconsin-Madison,1998:112-115
    [116] Rioual P, Pouliquen H, Louis J P. Regulation of a PWM rectifier in theunbalanced network state using a generalized model, IEEE Transaction onPower Electronics,2008,11(3):495-502
    [117] Hochgraf C, Lasseter R.Statcom controls for operation with unbalanced vltages,IEEE Transaction on Power Delivery,1998,13(1):538-544
    [118] Magueed F A, Sannino A, Svensson J. Transient performance of voltage sourceconverter under unbalanced vltage dips, in Proc. Int Conf on35th IEEE powerElectroniscs Specialists Conference,2004, Aachen:1163-1168
    [119] Marco L, Remus T, Frede B. Multiple Harmonics Control for Three-Phase GridConverter Systems with the Use of PI-RES Current Controller in a RotatingFrame, IEEE Transactions on Power Electronics,2006,21(3):836-841
    [120] Werner L. Control of electrical drive, New York, Springer velag.2001:235-238
    [121]孙延昭.永磁直驱风电变流系统控制策略研究.[湖南大学硕士论文],湖南长沙,湖南大学,2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700