双随机位相编码技术—仿射密码的光学实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在回顾双随机位相编码技术的发展历程并总结已有双随机位相编码方案的基础上,本文对这项技术能够实现光学信息保密的密码学原理进行了新的探索,并对其安全性等问题做了较详细的分析讨论,同时就某些具体的应用提出了切实可行的方案。主要研究内容和结论如下:
     提出双随机位相编码技术对光学图像的加密应属于密码学上的仿射密码,它实际上是仿射密码在光学上的一种实现;其信息保密功能源于充分利用了扩散和混淆技术,将明文与密文、密钥与密文之间的对应关系复杂化,从而达到置乱明文的目的:系统地分析了基于双随机位相编码技术的密码体制具备的五个要素以及该密码体制的理论安全性和实际安全性;根据光学成像公式,说明了基于光学4f系统和菲涅耳衍射域的双随机位相编码技术中,原始图像与加密图像之间的仿射映射关系;应用仿射密码模型和随机过程相关理论讨论了加密图像的统计特性,并通过数值模拟验证了加密图像可看作是高斯型白噪声随机过程;对基于双随机位相编码技术的密码体制在密码学上具有的特点进行了总结。
     概述了二维离散多重分数傅里叶变换的光学图像加密技术,指出其对图像的加密原理依然是属于仿射密码范畴,并推导了基于标准加权类分数傅里叶变换的双随机位相编码过程的仿射映射表达式;对基于光波传播的二次位相系统
The development of the double random phase encryption technique has been reviewed in this doctoral dissertation. Based on the summary of the existing schemes of double random phase encryption, a new research for the cryptology explanation of its ability to realize maintaining secrecy of optical information has been implemented. Some detailed analysis and discussion have been made for the problems such as security of this technique. Operable schemes have been proposed for some practical applications. The main contents and results have been summarized as follows:
    It is put forward that the encryption mechanism of optical images by the double random phase encryption technique can be categorized to the affine cipher on the cryptology and this technique can be regarded as an optical realization of the affine cipher. The secrecy comes from making best of diffusion and confusion techniques. The relationships between the plaintext and the ciphertext, the plaintext and the key have been complicated for the purpose of disordering the plaintext. Five main factors of the cryptosystem based on the double random phase encryption have been analyzed systematically as well as the theoretical security and practical security of that cryptosystem. According to the equation of imaging, the affine map relationship between the original image and encrypted image has been illustrated in the technique based on the optical 4f system and Fresnel diffraction domain. The statistical property of the encrypted image has been discussed by utilizing the model of affine cipher and the related theory of stochastic process. It has been verified by numerical simulations that the encrypted image may be regarded as stochastic white Gaussian noise. The characteristics on cryptology of the cryptosystem based on the double random phase encryption have been summarized.
引文
1.冯登国,裴定一编著.密码学导引.科学出版社,1999.4
    2.张焕国,刘玉珍编著.密码学引论.武汉大学出版社,2003.10
    3.田丽华.编码理论.西安电子科技大学出版社.2003。8
    4.张静娟,司徒国海,张艳.基于随机位相编码技术的光学安全系统的研究进展.中国科学院研究生院学报,2003,20(3):265-272
    5.曾贵华,王育民,王新梅.基于物理学的密码体制.通信学报,2000,21(1):49-54
    6. P. Stephen, R. Gajda, T. Sznplik. Distributed kinoforms in optical security applications. Opt. Eng. 1996, 35(9):2453-2458
    7. T. G. Walker. Holography without phptpgraphy. Am. J. Phys. 1999, 67(9):783-785
    8. B. Javidi, J. L. Horner. Optical pattern recognition for validation and security verification. Opt. Eng. 1994, 33(6):1752-1756
    9. P. Refregier, B. Javidi. Optical image encryption based on input plane and Fourier plane random encoding. Opt. lett. 1995, 20(7):767-769
    10. B. Javidi, Securing information with optical technologies. Physics Today, 1997, 50(3):27-32
    11. B. Javidi, A. Sergent, G. S. Zhang, L. Guibert. Fault tolerance properties of a double phase encoding encryption technique, Opt. Eng. 1997, 36(4): 992-998
    12. L. G.. Neto, Y. Sheng. Optical implementation of image encryption using random phase encoding. Opt. Eng. 1996, 35(9): 2459-2463
    13. B. Javidi, L. Bernard, N. Towghi. Noise performance of double-phase encryption compare to XOR encryption. Opt. Eng. 1999, 38(1): 9-19
    14. J. W. Han, C. S. Park, D. H. Ryu, E. S. Kim. Optical image encryption based on XOR operations. Opt. Eng. 1999, 38(1): 47-54
    15. F. Goudail, B. Javidi, P. Refregier. Influence of a perturbation in a double phase-encoding system. J. Opt. Soc. Am. A. 1998, 15 (10): 2629-2637
    16. B. Wang, C. C. Sun, W. C. Su, E. T. Chiou. Shift-tolerance property of an optical double-random phase-encoding encryption system. Appl. Opt. 2000, 39 (26): 4788-4793
    17. B. Wang, C. C. Sun. Enhancement of signal-to-noise ratio of a double random phase encoding encryption system. Opt. Eng. 2001, 40(8):1502-1506
    18. B. Wang, J. Y. Chang, W. C. Su, C. C. Sun. Optical security using a random binary phase code in volume holograms. Opt. Eng. 2001, 43(9): 2048-2052
    19. B. Jabidi, A, Sergent, E. Ahouzi. Performance of double random phase encoding encryption technique using binarized encrypted images. Opt. Eng. 1998, 37(2):565-569
    20. W. C. Su, C. H. Lin. There-dimensional shifting selectivity of decryption phase mask in a double random phase encoding holographic memory. Opt. Comm. 2004, 241:29-41
    21. T. Nomura, B. Javidi. Optical encryption system with a binary key code. Appl. Opt., 2000, 39 (26): 4783-4787
    22. B. Javidi, G. S. Zhang; J. Li. Encrypted optical memory using double-random phase encoding. Appl. Opt. 1997, 36(5): 1054-1058
    23. B. Jabidi, A, Sergent. Fully phase encoded key and biometrics for security verification. Opt. Eng. 1997, 36(3): 935-942
    24. J. Rodolfo, H. Rabenbach, J. P. Huignard. Performance of a photorefractive joint transform correlator for fingerprint identification. Ppt. Eng. 1995, 34: 1166-1171
    25. T. Nomura, B. Javidi. Optical encryption using a joint transform correlator architecture. Opt. Eng. 2000, 39(8):2031-2035
    26. D. Weber, J. Trolinger. Novel implementation of nonlinear joint transform correlator in optical security and validation. Opt. Eng. 1999, 38 (1):62-68
    27. B. Y. Soon, M. A Karim, M. S Alam. Using the joint transform correlator as the feature extractor for the nearest neighbor classifier. Opt. Eng. 1999, 38 (1):39-46
    28. B. Javidi. G. S. Zhang; J. Li. Experimental demonstration of the random phase encoding technique for image encryption and security verification. Opt. Eng. 1996, 35(9): 2506-2512
    29. T. Nomura, S. Mikan, Y. Morimoto, et al. Secure optical data storage with random phase key codes by use of a configuration of a joint transform eorrelator. Appl. Opt. 2003, 42(8): 1508-1514
    30. G. S. Pati, G. Unnikrishnan, K. Singh. Multichannel image addition and subtraction using joint-transform correlator architecture. Opt. Comm. 1998, 150(1-6): 33-37
    31. R. K. Wang, I. A. Watson, C. Chatwin. Random phase encoding for optical security. Opt. Eng. 1996, 35(9): 2464-2469
    32.刘福民,翟宏琛,杨晓苹.基于相息图迭代的随机相位加密.物理学报.2003,52(10):2462-2465
    33.杨晓苹,翟宏琛.双随机相位加密中相息图的优化设计.物理学报.2005,54(4):1578-1582
    34.张培琨,李育林,刘继芳等.随机相位光学防伪中的前向迭代算法.激光杂志.1999,20(4):13-15
    35. K. Singh, G. Unnikrishnan, N. K. Nishchal Photorefractive optical processing for data security. Proceedings of the SPIE-The International Society for Optical Engineering, 2002, 4803:205-219
    36. L. F. Yu, L. L. Cai. Iterative algorithm with a constraint condition for numerical reconstruction of a three-dimensional object from its hologram. J. Opt. Soc. Am. A, 2001, 18(5):1033-1045
    37. H. T. Chang, W. C. Lu, C. J. Kuo. Multiple-phase retrieval for optical security systems by use of random-phase encoding. Appl. Opt. 2002, 41(23): 4825-34
    38. G. Z. Yang, B. Z. Dong, B. Y. Gu, et al. Gerchberg-Saxton and Yang-Gu algorithms for phase retrieval in a nonunitary transform system: a comparison. Appl. Opt. 1994, 33(2,): 209-18
    39. J. R. Fienup. Phase retrieval algorithm: a comparison. Appl Opt, 1982, 21 (15) :2758-2769
    40. M. A. Golub, V. S. Pavelyev. Phase coding in iterative synthesis of computer-generated holograms. Opt & Laser Tech, 1995, 27(4): 223-228
    41. Y. Li, K. Kreske, J. Rosen. Security and encryption optical systems based on a correlator with significant output images. Appl. Opt. 2000, 39 (29): 5295-5301
    42. D. Abookasis, O. Arazi, J. Rosen, B. Javidi. Security optical systems based on a joint transform correlator with significant output images. Opt. Eng. 2001, 40 (8): 1584-1589
    43. S. Kishk, B. Javidi.. Information hiding technique with double phase encoding. Appl. Opt. 2002, 41(26):5462-5470
    44. J. Rosen, B. Javidi. Hidden images in halftone pictures. Appl. Opt. 2001, 40 (20): 3346-3353
    45. N. Takai, Y. Mifune. Digital watermarking by a holographic technique. Appl. Opt. 2002, 41 (5): 865-873
    46. B. Javidi, N. Towghi, J. Li. Decision regions of Fourier-plane nonlinear filtering for image recognition. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1999, 16(1): 85-96
    47. T. C. Pooh, T. Kim, K. Doh. Optical scanning cryptography for secure wireless transmission. Appl. Opt. 2003, 42(32): 6496-6503
    48. X. D. Tan, O. Matoba, T. Shimura, K. Kuroda. Improvement in holographic storage capacity by use of double-random phase encryption. Appl. Opt. 2001, 40(26):4721-4727
    49. G Unnikrishnan, J. Joseph, K. Singh. A non-zero order joint transform correlator for space-variant pattern recognition. Opt. Comm. 1999, 171(1-3): 149-58
    50. G.. Unnikrishnan, J. Joseph, K. Singh. Optical encryption system that uses phase conjugation in a photorefractive crystal. Appl. Opt. 1998, 37(35):8181-8186
    51. B. Javidi and E. Aouzi, Optical security system with Fourier plane encoding. Appl. Opt. 1998, 37(26):6247-6255
    52. M. Tebaldi, J. F. Barrera,; R. Henao, et al. Multiplexing encryption-decryption via lateral shifting of a random phase mask. Opt. Comm. 2006, 259(2): 532-536
    53. X. F. Meng, L. Z. Cai, M. Z. He, et al. Cross-talk-free double-image encryption and watermarking with amplitude-phase separate modulations. Journal of Optics A: Pure and Applied Optics. 2005, 7(11): 624-631
    54.苏显渝,李继陶 编著.信息光学.科学出版社,1999.9
    55.Douglas R. Stinson著,冯登国译.密码学原理与实践.电子工业出版社,2003.2
    56. G. Unnikrishnan, J. Joseph, K. Singh. Optical encryption by double-random phase encoding in the fractional Fourier domain. Opt. Lett., 2000, 25(12): 887-889
    57. G. Unnikrishnan, K. Singh. Optical encryption using quadratic phase systems. Opt Comm., 2001,193: 51-67
    58. G. Unnikrishnan, J. Joseph, K. Singh. Fractional Fourier domain encrypted holographic memory by use of anamorphic optical system. Appl. Opt. 2001, 40(2):299-306
    59. S. T. Liu, L. Yu, B. H. Zhu. Optical image encryption by cascaded fractional Fourier transforms with random phase filtering. Opt. Comm. 2001, 187: 57-63
    60. N. K. Nishchal, J. Joseph, K. Singh. Securing information using fractional Fourier transform in digital holography. Opt. Comm. 2004, 235:253-259
    61. N. N. Kumar, J. Joby, S. Kehar. Fully phase-based encryption using fractional order Fourier domain random phase encoding: Error analysis. Opt. Eng. 2004, 43(10): 2266-2273
    62. G. Unnikrishnan, K. Singh. Double random fractional Fourier-domain encoding for optical security, Opt Eng. 2000, 39(11): 2853-2859
    63. N. K. Nishchal, G. Unnikrishnan, J. Joseph, K. Singh. Optical encryption using a localized fractional Fourier transform. Opt Eng. 2003, 42(12): 3566-3571
    64.冉启文,谭立英著.分数傅立叶光学导论.科学出版社,2004.3
    65. I. S. Yetik, M. A. Kutay, H. M. Ozaktas. Optimization of orders in multichannei fractional Fourier domain filtering circuits and its application to the synthesis of mutual-intensity distributions. Appl Opt, 2002, 41(20): 4078-4084
    66. O. Matoba, B. Javidi. Encrypted optical memory system using three-dimensional keys in the Fresnel domain. Opt. Lett. 1999, 24 ( ): 762-764
    67. G. H. Situ, J. J. Zhang, Double random-phase encoding in the Fresnei domain. Opt. Lett. 2004, 29(14): 1584-1586
    68. G. H. Situ, J. J. Zhang. Multiple-image encryption by wavelength multiplexing. Opt. Lett. 2005, 30(11): 1306-1308
    69. A. H. Carrieri. Panoramic infrared-imaging spectroradiometer model with reverse phase-modulated beam broadcasting. Appl. Opt. 1997, 36(9): 1952-1964
    70. N. Towghi, B. Javidi, Z. Luo. Fully phase encrypted image processor. J. Opt. Soc. Am. A. 1999, 16 (8): 1915-1927
    71. P. C. Mogensen, J. Gluckstad. Phase-only optical encryption. Opt. Lett. 2000, 25 (8): 566-568
    72. P. C. Mogensen, J. Giuckstad. Phase-only optical encryption of a fixed mask. Appl. Opt. 2001, 40 (8): 1226-1235
    73. J. A. Davis, D. M. Cottrell, J. Campos, et al. Encoding amplitude information onto phase-only filters. Appl. Opt. 1999, 38 (23): 5004-5013
    74. J. Gluckstad. Phase constrast image synthesis. Opt Comm. 1996, 130: 225-230
    75. P. C. Mogensen, J. Gluckstad. Reverse phase contrast: an experimental demonstration. Appl. Opt. 2002, 41 (11):2103~2110
    76. H. G. Yang, E. S. Kim. Practical image encryption scheme by real-valued data. Opt Eng, 1996, 35 (9): 2473-2478
    77. S. Lai. Security holograms using an encoded reference wave. Opt. Eng. 1996, 35(9): 2470-2472
    78. B. Javidi. T. Nomura. Securing information by use of digital holography. Opt. Lett. 2000, 25(1):28-30
    79. E. Tajahuerce, O. Matoba, S. C. Verrall, B. Javidi. Optoelectronic information encryption with phase-shifting interferometry. Appl. Opt. 2000, 39(14): 2313-2320
    80. E. Tajahuerce, B. Javidi. Encrypting three-dimensional information with digital holography. Appl. Opt. 2000, 39(35):6595-6601
    81. L. F. Yu, L. L. Cai. Multidimensional data encryption with digital holography. Opt. Comm. 2003, 215:271-284
    82. O. Matoba, B. Javidi. Optical retrieval of encrypted digital holograms for secure real-time display. Opt. Lett. 2002, 27 (5): 321-323
    83. L. Z. Cai. M. Z. He, Q. Liu, X. L. Yang. Digital image encryption and watermarking by phase-shifting interferometry. Appl. Opt. 2004(15): 3078-3084
    84. R. John, J. Joseph, K. Singh. Phase-image-based content-addressable holographic data storage with security. Journal of Optics A: Pure and Applied Optics. 2005, 7(3): 123-128
    85. C. M. Shin, S. J. Kim. Image encryption using modified exclusive-OR rules and phase-wrapping technique. Opt. Comm. 2005, 254(1-3): 67-75
    86. E. G. Johnson, J. D. Brasher. Phase encryption of biometrics in diffractive optical elements. Opt. Lett. 1996, 21(16):1271-1273
    87. M. Yamazaki, J. Ohtsubo. Optimization of encrypted holograms in optical security systems. Opt. Eng. 2001, 40 (1): 132-137
    88. S Kirkpatrick. Optimization by simulated annealing. Science, 1983, 220: 671-679
    89. J. F. Heanue, M. C. Bashaw, L. Hesselink. Encrypted holographic data storage based on orthogonal-phase-code multiplexing. Appl. Opt. 1995, 34(26):6012-6015
    90.林元烈编著.应用随机过程.清华大学出版社.2003
    91.霍宏涛编著.数字图像处理.机械工业出版社.2003
    92. M. Z. He, L. Z. Cai, Q. Liu, X. L. Yang. Phase-only encryption and watermarking based on phase-shitting interferometry. Appl. Opt. 2005, 44(13): 2600-2606
    93. R. R. Kaliman, D. H. Goldstein. Phase-encoding input images for optical pattern recognition. Opt Eng, 1994, 33 (6): 1806-1812
    94.沈柯著.光学中的混沌.东北师范大学出版社,1999.10
    95.张培琨,李育林,刘家英等.用浑沌序列构造相位列阵加密和解密光学图象.光子学报.1998,27(11):979-982
    96.李榕,李萍.双生物识别图象的光学加密方法研究.激光杂志.2005,26(3):67-69
    97. S. Hiroyuki, Y. Masahiro, Y. Masuyoshi, et al. Experimental evaluation of fingerprint verification system based on double random phase encoding. Opt. Exp. 2006, 14(5): 1755-1764
    98. S. Q. Zhang, M. A. Karim. Color image encryption using double random phase encoding. Microwave and Optical Technology Letters. 1999,21(5): 318-23
    99. P. Pires, J. M. Rebordao. Color dynamics of diffraction gratings: evaluation and applications in optical security. Appl Opt. 1999,38 (35) :7183 - 7192
    100. E. Tajahuerce, B. Javidi, P. Andres. Optical security and encryption with totally incoherent light1 Opt Lett, 2001 ,26 (10): 678-680
    101. G. Unnikrishnan , M. Pohit, K. Singh. A polarization encoded optical encryption system using ferroelectric spatial light modulator. Opt. Comm. 2000, 185:25-31
    102. J. A. Davis, D. E. McNamara, D. M. Cottrell. Two-dimensional polarization encoding with a phase-only liquid-crystal spatial light modulator. Appl Opt ,2000,39 (10): 1549-1554
    103. O. Matoba, B. Javidi. Secure holographic memory by double-random polarization encryption. Appl. Opt. 2004,43(14):2915-2919
    104. P. C. Mogensen , J. Gluckstad. A phase-based optical encryption system with polarization encoding. Opt. Comm. 2000, 173 : 177-183
    105. X. D. Tan, O. Matoba, Y. Okada-Shudo, et al. Secure optical memory system with polarization encryption. Appl Opt. 2001 ,40 (14): 2310-2315
    106. B. Javidi, T. Nomura. Polarization encoding for optical security systems. Opt. Eng. 2000, 39(9):2439-2443
    107. O. Matoba, B. Javidi. Secure holographic memory by double-random polarization encryption. Appl. Opt., 2004, 43(14): 2915-2919
    108. O. Matoba, B. Javidi. Security ultrafast communication with spatial-temporal converters1 Appl. Opt. 2000, 39 (17) : 2975-2981
    109. B. Y. Soon, M. S. Alam, M. A. Karim. Improved feature extraction by using a joint transform correlator. Appl Opt, 1998,37 (5) :821-827
    110. D Cotter , R. J. Manning, K.J. Blow, et al. Nonlinear optics for high-speed digital information processing. Science, 1999,286 (5444): 1523-1528

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700