X射线微分相位衬度CT重建算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对于弱吸收物质,X射线相衬成像方法使用折射信息,而不是衰减信息作为成像信号,可以提供更加丰富的关于物体内部结构的信息。到现在为止,X射线相衬成像技术已经发展出四大类方法:干涉成像法,相位传播法,衍射增强成像法和光栅成像法。前三种方法依赖于具有空间相干性或时间相干性的X射线源。然而,此类射线源往往造价昂贵且体型巨大,这是相位衬度成像方法走向实际应用的主要障碍。光栅成像法可以采用常规x射线管实现相位衬度成像,与其他方法相比,更具有实际应用的可能。干涉成像法可以测量X射线的相位分布,相位传播法可以测量X射线相位的二阶梯度分布,衍射增强成像法和光栅成像法可以测量x射线相位的一阶梯度分布。因此,衍射增强成像法和光栅成像法常被统称为微分相位衬度(Differential Phase-Contrast, DPC)成像法。基于这两种成像方法的计算机断层成像(Computed-Tomography, CT)技术可被称为DPC-CT。
     通常,相位衬度CT需要在每个角度下多次曝光,进而导致了相当长的曝光时间和较大的辐射剂量。因此,如何在数据量较少的条件下获得更高质量的重建结果是DPC-CT中一个值得研究的问题。在基于同步辐射源的DPC-CT的实验中,射线束具有极高的平行度,CT重建问题可通过平行束算法解决。在基于常规X射线管的DPC-CT的实验中,射线源发射出球面波,扇形或锥形束算法更加合适。虽然锥形束可以覆盖物体的若干断层,但要重建柱状物体,还必须交替执行平移操作和旋转操作。相比之下,螺旋扫描模式允许平移操作和旋转操作同时执行,具有较高的重建效率。针对螺旋DPC-CT的研究尚不多见。针对少数据量重建和螺旋DPC-CT重建这两个问题,我们研究了如下三个方面的内容:
     (1)将压缩感知理论引入DPC-CT重建中用于解决少数据量重建问题。本文测试了经典的压缩感知算法如OMP算法、GPSR算法、近似点(Proximal Point, PP)算法和Bregman分离执行(Bregman Operator Splitting, BOS)算法在DPC-CT中的重建效果。在此之后,本文将经典的ART算法融入近似点算法和BOS算法中,提出了适合相位项梯度重建的ART-PP算法和ART-BOS算法。随后,本文又将ART-BOS算法推广至相位项直接重建中。该算法拥有比经典的ART-POCS-TV算法更快的收敛速度。
     (2)将“正反投影法”融入螺旋DPC-CT重建当中,提出了螺旋DPC-CT的近似重建方法。该方法的基本思想是根据物体临近断层之间的相关性,首先将螺旋扫描条件下采集到的数据插值到某个断层上,估计出该断层的正弦图,再根据“正反投影法”提取折射角,最后通过扇形束重建算法完成重建。该方法的优点是仅需一次扫描即可重建三维物体,缺点是缺乏严格的理论支持。
     (3)提出了一种螺旋锥束近似重建算法和一种精确重建算法,这两种算法都是基于PI线的。近似重建算法的基本思想是将锥形束等效为若干倾斜扇束,再用扇形束算法进行重建。该算法适用于一维光栅成像的情形,在小锥角条件下可以取得良好的重建效果。精确重建算法将二维微分相位衬度投影与相位衬度沿X射线传播方向的积分值之间的关系表达为一个多元偏微分方程的形式,再将该方程融入吸收衬度螺旋锥束CT的Katsevich算法中,理论上适用于任意锥角情形。由于精确算法在数学上的严密性,它可对DPC-CT算法的应用和研究起到一定的指导作用。
For weakly absorbing objects, x-ray phase-contrast-imaging methods use the phase shift rather than the absorption as the imaging signal and offer more details regarding the internal structure. Until now, several x-ray phase-contrast-imaging methods have been proposed, including interferometer, propagation, analyzer-crystal and analyzer-grating methods. The first three methods rely on the spatial coherence or temporal coherence of the x-ray source. However, such x-ray sources are often expensive, which is the main obstacle for the phase-contrast-imaging methods to application. The grating-based methods seem more promising than others in realizing practical phase-contrast imaging systems by using conventional x-ray tube. Unlike other methods, DEI-and grating-based imaging methods measure the gradient of the phase distribution, which is called differential phase-contrast (DPC) imaging technology. The Computed-Tomography using DEI and/or grating-based imaging methods are usually called differential phase-contrast CT (DPC-CT).
     DPC-CT reconstruction usually requires the refraction angle at each view should be extracted from several raw measurements captured at the identical view, which leads to unacceptably long exposure time and huge X-ray doses. In synchrotron radiation-based DPC-CT experiments, the radiation beams can be well approximated as parallel beams, and the reconstruction problem can be solved by the use of parallel-beam algorithms. In conventional x-ray tube based experiments, the x-ray tube emits spherical wave, the fan or cone-beam algorithms are more suitable. For rod-shaped samples, due to the limitation of the grating size, the fan or cone beams cannot recover the whole object at the same time. Thus, if a rod-shaped sample is required to be reconstructed by above algorithms, one should alternately perform translation and rotation on this sample. Helical cone-beam CT allows the translation and rotation operations to be performed simultaneously, which may be more efficient than other algorithms in the case of rod-shaped samples. However, few researches on helical DPC-CT were reported. In order to solve the fewer data reconstruction and helical DPC-CT problems, we carried out our search along the following three aspects:
     First, we introduce the Compressed Sensing theory into DPC-CT reconstruction to solve the fewer data reconstruction problem. We compare several classic algorithms such as Orthogonal Matching Pursuit (OMP) algorithm, GPSR algorithm, Proximal-Point algorithm and Bregman Operator Splitting (BOS) algorithm in DPC-CT reconstruction. After that, we introduce the Proximal-Point algorithm and Bregman Operator Splitting (BOS) algorithm into DPC-CT reconstruction and propose two alternating iteration algorithms, ART-PP and ART-BOS algorithm to reconstruct the gradient of refractive index decrement, for sparse angular DPC-CT. The ART-BOS algorithm is also extended to reconstruct the refractive index decrement, whose convergence speed is faster than that of ART-POCS-TV algorithm. The numerical simulation and experiment results show that the proposed algorithm can provide higher quality reconstructions in sparse angular condition.
     Second, we propose an approximate strategy for helical fan-beam DPC-CT reconstruction by combining the "Forward-Backward projection method" and the helical scanning mode. The main idea of this strategy is approximating the helical fan/cone-beam geometry by single/multiple parallel fan-beams such that the2D sinogram of a given slice can be synthesized from the neighboring fan-beams by interpolation methods. Once the sinogram has been synthesized, the given slice can be reconstructed using any2D reconstruction methods. The main advantage of this algorithm is that only one helical scanning is required. However, as approximate one, this strategy suffers the problem of strict theoretical support.
     Third, an approximate algorithm and a theoretically exact algorithm for helical cone-beam DPC-CT are proposed, which are both based on the concept of PI-line. The approximate algorithm treats cone-beam as a combination of many oblique fan-beams, and the refractive index decrements are directly reconstructed by modifying fan-beam algorithm. The exact algorithm establishes a general relationship between the derivative data required by Katsevich algorithm and the two-dimension refraction angle data. Thus, the Katsevich algorithm, which is for absorption-based helical cone-beam CT, can be implemented to solve the helical cone-beam DPC-CT reconstruction problem. Due to the theoretical support, the exact algorithm may play a guiding role in the research and application of helical cone-beam DPC-CT.
引文
[1]张朝宗,郭志平,张鹏,等.工业CT技术和原理[M].北京:科学出版社,2009.
    [2]谢强.计算机断层成像技术[M].北京:科学出版社,2006.
    [3]曾更生.医学图像重建入门工业[M].北京:高等教育出版社,2009.
    [4]Cormack A M. Representation of a function by its line integrals with some radiological application[J]. Journal of Applied Physics,1963,34(9):2722-2727.
    [5]Hounsfield G N. Historical notes on computerized axial tomography[J]. Canadican Association of Radiologists,1976,27(3):135-142.
    [6]Paxton R, Ambrose J. A brief review of the EMI scanner of the first 650 patients[J]. British Journal of Radiology,1974,47(561):530-565.
    [7]Pisano E D, Johnston R E, Chapman D, et al. Human breast cancer specimens Diffraction-enhanced imaging with histologic correlation-Improved conspicuity of lesion detail compared with digital radiography[J]. Radiology,2000,214(3): 895-901.
    [8]Nugent K A, Gureyev T E, Cookson D F, et al. Quantitative phase imaging using hard X-rays[J]. Physical Review Letters,1996,77(14):2961-2964.
    [9]Wernick M N, Wirjadi O, Chapman D, et al. Multiple-image radiography[J]. Physics in Medicine and Biology,2003,48(23):3875-3895.
    [10]Bonse U. X-Ray imaging:past and present [C]. Proceedings of SPIE.7078:Developments in X-Ray Tomography Ⅵ, September 04,2008, San Diego, California:0708021-8.
    [11]Wei Y, Yu H, Hsieh J, et al. Scheme of computed tomography [J]. Journal of X-Ray Science and Technology,2007,15(4):235-270.
    [12]Noo F, Clackdoyle R, Pack J D. A two-step Hilbert transform method for 2D image Reconstruction [J]. Physics in Medicine and Biology,2004,49 (17):3903-3923.
    [13]Ye Y, Yu H, Wei Y, et al. A general local reconstruction approach based on a Truncated Hilbert Transform[J]. Journal of Biomedical Imaging,2007,2007(1):636341-8.
    [14]Defrise M, Noo F, Clackdoyle R, et al. Truncated Hilbert transform and image reconstruction from limited tomographic data[J]. Inverse Problems,2006,22(3): 1037-1053.
    [15]Wang G, Yu H. A scheme for multisource interior tomography[J]. Medical Physics, 2009,36(8):3575-3581.
    [16]Yu H, Ye Y, Wang G. Interior reconstruction using the truncated Hilbert transform via singular value decomposition [J]. Journal of X-Ray Science and Technology,2008, 16(4):243-251.
    [17]Chen M, Zhang H, Zhang P. BPF-based reconstruction algorithm for multiple rotation-translation scan model[J]. Progress in Natural Science,2008,18(2): 209-216.
    [18]陈明,张惠滔,陈德峰,等.转台单侧多次偏置的旋转扫描模式的重建算法[J].无损检测,2009,31(1):29-34.
    [19]Wei Y, Yu H, Wang G. Integral invariants for computed tomography[J]. IEEE Signal Processing Letters,2006,13(9):549-552.
    [20]Averbuch A, Sedelnikov I, Shkolnisky Y. CT Reconstruction From Parallel and Fan-Beam Projections by a 2-D Discrete Radon Transform[J]. IEEE Transactions on Image Processing,2012,21(2):733-741.
    [21]You J, Liang Z, Zeng G L. A unified reconstruction framework for both parallel-beam and variable focal-length fan-beam collimators by a Cormack-type inversion of exponential Radon transform [J]. IEEE Transactions on Medical Imaging,1999,18(1): 59-65.
    [22]Wang G, Wei Y. On a derivative-free fan-beam reconstruction formula[J]. IEEE Transactions on Image Processing,2011,20(4):1173-1176.
    [23]Zeng G L, Gullberg G T. Short-scan fan beam algorithm for non-circular detector orbits[C]. Proceedings of SPIE.1445:Medical Imaging V, September 04,1991, San Jose, CA 332-340:332-340.
    [24]Redford K, Wang G, Vannier M W. Equiangular fan-beam CT reconstruction for a non-circular fan-beam formula[J]. Optical Engineering,1999,38(1):1335-1339.
    [25]Wang G, Lin T H, Cheng P C. A derivative-free non-circular fan-beam reconstruction formula[J]. IEEE Transactions on Image Processing,1993,2(4):543-547.
    [26]Noo F, Defrise M, Clackdoyle R, et al. Image reconstruction from fan-beam projections on less than a short scan[J]. Physics in Medicine and Biology,2002, 47(14):2525-2546.
    [27]Pan X. Optimal noise control in and fast reconstruction of fan-beam computed tomography image[J]. Medical Physics,1999,26(5):689-697
    [28]Pan X, Yu L. Image reconstruction with shift-variant filtration and its implication for noise and resolution properties in fan-beam tomography[J]. Medical Physics, 2003,30(4):590-600.
    [29]You J, Zeng G L. Hilbert transform based FBP algorithm for fan-beam CT full and partialscans [J]. IEEE Transactions on Medical Imaging,2007,26(2):190-199.
    [30]Silver M D. A method for including redundant data in computed tomography[J]. Medical Physics,2000,27(4):773-774
    [31]Zeng G L. Nonuniform noise propagation by using the ramp filter in fan-beam computed tomography[J]. IEEE Transactions on Medical Imaging,2004,23(6):690-695.
    [32]Yu L, Pan X. Half-scan fan-beam computed tomography with improved noise and resolution properties[J]. Medical Physics,2003,30(1):2629-2637.
    [33]Wang J, Lu H, Li T, et al. An alternative solution to the nonuniform noise propagation problem in fan-beam FBP image reconstruct ion [J]. Medical Physics,2005, 32(11):3389-3394.
    [34]Wei Y, Hsieh J, Wang G. General formula for fan-beam computed tomography[J]. Physical Review Letters,2005,95(25):2581021-4.
    [35]Zou Y, Pan X, Sidky E Y. Image reconstruction in regions-of-interest from truncated projections in a reduced fan-beam scan[J]. Physics in Medicine and Biology,2005, 50(1); 13-28.
    [36]Dennerlein F, Noo F, Hornegger J, et al. Fan-beam filtered backprojection reconstruction without backprojection weight[J]. Physics in Medicine and Biology, 2007,52(11):3227-3240.
    [37]王亮,张鹏.扇束CT几何伪影的校正方法[J].电子学报,2011,39(5):1143-1149.
    [38]Wei Y, Wang G, Hsieh J. Relation between the filtered backprojection algorithm and the backprojection algorithm in CT[J]. IEEE Signal Processing Letters,2005, 12(9):633-636.
    [39]George A K, Bresler Y. A fast fan-beam back projection algorithm based on efficient sampling[J]. Physics in Medicine and Biology,2013,58(5):1415-1431.
    [40]Tuy H K. An inversion formula for cone-beam reconstruction[J]. SIAM Journal on Applied Mathematics,1983,43(3):546-552.
    [41]Feldkamp L A, Davis L C, Kress J W. Practical cone-beam algorithm[J]. Optical Society of America,1984,1(6):612-619.
    [42]Wang G, Lin T H, Cheng P C. Error analysis on a generalized Feldkamps' cone-beam computed tomography algorithm[J]. Journal on Scanning Microscopy,1995,17(6): 361-370.
    [43]Wang G, Lin T H, Cheng P C, et al. Point spread function of the general cone-beam x-ray reconstruction formula[J]. Journal on Scanning Microscopy,1992,14(4): 187-193.
    [44]Wang G, Lin T H, Cheng P C, et al. A general cone-beam reconstruction algorithm[J]. IEEE Transactions on Medical Imaging,1993,12(3):486-495.
    [45]Swennen G R J, Mommaerts M Y, Abeloos J, et al. A cone-beam CT based technique to augment the 3D virtual skull model with a detailed dental surface [J]. International Journal of Oral and Maxillofacial Surgery,2009,38(1):48-57.
    [46]Roberts J A, Drage N A, Davies J, et al. Effective dose from cone beam CT examinations in dentistry[J]. The British Journal of Radiology,2009,82(973): 35-40.
    [47]Grass M, Kohler T, Proksa R, et al.3D cone-beam CT reconstruction for circular trajectories[J]. Physics in Medicine and Biology,2000,45(2):329-347.
    [48]Liang W, Zhang H, Hu G S. Optimized implementation of the FDK algorithm on one digital signal processor[J]. Tsinghua Science & Technology,2010,15(1):108-113.
    [49]Li L, Xing Y, Chen Z, et al. A curve-filtered FDK (C-FDK) reconstruction algorithm for circular cone-beam CT[J]. Journal of X-Ray Science and Technology,2011,19(3): 355-371.
    [50]Katsevich A. Theoretically exact filtered backprojection-type inversion algorithm for spiral CT[J]. SIAM Journal on Applied Mathematics,2002,62(6):2012-2026.
    [51]Katsevich A. Analysis of an exact inversion algorithm for spiral cone-beam CT[J]. Physics in Medicine and Biology,2002,47(15):2583-2597.
    [52]Katsevich A. Microlocal analysis of an FBP algorithm for truncated spiral cone beam data[J]. Journal of Fourier Analysis and Applications,2002,8(5):407-426.
    [53]Katsevich A. An improved exact filtered backprojection algorithm for spiral computed tomography[J]. Advances in Applied Mathematics,2004,32(4):681-697.
    [54]Noo F, Pack R J, Heuscher D, et al. Exact helical reconstruction using native cone-beam geometries[J]. Physics in Medicine and Biology,2003,48(23): 3787-3818.
    [55]Yu H, Wang G. Studies on implementation of the Katsevich algorithm for spiral cone-beam CT[J]. Journal of X-Ray Science and Technology,2004,12(2):97-116.
    [56]Yu H, Wang G. Parallel implementation of Katsevich's FBP algorithm[J]. International Journal of Biomedical Imaging,2006,2006(5):174631-8.
    [57]Zou Y, Pan X. Exact image reconstruction on PI-lines from minimum data in helical cone-beam CT[J]. Physics in medicine and biology,2004,49(6):941-959.
    [58]Zou Y, Pan X. Image reconstruction on PI-lines by use of filtered-backprojection in helical cone-beam CT[J]. Physics in medicine and biology,2004,49(12): 2717-2731.
    [59]Pan X, Xia D, Zou. Y, et al. A unified analysis of FBP-based algorithms in helical cone-beam and circular cone- and fan-beam scans [J],2004,49(18):4349-4369.
    [60]Yu L, Xia D, Zou Y, et al. A rebinned backprojection-filtration algorithm for image reconstruction in helical cone-beam CT[J]. Physics in medicine and biology,2007, 52(18):5497-5508.
    [61]Tang J, Zhang L, Chen Z, et al. A BPF-type algorithm for CT with a curved PI detector[J]. Physics in medicine and biology,2006,51(16):N287-N293.
    [62]Zou Y, Pan X. An extended data function and its generalized backprojection for image reconstruction in helical cone-beam CT[J]. Physics in medicine and biology, 2004,49(22):N383-N387.
    [63]Hass R. π-Line reconstruction formulas in computed tomography[D]. Oregon:Oregon State University,2009.
    [64]Gordon R, Bender R, Herman G. Algebraic reconstruction techniques (ART) for three dimensional electron microscopy and X-ray photography[J]. Journal of Theoretical Biology,1970,29(3):471-481.
    [65]Hebert T, Leahy R. A generalized EM algorithm for 3-D Bayesian reconstruction from Poisson data using Gibbs priors[J]. IEEE Transactions on Medical Imaging,1989, 8(2):194-202.
    [66]Hebert T J, Leahy R. Statistic-based MAP image reconstruction from Poisson data using Gibbs priors[J]. IEEE Transactions on Signal Processing,1992,40(9): 2290-2303.
    [67]Sidky E Y, Kao C M, Pan X. Accurate image reconstruction from few-views and limited angle data in divergent beam CT[J]. Journal of X-Ray Science and Technology,2006, 14(2):119-139.
    [68]Sidky E Y, Pan X. Image reconstruction in circular cone-beam computed tomography by constrained total variation minimization[J]. Physics in medicine and biology, 2008,53(17):4777-4807.
    [69]Bian J, Siewerdsen J H, Han X, et al. Evaluation of sparse-view reconstruction from flat-panel-detector cone-beam CT[J]. Physics in Medicine and Biology,2010, 55 (22):6575-6599.
    [70]Yu H, Wang G. Compressed sensing based interior tomography [J]. Physics in medicine and biology,2009,54(9):2791-2805.
    [71]Li Z, Liu B D, Liu L H, et al. A new iterative reconstruction algorithm for 2D exterior fan-beam CT[J]. Journal of X-Ray Science and Technology,2010,18(3): 267-277.
    [72]Lee H, Xing L, Davidi R, et al. Improved compressed sensing-based cone-beam CT reconstruction using adaptive prior image constraints[J]. Physics in medicine and biology,2012,57(8):2287-2307.
    [73]Bonse U, Hart M. An X-ray interferometer with long separated interfering beam paths[J]. Applied Physics Letters,1965,7(4):99-100.
    [74]Bonse U, Tekaat E. A Two-Crystal X-Ray Interferometer[J]. Zeitschrift fur Physik, 1968,214(1):16-21.
    [75]Bruning J H, Herriott D R, Gallagher J E, et al. Digital wavefront measuring interferometer for testing optical surfaces and lenses[J]. Applied Optics,1974, 13(11):2693-2703.
    [76]Takeda M, Ina H, Sei ji K. Fourier-transform method of fringe-pattern analysis for computer-based tomography and interferometry[J]. Journal of the Optical Society of America,1982,72(1):156-160.
    [77]Momose A, Takeda T, Itai Y. Phase-contrast X-ray computed tomography for observing biological specimens and organic materials[j]. Review of Scientific Instruments, 1995,66(2):1434-1436.
    [78]Momose A, Fukuda J. Phase-contrast radiographs of nonstained rat cerebellar specimen[J]. Medical Physics,1995,22(4):375-379.
    [79]Momose A, Takeda T, Itai Y, et al. Phase-contrast X-ray computed tomography for observing biological soft tissues[J]. Nature Medicine,1996,2(4):473-475.
    [80]Wu J, Takeda T, Lwin T T, et al. Micro-phase-contrast X-ray computed tomography for basic biomedical research in Spring-8[C]. Proceedings of SPIE.5535: Developments in X-Ray Tomography IV, October 26,2004, Denver CO,740-747.
    [81]Yoneyama A, Takeda T, Tsuchiya Y, et al. A phase-contrast X-ray imaging system-with a 60 X 30mm field of view — based on a skew-symmetric two-crystal X-ray interferometer[J]. Nuclear Instruments and Methods in Physics Research A,2004, 523(1):217-222.
    [82]Yoneyama A, Takeda T, Tsuchiya Y, et al. Coherence-contrast x-ray imaging based on x-ray interferometry[J]. Applied Optics,2005,44(16):3258-3261.
    [83]Baez A V. A study in diffraction microscopy with special reference to X-rays[J]. Journal of the Optical Society of America.1952,42(10):756-762.
    [84]Gerchberg R W, Saxton W 0. A practical algorithm for the determination of phase from image and diffraction plane picture[J]. Optik,1972,35(3):237-246.
    [85]Snigirev A, Snigireva I, Kohn V, et al. On the possibilities of x-ray phase contrast micro imaging by coherent high-energy synchrotron radiation[J]. Review of Scientific Instruments,1995,66(12):5486-5492
    [86]Cloetens P, Salome P M, Buffiere J Y, et al. Observation of micro structure and damage in materials by phase sensitive radiography and tomography [J]. Journal of Applied Physics,1997,81(9):5878-5886.
    [87]Coletens P. Ludwig W, Baruchel J, et al. Holotomography:Quantitative phase tomography with micrometer resolution using hard synchrotron radiation x-rays[J]. Applied Physics Letters,1999,75(19):2912-2914.
    [88]Coletens P, Ludwig W, Boller E, et al. Quantitative phase contrast tomography using coherent synchrotron radiation[C]. Proceedings of SPIE.4053, Developments in X-Ray Tomography III, January 9,2002, San Diego CA,82-91.
    [89]Wilkins S W, Gureyev T E, Gao D, et al. Phase-contrast imaging using polychromatic hard x-rays[J]. Nature,1996,384(6607):335-338.
    [90]Pagan in D, Myao S C, Gureyev T E, et al. Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object[J]. Journal of Microscopy, 2001,206(1):33-40.
    [91]Mayo S C, Miller P R, Wilkins S W, et al. Quantitative X-ray projection microscopy: phase-contrast and multi-spectral imaging[J]. Journal of Microscopy,2002,207(2): 79-96.
    [92]Myers G R, Mayo S C, GureyevT E, et al. Polychromatic cone-beam phase-contrast tomography[J]. Physical Review A,2007,76(4):0458041-4.
    [93]Burvall A, Lundstrom U, Takman P, et al. Phase retrieval in X-ray phase-contrast imaging suitable for tomography[J]. Optics Express,2011,19(11):10359-10376.
    [94]Davis T J, Gao D, Gureyev T E, et al. Phase-contrast imaging of weakly absorbing materials using hard X-rays[J]. Nature,1995,373:595-598.
    [95]Chapman D, Thomlinson W, Johnston R E, et al. Diffraction enhanced x-ray imaging[J]. Physics in medicine and biology,1997,42(11):2015-2025.
    [96]Chapman D, Pisano E, Thomlinson W, et al. Medical applications of diffraction enhanced imaging[J]. Breast Disease,1998,10(3):197-207.
    [97]Dilmanian F A, Zhong Z, Ben B, et al. Computed tomography of x-ray index of refraction using the diffraction enhanced imaging method[J]. Physics in medicine and biology,2000,45(4):933-946.
    [98]Wernick M N, Wirjadi 0, Chapman D, et al. Multiple-image radiography[J]. Physics in medicine and biology,2003,48(23):3875-3895
    [99]Oltulu 0. A unified approach to x-ray absorption-refraction-exctinction contrast with diffraction-enhanced imaging[D]. Chicago:Illinois Institute of Technology, 2003.
    [100]Pagot E, Cloetens P, Fiedler S, et al. A method to extract quantitative information in analyzer-based x-ray phase contrast imaging[J]. Applied Physics Letters,2003, 82(20):3421-3423.
    [101]袁清习,田玉莲,朱佩平,等.用于大尺寸样品的同步辐射硬X射线衍射增强成像方法研究[J].核技术,2004,27(10):725-728.
    [102]高鸿奕,陈建文,谢红兰,等.x射线衍射增强的实验结果[J].光学学报,2004,27(8):1151-1152.
    [103]Hasnah M 0, Chapman D. Alternative method of diffraction-enhanced imaging[J]. Nuclear Instruments and Methods in Physics Research,2008,584(2):424-427
    [104]Zhang K, Zhu P, Huang W, et al. Investigation of misalignment in analyzer crystal based-CT and its effect[J]. Physics in medicine and biology,2008 53(20): 5757-5766.
    [105]Diemoz P C, Coan P, Glaser C, et al. Absorption, refraction and scattering in analyzer-based imaging:comparison of different algorithms[J]. Optics Express, Optics,2010,18(4):3494-3509.
    [106]David C, Nohammer B, Solak H H, et al. Differential x-ray phase contrast imaging using a shearing interferometer[J]. Applied Physics Letters,2002,81(17):3287-3289
    [107]Momose A, Kawamoto S, Koyama I, et al. Demonstration of X-ray Talbot interferometer [J]. Japanese Journal of Applied Physics,2003,42(7B):L866-L868.
    [108]Weitkamp T, Diaz A, Nohammer B, et al. Hard x-ray phase imaging and tomography with a grating interferometer[C]. Proceedings of SPIE.5535, Developments in X-Ray Tomography III, August 2,2004, Bellingham WA,137-142.
    [109]Pfeiffer F, Weitkamp T, Bunk 0, et al. Phase retrieval and differential phase-contrast imaging with low-brilliance x-ray sources[J]. Nature Physics,2006. 2 (4):258-261.
    [110]David C, Weitkamp T, Pfeiffer F, et al. Hard X-ray phase imaging and tomography using a grating interferometer [J]. Spectrochimica Acta Part B,2007,62(6):626-630.
    [111]Pfeiffer F, Bech M, Bunk O, et al. Hard X-ray dark-field imaging using a grating interferometer[J]. Nature Materials Letter,2008,7(2):134-137.
    [112]Momose A, Yashiro W, Takeda Y, et al. Phase tomography by X-ray Talbot interferometry for biological imaging[J]. Japanese journal of applied physics, 2006,45 (6A):5254-5262.
    [113]Kottler C, David C, Pfeiffer F, et al. A two-directional approach for grating based differential phase contrast imaging using hard X-ray [J]. Optics Express,2007, 15(3):1175-1181.
    [114]Takeda Y, Yashiro W, Suzuki Y, et al. X-ray phase imaging with single phase grating[J]. Japanese Journal of Applied Physics,2007,46(3):L89-L91
    [115]陈博,朱佩平,刘宜晋等.X射线光栅相位成像的理论和方法[J].物理学报.2008,57(3):1576-1581
    [116]Huang Z, Kang K, Zhang L, et al. Alternative method for differential phase-contrast imaging with weakly coherent hard x rays[J]. Physical Review A,2009,79(1): 0138151-6.
    [117]Munro P R T, Ignatyev K, Speller R D, et al. The relationship between wave and geometrical optics models of coded aperture type x-ray phase contrast imaging systems[J]. Optics Express,2010,18(5):4103-4117.
    [118]Ignatyev K, Munro P R T, Chana D, et al. Coded apertures allow high-energy x-ray phase contrast imaging with laboratory sources[J]. Journal of Applied Physics,2011, 110(1):014906-8.
    [119]Revol V, Kottler C, Kaufmann R, et al. X-ray interferometer with bent gratings: Towards larger fields of view[J]. Nuclear Instruments and Methods in Physics Research A,2010,648(21):S302-S305.
    [120]Zhu P P, Zhang K, Wang Z L, et al. Low-dose, simple, and fast grating-based X-ray phase-contrast imaging[J]. Proceedings of the National Academy of Sciences.2011, 107(31):13576-13581.
    [121]Bevins N, Zambelli J, Li K, et al. Multicontrast x-ray computed tomography imaging using Talbot-Lau interferometry without phase stepping[J]. Medical Physics Letter, 2012,39(1):424-428.
    [122]Wen H H, Bennett E E, Kopace R, et al. Single-shot x-ray differential phase-contrast and diffraction imaging using two-dimensional transmission gratings[J]. Optics Letters,2010,35(12):1932-1934.
    [123]Itoh H, Nagai K, Sato G, et al. Two-dimensional grating-based X-ray phase-contrast imaging using Fourier transform phase retrieval[J]. Optics Express,2011,19(4): 3339-3346.
    [124]Sato G, Kondoh T, Itoh H, et al, Two-dimensional gratings-based phase-contrast imaging using a conventional x-ray tube[J]. Optics Letters,2011,36(18): 3551-3551.
    [125]Bronnikov A V. Reconstruction formulas in phase-contrast tomography[J]. Optics Communications.1999,171(4):239-244.
    [126]Pavlov K M, Kewish C M, Davis J R, et al. A variant on the geometrical optics approximation in diffraction enhanced tomography [J]. Journal of Physics D:Applied Physics,2001,34(10A):A168-A172.
    [127]Koyama I, Hamaishi Y, Momose A. Phase tomography using diffraction-enhanced imaging[C].8 th International Conference on Synchrotron Radiation Instrumentation, 2004,1283-1286.
    [128]Zhu P P, Wang J Y, Yuan Q X, et al. Computed tomography algorithm based on diffraction-enhanced imaging setup[J]. Applied Physics Letter,2005,87(26): 2641011-3.
    [129]Huang Z F, Kang K J, Li Z, et al. Direct computed tomographic reconstruction for directional-derivative projections of computed tomography of diffraction enhanced imaging[J]. Applied Physics Letter,2006,89(4):0411241-3.
    [130]孙怡,朱佩平,于健,等.利用衍射增强成像方法三维重建吸收衰减系数、散射消光系数和折射率的原理和方法[J].光学学报,2007,27(4):749-754.
    [131]孙怡,朱佩平,刘明贺,等.硬X射线衍射增强峰位成像CT的几何失真纠正方法[J].CT理论与应用研究,2005,15(2):13-21.
    [132]Sun Y, Zhu P P, Yu J, et al. Computerized tomography based on DEI refraction information[J]. Computerized Medical Imaging and Graphics,2007,31(6):383-389.
    [133]Sun Y, Zhu P P, Yu J, et al. Computerized tomography based on X-ray refraction information[C]. IEEE International Symposium on Biomedical Imaging(ISBI),2006, 1220-1223.
    [134]刘宜晋.X射线相位衬度成像及CT研究[D].北京:高能物理研究所,2009.
    [135]Liu Y J, Zhu P P, Chen B, et al. A new iterative algorithm to reconstruct the refractive index[J]. Physics in medicine and biology,2007,52(12):L5-L13.
    [136]Wang Z T, Li Z, Huang Z F, et al. An ART iterative reconstruction algorithm for computed tomography of diffraction enhanced imaging[J]. Chinese Physics C,2009, 33(11):975-980.
    [137]Fu J, Schleede S, Tan R, et al. An algebraic iterative reconstruction technique for differential x-ray phase-contrast computed tomography[J]. Zeitschrift fur Medizinische Physik,2012, in Press.
    [138]张凯,朱佩平,黄万霞,等.代数迭代重建算法在折射衬度CT中的应用[J].物理学报,2008,57(6),3409-3418.
    [139]Pfeiffer F, David C, Bunk 0. Region-of-Interest Tomography for grating-based X-Ray differential phase-contrast imaging[J]. Physical Review Letters,2008, 101(16):1081011-4.
    [140]Cong W, Yang J, Wang G. Differential phase-contrast interior tomography[J]. Physics in medicine and biology,2012,57(10):2905-2914.
    [141]Chen G, Qi Z. Image reconstruction for fan-beam differential phase contrast computed tomography[J]. Physics in medicine and biology,2008,53(4):1015-1025.
    [142]Qi Z, Chen G. A local region of interest image reconstruction via filtered backprojection for fan-beam differential phase-contrast computed tomography[J]. Physics in medicine and biology,2007,52(18):N417-N423.
    [143]Fu J, Li P, Wang Q L, et al. A reconstruction method for equidistant fan beam differential phase contrast computed tomography [J]. Physics in medicine and biology, 2012,56(14):4529-4538.
    [144]Chabior M, Donath T, David C, et al. Beam hardening effects in grating-based x-ray phase-contrast imaging[J]. Medical Physics,2011,38(3):1189-1195.
    [145]Bevins N, Zambelli J, Li K, et al. Beam hardening in x-ray differential phase contrast computed tomography[C]. Proceedings of SPIE.7961, Physics of Medical Imaging, February 12 2011, Lake Buena Vista, Florida,79611H.
    [146]Li J, Sun Y. Image reconstruction algorithm for diffraction enhanced imaging-based computed tomography[J]. Optics Communications.2012,285(12):2972-2975.
    [147]Donoho D. Compressed sensing[J]. IEEE Transactions on Information Theory,2006, 52(4):1289-1306.
    [148]方红,杨海蓉.贪婪算法与压缩感知理论[J].自动化学报,2011,37(12),1413-1421.
    [149]Mallat S G, Zhang Z. Matching Pursuit with Time-frequency Dictionaries[J]. IEEE Transactions on Signal Processing,1993,41(12):3397-3415.
    [150]Tropp J, Gilbert A. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory,2007,53(12); 4655-4666.
    [151]Needell D, Tropp J. CoSaMP:Iterative signal recovery from incomplete and inaccurate samples[J]. Applied and Computational Harmonic Analysis,2009,26(3): 301-321.
    [152]Koh K, Kim S J, Boyd S. An interior-point method for large-scale l1-regularized logistic regression[J]. Journal of Machine learning research,2007,8(8): 1519-1555.
    [153]Figueiredo M A T, Nowak R D, Wright S J. Gradient projection for sparse reconstruction:application to compressed sensing and other inverse problems [J]. IEEE Journal of Selected Topics in Signal Processing,2007,1(4):586-597.
    [154]Yin W, Osher S, Goldfarb D, et al. Bregman iterative algorithms for L1-minimization with applications to compressed sensing [J]. SIAM Journal on Imaging Sciences, 2008,1(1):143-168.
    [155]Combettes P L, Wajs V R. Signal recovery by proximal forward-backward splitting [J].Multiscale Modeling & Simulation,2005,4(4):1168-1200.
    [156]Zhang X, Burger M, Bresson X, et al. Bregmanized nonlocal regularization for deconvolution and sparse reconstruction [J]. SIAM Journal on Imaging Sciences,2010, 3(3):253-276.
    [157]王振天.常规X光源光栅成像相关方法和技术研究[D].北京:清华大学,2010.
    [158]黄志峰.衍射增强成像的相位信息提取方法和CT重建算法研究[D].北京:清华大学,2006.
    [159]Zanette I, Bech M, Pfeiffer F, et al. Interlaced phase stepping in phase-contrast x-ray tomography [J]. Applied Physics Letters,2011,98(9):0941011-0941013.
    [160]Cai W. Feasibility study of phase-contrast cone beam CT imaging systems[D]. Rochester:University of Rochester,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700