X射线微分相衬显微成像的理论与方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
国际上对于高分辨率X射线相衬显微成像技术的研究已经有二十多年的历史.如今,能够获得纳米级别空间分辨率的此项技术已在诸多领域内实现了广泛应用,如生物学、医学、材料科学以及环境科学等等.不过,总体来说, X射线纳米分辨相衬显微技术在成像机制上略显单调,而且目前实验上还无法量化地获取物体的相位分布.
     该论文提出并论证了一种新型的、基于X射线波带片和微分复透过率板的X射线纳米分辨微分相衬成像系统,并且有潜力同步得到微分相衬图像和量化的相位分布图像.文中主要涉及如下几个方面的工作:
     一、提出了一种新的高分辨率X射线微分相衬成像模型,对关键器件进行了设计,并分析了若干可以用来调节成像质量的系统参数.
     二、通过理论分析和数值成像模拟,证实了本系统确实能够实现具有纳米级别分辨率的、可方便调节成像质量的、典型微分相衬图像.量化讨论了物体所表现出的吸收作用对于微分相衬成像的影响,从而也在理论上拓展了此成像方法在绝大部分X射线波段上的应用前景.
     三、在获取微分相衬图像的基础上,进一步发展和验证了基于本系统的相位成像或相位恢复技术,同时定量地探讨了系统可调参数对于所恢复的相位分布误差的调控作用.
     四、分析了微分复透板的器件缺陷对微分相衬成像和相位恢复所造成的消极影响,并给出了相应的改善建议.
High-resolution X-ray phase contrast microscopy traces its history back to thelate1980s in the international context. Nowadays, this imaging technique which iscapable of achieving nanoscale spatial resolution has realized a wide variety ofapplications in the fields of biology, medicine, materials science and environmentalscience, etc. Generally speaking, however, it is somewhat monotonous for X-raynanoscale-resolution microscopy in terms of imaging mechanisms. Besides, it seemsunlikely to acquire the specimens’ quantitative phase distribution experimentally atthe present time.
     The thesis demonstrates a bold new kind of nanoscale-resolution X-raydifferential phase-contrast imaging system, which is based on an X-ray Fresnel zoneplate and a complex-transmittance X-ray differential plate, and have the potential formanaging simultaneously the regular differential phase-contrast imaging and thequantitative phase imaging or phase distribution. The contents of this thesis consistof several aspects listed as follows:
     First, a fresh X-ray imaging model is proposed, which is aimed athigh-resolution differential phase contrast; corresponding design for the key X-rayoptics is done, and a few manageable parameters are also examined in detail forpursuing a high image quality.
     Second, by theoretical formulations and numerical simulations, it is confirmedthat this model system could truly perform the expected nanoscale-resolution,image-quality-tunable, and characteristic differential phase-contrast imaging;quantitative analysis about the effects of the specimens’ absorption on thedifferential phase contrast is completed, which, as a result, shows the promise thatthis imaging technique can be used in most of the X-ray energy range.
     Thirdly, based on the imaging system, it is accomplished to develop and verifythe phase imaging or phase retrieval technique in addition to the ordinary and characteristic differential phase-contrast imaging; at the same time, the role of themanageable system parameters in regulating the error in the retrieved phasedistribution is also examined.
     Fourthly, at the end, this thesis gives an assessment of the impact of flaws in theX-ray differential plate on imaging, and suggests a couple of measures to alleviatethis situation.
引文
[1] A. V. Baez,"A self-supporting metal fresnel zone-plate to focus extremeultra-violet and soft x-rays", Nature186,958(1960).
    [2] A. V. Baez,"Fresnel zone plate for optical image formation using extremeultraviolet and soft x radiation", JOSA51,405-412(1961).
    [3] G. Schmahl and D. Rudolph,"Lichtstarke zonenplatten als abbildende systemefür weiche r ntgenstrahlung", Optik29,577-585(1969).
    [4] B. Niemann, D. Rudolph, and G. Schmahl,"X-ray microscopy with synchrotronradiation", Applied Optics15,1883-1884(1976).
    [5] G. Schmahl, D. Rudolph, B. Niemann, and O. Christ,"Zone-plate x-raymicroscopy", Quarterly Reviews of Biophysics13,297-315(1980).
    [6] G. Schmahl, D. Rudolph, P. Guttmann, G. Schneider, J. Thieme, and B.Niemann,"Phase contrast studies of biological specimens with the x‐raymicroscope at bessy", Review of Scientific Instruments66,1282-1286(1995).
    [7] J. Kirz, C. Jacobsen, and M. Howells,"Soft x-ray microscopes and theirbiological applications", Quarterly Reviews of Biophysics28,33-33(1995).
    [8] E. H. Anderson, D. L. Olynick, B. Harteneck, E. Veklerov, G. Denbeaux, W.Chao, A. Lucero, L. Johnson, and D. Attwood,"Nanofabrication and diffractiveoptics for high-resolution x-ray applications", Journal of Vacuum Science&Technology B: Microelectronics and Nanometer Structures18,2970-2975(2000).
    [9] W. Chao, E. Anderson, G. P. Denbeaux, B. Harteneck, J. A. Liddle, D. L.Olynick, A. L. Pearson, F. Salmassi, C. Y. Song, and D. T. Attwood,"20-nm-resolution soft x-ray microscopy demonstrated by use of multilayer teststructures", Optics Letters28,2019-2021(2003).
    [10] W. Chao, B. D. Harteneck, J. A. Liddle, E. H. Anderson, and D. T. Attwood,"Soft x-ray microscopy at a spatial resolution better than15nm", Nature435,1210-1213(2005).
    [11] W. Chao, J. Kim, S. Rekawa, P. Fischer, and E. H. Anderson,"Demonstration of12nm resolution fresnel zone plate lens based soft x-ray microscopy", OpticsExpress17,17669-17677(2009).
    [12] S. Rehbein, S. Heim, P. Guttmann, S. Werner, and G. Schneider,"Ultrahigh-resolution soft-x-ray microscopy with zone plates in high orders ofdiffraction", Physical Review Letters103,110801(2009).
    [13] G. C. Yin, Y. F. Song, M. T. Tang, F. R. Chen, K. S. Liang, F. W. Duewer, M.Feser, W. Yun, and H. P. D. Shieh,"30nm resolution x-ray imaging at8kevusing third order diffraction of a zone plate lens objective in a transmissionmicroscope", Applied Physics Letters89,221122(2006).
    [14] Y. T. Chen, T. N. Lo, Y. S. Chu, J. Yi, C. J. Liu, J. Y. Wang, C. L. Wang, C. W.Chiu, T. E. Hua, and Y. Hwu,"Full-field hard x-ray microscopy below30nm: Achallenging nanofabrication achievement", Nanotechnology19,395302(2008).
    [15] Y. T. Chen, T. Y. Chen, J. Yi, Y. S. Chu, W. K. Lee, C. L. Wang, I. M. Kempson,Y. Hwu, V. Gajdosik, and G. Margaritondo,"Hard x-ray zernike microscopyreaches30nm resolution", Optics letters36,1269(2011).
    [16] G. C. Yin, M. T. Tang, Y. F. Song, F. R. Chen, K. S. Liang, F. W. Duewer, W.Yun, C. H. Ko, and H. P. D. Shieh,"Energy-tunable transmission x-raymicroscope for differential contrast imaging with near60nm resolutiontomography", Applied Physics Letters88,241115(2006).
    [17]Y. Chu, J. Yi, F. De Carlo, Q. Shen, W. K. Lee, H. Wu, C. Wang, J. Wang, C. Liu,and C. Wang,"Hard-x-ray microscopy with fresnel zone plates reaches40nmrayleigh resolution", Applied Physics Letters92,103119(2008).
    [18] M. Born and E. Wolf, Principles of optics: Electromagnetic theory ofpropagation, interference and diffraction of light (CUP Archive,1999).
    [19] G. Schneider,"Cryo x-ray microscopy with high spatial resolution in amplitudeand phase contrast", Ultramicroscopy75,85-104(1998).
    [20] M. Awaji, Y. Suzuki, A. Takeuchi, H. Takano, N. Kamijo, S. Tamura, and M.Yasumoto,"Zernike-type x-ray imaging microscopy at25kev with fresnel zoneplate optics", Journal of Synchrotron Radiation9,125-127(2002).
    [21] U. Neuh usler, G. Schneider, W. Ludwig, M. Meyer, E. Zschech, and D.Hambach,"X-ray microscopy in zernike phase contrast mode at4kev photonenergy with60nm resolution", Journal of Physics D: Applied Physics36, A79(2003).
    [22]H. S. Youn and S. W. Jung,"Hard x-ray microscopy with zernike phase contrast",Journal of Microscopy223,53-56(2006).
    [23] O. v. Hofsten, M. Bertilson, M. Lindblom, A. Holmberg, and U. Vogt,"Compactzernike phase contrast x-ray microscopy using a single-element optic", OpticsLetters33,932-934(2008).
    [24] A. Sakdinawat and Y. Liu,"Phase contrast soft x-ray microscopy using zernikezone plates", Optics Express16,1559-1564(2008).
    [25] C. Holzner, M. Feser, S. Vogt, B. Hornberger, S. B. Baines, and C. Jacobsen,"Zernike phase contrast in scanning microscopy with x-rays", Nature Physics6,883-887(2010).
    [26] T. Wilhein, B. Kaulich, E. Di Fabrizio, F. Romanato, S. Cabrini, and J. Susini,"Differential interference contrast x-ray microscopy with submicron resolution",Applied Physics Letters78,2082-2084(2001).
    [27] T. Wilhein, B. Kaulich, and J. Susini,"Two zone plate interference contrastmicroscopy at4kev photon energy", Optics Communications193,19-26(2001).
    [28] C. Chang, P. Naulleau, E. Anderson, K. Rosfjord, and D. Attwood,"Diffractiveoptical elements based on fourier optical techniques: A new class of optics forextreme ultraviolet and soft x-ray wavelengths", Applied Optics41,7384-7389(2002).
    [29]B. Kaulich, T. Wilhein, E. Di Fabrizio, F. Romanato, M. Altissimo, S. Cabrini, B.Fayard, and J. Susini,"Differential interference contrast x-ray microscopy withtwin zone plates", JOSA A19,797-806(2002).
    [30] E. Di Fabrizio, D. Cojoc, S. Cabrini, B. Kaulich, J. Susini, P. Facci, and T.Wilhein,"Diffractive optical elements for differential interference contrast x-raymicroscopy", Optics Express11,2278-2288(2003).
    [31]U. Vogt, M. Lindblom, P. A. Jansson, T. T. Tuohimaa, A. Holmberg, H. M. Hertz,M. Wieland, and T. Wilhein,"Single-optical-element soft-x-ray interferometrywith a laser-plasma x-ray source", Optics Letters30,2167-2169(2005).
    [32] C. Chang, A. Sakdinawat, P. Fischer, E. Anderson, and D. Attwood,"Single-element objective lens for soft x-ray differential interference contrastmicroscopy", Optics Letters31,1564-1566(2006).
    [33] M. C. Bertilson, O. Von Hofsten, M. Lindblom, T. Wilhein, H. M. Hertz, and U.Vogt,"Compact high-resolution differential interference contrast soft x-raymicroscopy", Applied Physics Letters92,064104-064104-064103(2008).
    [34] O. von Hofsten, M. Bertilson, and U. Vogt,"Theoretical development of ahigh-resolution differential-interference-contrast optic for x-ray microscopy",Optics Express16,1132-1141(2008).
    [35] T. Nakamura and C. Chang,"Quantitative characterization of x-ray differentialinterference contrast microscopy using modulation transfer function", OpticsExpress19,15304-15321(2011).
    [36] T. Nakamura and C. Chang,"Quantitative x-ray differential interference contrastmicroscopy with independently adjustable bias and shear", Phys. Rev. A83,043808(2011).
    [37] T. Nakamura and C. Chang,"Nanoscale quantitative phase imaging usingxor-based x-ray differential interference contrast microscopy", Ultramicroscopy113,139-144(2012).
    [38] O. von Hofsten, M. Bertilson, J. Reinspach, A. Holmberg, H. M. Hertz, and U.Vogt,"Sub-25-nm laboratory x-ray microscopy using a compound fresnel zoneplate", Optics Letters34,2631-2633(2009).
    [39] X. Deng, B. Bihari, J. Gan, F. Zhao, and R. T. Chen,"Fast algorithm for chirptransforms with zooming-in ability and its applications", Journal of the OpticalSociety of America. A, Optics, image science, and vision17,762-771(2000).
    [40] S. Coy,"Choosing mesh spacings and dimensions for wave optics simulation",in Proc. SPIE,2005.
    [41] G. J. Gbur,"Simulating fields of arbitrary spatial and temporal coherence",Optics Express14,7567-7578(2006).
    [42] C. Rydberg and J. Bengtsson,"Efficient numerical representation of the opticalfield for the propagation of partially coherent radiation with a specified spatialand temporal coherence function", Journal of the Optical Society of America. A,Optics, image science, and vision23,1616-1625(2006).
    [43] X. Xiao and D. Voelz,"Wave optics simulation approach for partial spatiallycoherent beams", Optics Express14,6986-6992(2006).
    [44] J. D. Mansell, R. Praus, and S. Coy,"Determining wave-optics mesh parametersfor complex optical systems", in Optical Modeling and Performance PredictionsIii,2007, H6750-H6750.
    [45] D. G. Voelz and M. C. Roggemann,"Digital simulation of scalar opticaldiffraction: Revisiting chirp function sampling criteria and consequences",Applied Optics48,6132-6142(2009).
    [46] W. L. Briggs, The DFT: An owner's manual for the discrete fourier transform(Siam,1995).
    [47] E. O. Brigham, The fast fourier transform (Prentice Hall, NJ,1974).
    [48] K. R. Rao, D. Kim, and J. J. Hwang, Fast fourier transform-algorithms andapplications (Springer,2010).
    [49] J. W. Cooley and J. W. Tukey,"An algorithm for the machine calculation ofcomplex fourier series", Mathematics of Computation19,297-301(1965).
    [50] E. Brigham and R. Morrow,"The fast fourier transform", Spectrum, IEEE4,63-70(1967).
    [51] J. W. Cooley, P. A. Lewis, and P. D. Welch,"The fast fourier transform and itsapplications", Education, IEEE Transactions on12,27-34(1969).
    [52] J. W. Goodman, Introduction to fourier optics,3rd ed.(Roberts and CompanyPublishers,2005).
    [53] P. H. Roberts,"A wave optics propagation code", Rep. TR-760(the OpticalSciences Company, Anaheim, Calif.,1986)(1986).
    [54] Z. Liu, D. Lin, J. Huang, and H. Niu,"Approach for differential phase contrastimaging in x-ray microscopy", Opt. Lett.38,1990-1992(2013).
    [55] C. David, B. Nohammer, H. H. Solak, and E. Ziegler,"Differential x-ray phasecontrast imaging using a shearing interferometer", Applied Physics Letters81,3287(2002).
    [56] A. Momose, S. Kawamoto, I. Koyama, Y. Hamaishi, K. Takai, and Y. Suzuki,"Demonstration of x-ray talbot interferometry", Japanese Journal of AppliedPhysics42, L866-L868(2003).
    [57] T. Weitkamp, A. Diaz, C. David, F. Pfeiffer, M. Stampanoni, P. Cloetens, and E.Ziegler,"X-ray phase imaging with a grating interferometer", Optics Express13,6296-6304(2005).
    [58] F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David,"Phase retrieval anddifferential phase-contrast imaging with low-brilliance x-ray sources", NaturePhysics2,258-261(2006).
    [59] F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, C. Bronnimann, C.Grunzweig, and C. David,"Hard-x-ray dark-field imaging using a gratinginterferometer", Nature Materials7,134-137(2008).
    [60] A. Momose, W. Yashiro, H. Maikusa, and Y. Takeda,"High-speed x-ray phaseimaging and x-ray phase tomography with talbot interferometer and whitesynchrotron radiation", Optics Express17,12540-12545(2009).
    [61] M. Engelhardt, J. Baumann, M. Schuster, C. Kottler, F. Pfeiffer, O. Bunk, and C.David,"High-resolution differential phase contrast imaging using a magnifyingprojection geometry with a microfocus x-ray source", Applied Physics Letters90,224101(2007).
    [62] F. Pfeiffer, C. Kottler, O. Bunk, and C. David,"Hard x-ray phase tomographywith low-brilliance sources", Physical Review Letters98(2007).
    [63] T. Weitkamp, A. Diaz, B. Nohammer, F. Pfeiffer, T. Rohbeck, P. Cloetens, M.Stampanoni, and C. David,"Hard x-ray phase imaging and tomography with agrating interferometer", in Optical Science and Technology, the SPIE49thAnnual Meeting,(International Society for Optics and Photonics,2004),137-142.
    [64] I. Zanette, T. Weitkamp, T. Donath, S. Rutishauser, and C. David,"Two-dimensional x-ray grating interferometer", Physical Review Letters105(2010).
    [65] A. Momose, W. Yashiro, S. Harasse, and H. Kuwabara,"Four-dimensional x-rayphase tomography with talbot interferometry and white synchrotron radiation:Dynamic observation of a living worm", Optics Express19,8423-8432(2011).
    [66] J. Miao, P. Charalambous, J. Kirz, and D. Sayre,"Extending the methodology ofx-ray crystallography to allow imaging of micrometre-sized non-crystallinespecimens", Nature400,342-344(1999).
    [67] J. Miao, T. Ishikawa, B. Johnson, E. H. Anderson, B. Lai, and K. O. Hodgson,"High resolution3d x-ray diffraction microscopy", Physical Review Letters89,088303(2002).
    [68] H. N. Chapman, A. Barty, M. J. Bogan, S. Boutet, M. Frank, S. P. Hau-Riege, S.Marchesini, B. W. Woods, S. Bajt, and W. H. Benner,"Femtosecond diffractiveimaging with a soft-x-ray free-electron laser", Nature Physics2,839-843(2006).
    [69] P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer,"High-resolution scanning x-ray diffraction microscopy", Science321,379-382(2008).
    [70] H. N. Chapman, A. Barty, S. Marchesini, A. Noy, S. P. Hau-Riege, C. Cui, M. R.Howells, R. Rosen, H. He, and J. C. Spence,"High-resolution ab initiothree-dimensional x-ray diffraction microscopy", JOSA A23,1179-1200(2006).
    [71] H. N. Chapman and K. A. Nugent,"Coherent lensless x-ray imaging", NaturePhotonics4,833-839(2010).
    [72] G. Williams, H. Quiney, B. Dhal, C. Tran, K. A. Nugent, A. Peele, D. Paterson,and M. De Jonge,"Fresnel coherent diffractive imaging", Physical Reviewletters97,025506(2006).
    [73] C. Kottler, C. David, F. Pfeiffer, and O. Bunk,"A two-directional approach forgrating based differential phase contrast imaging using hard x-rays", Opt.Express15,1175-1181(2007).
    [74] T. Davis, D. Gao, T. Gureyev, A. Stevenson, and S. Wilkins,"Phase-contrastimaging of weakly absorbing materials using hard x-rays", Nature373,595-598(1995).
    [75] D. Chapman, W. Thomlinson, R. Johnston, D. Washburn, E. Pisano, N. Gmür, Z.Zhong, R. Menk, F. Arfelli, and D. Sayers,"Diffraction enhanced x-rayimaging", Physics in Medicine and Biology42,2015(1997).
    [76] P. Zhu, J. Wang, Q. Yuan, W. Huang, H. Shu, B. Gao, T. Hu, and Z. Wu,"Computed tomography algorithm based on diffraction-enhanced imagingsetup", Applied Physics Letters87,264101-264101-264103(2005).
    [77] O. Oltulu, Z. Zhong, M. Hasnah, M. N. Wernick, and D. Chapman,"Extractionof extinction, refraction and absorption properties in diffraction enhancedimaging", Journal of Physics D: Applied Physics36,2152(2003).
    [78] P. Zhu, K. Zhang, Z. Wang, Y. Liu, X. Liu, Z. Wu, S. A. McDonald, F. Marone,and M. Stampanoni,"Low-dose, simple, and fast grating-based x-rayphase-contrast imaging", Proceedings of the National Academy of Sciences107,13576-13581(2010).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700