多天线信号联合接收的合成技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着无线通信的使用范围越来越广泛,所面临的电磁环境变得更加复杂,使得某些应用环境中接收信号变得越来越微弱。例如深空通信和军事通信中,即使采用最大口径天线和最低噪声温度接收机也可能难以实现信号的有效接收。因此,如何保障低信噪比信号的接收是目前通信技术的一个重要研究内容。一种有效解决方法是通过多个天线对同一信号进行接收,利用信号的相干性和噪声的不相关性,将信号进行加权合成,从而提高接收信号质量。该方法可以提高天线的等效口径,接收性能能够超过现有的最大口径天线,给一些极低信噪比信号的接收提供了途径。同时由于多天线信号合成具有成本低、组阵灵活以及稳健性强等优点,因此在众多领域得到应用。
     本文主要围绕无需符号同步的随机布局多天线信号波形合成的关键技术进行研究,针对其中多天线信号相位差估计、时延对准技术、合成权值估计以及频率选择性慢衰落信道下的合成问题进行深入探讨和分析。由于采用多个天线接收同一目标信号,因此若不考虑信号间的参数差以及信道的影响,各接收信号具有相同的信号分量,这就为信号间的参数差估计性能提升带来可能,从而也提高的合成性能。鉴于以上的事实,本文在信号波形层面上就如何联合利用多天线信号进行参数估计,降低合成增益损失进行深入研究,主要工作和创新点如下:
     1、从参数估计角度对SUMPLE算法的合成权值相位特性进行理论分析,并针对不等信噪比该算法合成权值的优化问题,提出了一种合成权值幅度修正方法,有效地提高了该算法对低信噪比信号的抑制能力,可用于故障天线的检测。在深入研究SUMPLE算法的基础上,对该算法合成权值的相位补偿性能进行理论分析,从参数估计角度揭示了该算法具有较好合成性能的内在机理。由于各路信号经过补偿后具有相同的相位中心,因此将该算法用于多天线信号相位差估计中,并分析了相位差估计的理论性能。同时,为了降低信噪比较低信号的影响,提出了一种基于SUMPLE算法的权值幅度修正方法,并分析了修正因子对降低弱信号影响的有效性。理论分析与仿真结果表明,权值幅度修正算法能明显降低信噪比较低信号的权值幅度,有利于抑制质量较差信号的影响,减少合成增益损失,可用于天线组阵中故障天线的检测。
     2、针对低信噪比下不同时延多天线信号的参考选择问题,提出了一种基于准合成输出信号作为参考的时延对准算法,分析了该算法的理论收敛特性并进行仿真验证,有效降低了合成增益损失。从匹配滤波器界角度理论上分析了时延估计误差对信号合成的影响,并利用最大似然接收机进行仿真验证。旨在寻求有效的多天线信号联合时延估计算法,区别于传统的仅利用固定参考信号实现信号间的时延估计方法,提出了基于准合成输出信号作为参考时延对准算法,并分析了该算法的理论收敛特性以及实现的相关问题。结果表明,该算法以其它所有路的合成信号作为参考,提高参考信号的信噪比,时延估计性能在低信噪比条件下其估计性能改善更为明显,且优于冗余融合算法。
     3、推导了多天线联合接收BPSK/QPSK信号合成权值估计的CRLB,并利用合成权值具有相对性特点,提出了一种基于噪声自相关特性的合成权值盲估计算法,解决了信号合成中权值估计的通用性问题。根据各天线接收信号具有相同信号分量的特点,因此首先推导了多天线联合接收的BPSK/QPSK信号合成权值估计的CRLB,从参数估计性能下界的角度理论上证明了多天线联合的合成权值具有更好估计性能。同时,针对信号合成中权值估计的通用性问题,鉴于合成性能跟信号间合成权值的比值有关而与权值大小无关的特性,提出了一种基于噪声自相关特性的合成权值盲估计算法。该算法充分考虑信号间的关系,跳过估计单路信号的信噪比和功率,利用信号的二阶统计特性和噪声的自相关特性,完成合成权值的估计。该算法能适用于在未知信号信噪比、调制方式、信号带宽以及中心频率偏差下的信号合成,而且计算量简单,易于实现。
     4、针对频率选择性慢衰落信道下的低信噪比多天线信号合成问题,从频率分量最大信噪比的角度分析了最佳合成权值,提出了基于频率分量合并的多天线信号波形合成算法,显著改善了信号的解调性能。在对匹配滤波器研究的基础上,推导了频率选择性慢衰落信道下的多天线信号的最佳合成权值,并从频率分量信号的信噪比最大角度解释的合成权值的物理意义。针对频率选择性慢衰落信道下的低信噪比信号合成问题,提出了一种在未知信道下无需进行符号同步的多天线信号波形合成算法。在频域,该算法按照每频点信号最大信噪比准则对信号进行加权合成,提高了合成输出信号的每个频点的信号信噪比,改善了合成信号的衰落特性。该算法对信号调制方式透明且无需符号定时同步,能够有效地提高信号的接收质量,为频率选择性信道下的低信噪比信号合成提供了新的解决思路。
     5、针对固定参考信号的信道相位非线性失真影响信号解调性能的问题,提出一种基于平均相位参考的相位补偿算法,解决了频率选择性慢衰落信道下的参考相位信号选择问题。对于符号定时同步后跟随符号间隔均衡器的常用解调方式,首先从符号同步后的信号信噪比以及均衡器性能分析了信道相位的非线性失真对解调的影响。为了降低相位非线性失真对解调性能的影响,区别于固定信号为参考的方法,提出了一种基于所有路信号平均相位参考的相位补偿思路,即合成后信道相位为所有路信道相位的平均值。由于平均可以消除随机性,因此将有效地改善合成信号的相频特性,避免了固定参考信号相位非线性带来的可能严重影响解调性能的问题。同时针对相位差估计的模糊性问题,给出了相对平均相位的补偿算法,最后通过仿真验证了算法的有效性。
Due to the rapid extension of the wireless communication and the troublesome environment for electromagnetic propagation, the received signals become weaker in some applications. It is possible to be in despair even if using maximum antenna apertures and lower receiver noise temperatures such as in Deep Space Network and military communication. Therefore, it is important to pay attention to improve the quality of the received signal at low Signal-to-Noise Ratio level. An effective method for improving the SNR is to combine the signals from several antennas, and it is based on the characteristics about the correlation of the signal component and the non-correlation for noise component. This technique can offer better performance than a single maximum antenna. Forthermore, it holds many possibilities: increased operational robustness, implementation cost saving and more stable and flexible.
     For the purpose of the general applicability for the received signals and the adoptive equipments, this thesis mainly deals with signal waveform combining techniques on a randomly distributed multi-antenna array, especially about the phase difference estimate, time delay alignments, the combining weight estimate and the combining algorithm in the frequency selective channels among the signals. If taking no account of the different parameters and the channels, the received signals have the same signal component. As a result, it is likely to improve the performance about the parameters’estimation and reduce the combining loss consequently. Based on the fact that the same signal component exists in the received signals, the paper mainly analyzes and makes a deep research on the key techniques of the sample combining, which utilizes multi-antenna signals jointly to realize the more accurate parameter estimates. The main research results include:
     1、Analyzing phase compensating performance and phase difference characteristics of the combining weight from SUMPLE algorithm in view of parameter estimation, and a modified weight amplitude method based on SUMPLE algorithm is proposed. On the basis of the deep research on the SUMPLE algorithm, the principle that the algorithm can provide lower combining loss for weak signals is explained on account of the compensating phase performance. At the same time, the paper analyses the phase difference characteristics from the combining weight, and the corresponding theoretical performance and the required least antenna number are also derived. Moreover, in order to reduce the adverse effect from the weaker signal for non-uniform signal combining, a modified weight amplitude method is presented. The validity of modified factor is also analyzed. Theoretical analysis and simulation results show that the modified algorithm can obviously reduce the weight amplitude of the weaker signals, improve the arraying combining performance, and favor for confirming the failed antenna.
     2、A simple algorithm that aligns signals of different arrival times on a randomly distributed antenna array is presented, and the theoretical convergence characteristic is also analyzed. Analyzing the combining performance affected by the time delay estimation error using the matched filter bound in case of only two signals and it is confirmed by simulation relusts using an optimum maximum-likelihood receiver. To align the signals of different arrival times on a randomly distributed antenna array, a new algorithm for time delay alignment based on quasi-combined output as reference is proposed, which is different from most algorithms based on a single fixed reference. The paper also analyzes the convergence characteristic and the application issue in practice. Finally, results show that the algorithm achieves a substantial performance improvement by making use of the array combining output except self-signal as reference to improve the SNR of reference signal and the performance of time delay estimator, especially at low SNR level. Furthermore, the estimatiom performance of the algorithm is better than redundancy fusion algorithm.
     3、Cramer-Rao lower bounds for the estimation of combining weight of BPSK and QPSK modulated signals are derived, and a blind combining weight estimation algorithm based on the noise autocorrelation is also present. Theoretical results about estimation lower bound show that it is assured to achieve a substantial performance improvement due to the optimal usage of the mutual information between the signals, and reduce the loss of array combining output gain especially at low SNR level. At the same time, aiming at computing the optimum combining weight generally and practically, a blind combining weight estimation algorithm using signals’second order moment with the characteristic of the noise power spectral autocorrelation jointly is proposed, which discards the solely signal’s power and SNR. Theoretical analysis and simulations show that the algorithm can be used in many cases, such as unknown signal’s SNR, different modulation and signal bandwidth along with frequency offset, and have achieved preferable performance and low computational complexity which are proper for hardware implementation.
     4、An effective blind combining algorithm is presented to combine the signals at low SNR from multiple antennas without symbol timing synchronization in the frequency selective channels. The combining weights are studied based on matched filter in the frequency selective channels, and the optimum receiver structure is also presented. The combining algorithm can be interpreted as each frequency component for all the received signals varying co-phasing and maximal ratio combining. The combined signal distortion will be reduced besides improving the ratio of signal to noise for each frequency component. It is shown that the algorithm can achieve a substantial performance improvement, and doesn’t require the symbol timing synchronization and the signal modulation mode. It could be considered as a useful combining technique, especially when symbol timing synchronization is difficult to realize at low SNR in the frequency selective channels.
     5、To meliorate adverse effect on the demodulation performance caused by the single channel’s nonlinear phase characteristic, an average phase method from all of the branches is proposed. Because the demodulation scheme with Baud Spaced Equalizer after symbol timing synchronization is often used on the assumption of the unknown channel, the reduction about SNR after symbol timing synchronization and equalizer’s output performance is analyzed, which is brought by the channel’s nonlinear phase characteristic. Different from the fixed single signal, the new phase compensating algorithm utilizes all of the signals from the antenna array, and the resultant phase is converged to the average phase of the signals. As a result, it could improve the characteristic of the phase frequency and overcome the shortcoming from the fixed single method. Moreover, a relative average phase algorithm is also presented to avoid the multivalued phenomenon about the phase difference. Finally the validity of the phase compensating algorithm is affirmed by the simultations.
引文
[1] D.H.Rogstad, A.Mileant, and T.T.Pham. Antenna Arraying Techniques in the Deep Space Network[M]. Hoboken, New Jersey: John Wiley 2003.
    [2] William A. Imbriale. Large Antennas of the Deep Space Network[M]. Hoboken, New Jersey: John Wiley 2003.
    [3] C.H.Lee, V.Vilnrotter and E.Satorius. Large-Array Signal Processing for Deep-Space Applications[R]. The IPN Progress Report 42-150. Jet Propulsion Laboratory, Pasadena, California. pp. 1-28. August 2002.
    [4] G.M.Resh, T.A.Cwik, V.Jamnejad, R.T.Logan and R.B.Miller. Synthesis of a Large Communications Aperture Using Small Antenna[R], The JPL Publication 94-15. Jet Propulsion Laboratory, Pasadena, California. pp. 1-132. July 1994.
    [5] T.T.Pham, S.Shambayati, D.E.Hardi and S.G.Finley. Tracking the Galileo Spacecraft with the DSCC Galileo Telmetry Prototype[R]. TDA Progress Report 42-119. Jet Propulsion Laboratory, Pasadena, California. pp. 1-14. November 1994.
    [6] Bagri D. Pros and Cons of Using Arrays of Small Antennas versus Large Single-Dish Antennas for the Deep Space Network[R]. IPN Progress Report 42-174. Jet Propulsion Laboratory, Pasadena, California. pp. 221-235. August 2008.
    [7]李平,张纪生. NASA深空网(DSN)的现状及发展趋势[J].飞行器测控学报. 2003. 22(4): 10-18.
    [8]李海涛,李宇华,匡乃雪.深空探测中的天线组阵技术[J].飞行器测控学报. 2004(12): 57-62.
    [9]姚飞,匡麟玲,詹亚锋,陆建华.深空通信天线组阵关键技术及其发展趋势[J].宇航学报. 2010. 31(10):2231-2238.
    [10] A.Mileant, S.Hinedi. Overview of Arraying Techniques in the Deep Space Network[R]. The TDA Progress Report 42-104. Jet Propulsion Laboratory, Pasadena, California. pp. 109-139. February 1990.
    [11]钟晓玲,周三文,李海涛,卢满宏.天线组阵信号合成技术的研究[J].遥测遥控. 2007, 28(Suppl): 43-48
    [12] L. Paal, R. Mukai, V. Vilnrotter. Ground System Phase Estimation Techniques for Uplink Array Applications[R]. IPN Progress Report 42-167 Jet Propulsion Laboratory, Pasadena, California. pp. 1-15. November, 2006
    [13] D. S. Bagri. Phasing an Uplink Array Using Radio Source(s)[R]. IPN Progress Report 42-172. Jet Propulsion Laboratory, Pasadena, California. pp. 1-6, February 2008.
    [14]徐茂格.深空网上行发射天线组阵技术分析[J].电视技术. 2009, 49(6): 49-52.
    [15] Richard Schilizzi. International SKA Project: status and overview.Washington, 14 September 2007.
    [16] Abraham D S. Identifying Future Mission Drivers on the Deep Space Network[C]. In Conference of Space Mission Operations and Ground Data Systems, 2002.
    [17] M.A.Ingram, R.Romanofsky and R.Q.Lee. Optimizing Satellite Communications With Adaptive and Phased Array Antennas[J]. ESTC 2004, Palo Alto. CA, 2004.
    [18]漆雪梅.多天线信号合成的权值估计算法研究与实现[D].郑州:信息工程大学. 2011.
    [19] Timothy T.Pham, Andre P.Jongeling and David H.Rogstad. Enhancing Telemetry and Navigation Performance with Full Spectrum Arraying[J]. IEEE Aerospace Conference Proceedings, pp. 491-198. 2000.
    [20] D.H.Rogstad. Suppressed Carrier Full-Spectrum Combining[R]. TDA Progress Report 42-107. Jet Propulsion Laboratory, Pasadena, California. pp. 12-20. November 1991.
    [21] D.Divsalar. Symbol Stream Combining Versus Baseband Combining for Telemetry Arraying[R]. The TDA Progress Report 42-74. Jet Propulsion Laboratory, Pasadena, California. pp. 13-28. April 1986.
    [22] S. Million, B. Shah and S. Hinedi. A Comparison of Full-Spectrum and Complex-Symbol Combining Techniques for the Galileo S-Band Mission[R]. TDA Progress Report 42-116. Jet Propulsion Laboratory Pasadena California. pp. 128-162. February 1994.
    [23] Samson Million, Biren Shah and Sami Hinedi. Comparison of Two Maximal Ratio Combining Techniques in Antenna Arraying[J]. IEEE Transactions on Communications. 1996, 44(11):1599-1609.
    [24] W.hurd, J.Rabkin, M.D.Russell, B.Siev, H.W.Cooper, T.O.Anderson. Antenna Arraying of Voyager Telemetry Signals by Symbol Stream Combining[R]. The TDA Progress Report 42-86. Jet Propulsion Laboratory, Pasadena, California. pp. 131-142. April 1986.
    [25]党宏杰,袁嗣杰,史学书.天线组阵信号SUMPLE与SIMPLE算法的仿真研究[J].装备指挥技术学院学报. 2008. 19(4): 78-82.
    [26] D. H. Rogstad. The SUMPLE Algorithm for Aligning Arrays of Receiving Radio Antennas: Coherence Achieved with Less Hardware and Lower Combining Loss[R], IPN Progress Report 42-162. Jet Propulsion Laboratory, Pasadena, California. pp. 1-29. August 2005.
    [27]孔德庆,施浒立.非均匀天线组阵SUMPLE权值信噪比及信号合成性能分析[J].宇航学报. 2009. 30(5):1941-1946.
    [28]孔德庆,施浒立.非均匀天线组阵SUMPLE合成相位补偿及信号强度估计[J].电波科学学报. 2009. 24(4): 632-636.
    [29]党宏杰,史学书,袁嗣杰,杨潇.应用于深空阵列信号处理的可变步长SUMPLE算法研究[J].飞行器测控学报. 2008, 27(6): 27-31
    [30]沈彩耀,胡赟鹏,于宏毅.天线组阵中基于SUMPLE算法的故障天线分析[J].宇航学报. 2011, 32(11): 2445-2450.
    [31]沈彩耀,于宏毅.天线组阵中SUMPLE算法的合成相位漂移补偿[J].飞行器测控学报. 2011, 30(6): 42-45.
    [32]史学书,王元钦.深空组阵Eigen算法及其低信噪比合成性能分析[J].宇航学报. 2009, 30(6): 2347-2353.
    [33] Charles H. Lee, Kar-Ming and Victor A Vilnrotter. Fast Eigen-Based Signal CombiningAlgorithms for Large Antenna Arrays[C]. IEEE Aerospace Conference Paper. 2003. Vol 2:1123-1129.
    [34] Cheung K-M. Eigen Theory for Optimal Signal Combining: A Unified Approach[R]. The TDA Progress Report 42-126. Jet Propulsion Laboratory, Pasadena, California. pp. 1-9. August 1996.
    [35] Golub G.H. and Van Loan C.F, Matrix Computations[M], The John Hopkins University Press, Baltimore, 1989.
    [36]赵晓明,冯恩信,姜家持.一种用于深空网天线组阵的基于归一化权的Matrix-Free Power Method[J].遥控遥测. 2009, 30(4): 15-20.
    [37]孔德庆,施浒立.天线组阵中相位差的递推最小二乘估计与滤波[J].宇航学报. 2009. 31(1):212-216.
    [38] V.A. Vilnrotter, E.R.Rodemich and S.J. Dolinar, Real-Time Combining of Residual Carrier Array Signals Using ML Weight Estimates[J], IEEE Transactions Communications, vol.40(3), pp. 604-615, March 1992.
    [39] E.R.Rodemich, V.A.Vilnrotter. Digital Combining-Weight Estimation for Broadband Sources using Maximum-Likelihood Estimations[R]. TDA Progress Report 42-116. Jet Propulsion Laboratory, Pasadena, California. pp. 98-109. February 1994.
    [40] V.A.Vilnrotter, E.R.Rodemich. A Real-Time Signal Combining System for Ka-Band Feed Arrays Using Maximum Likelihood Weight Estimates [R], TDA Progress Report 42-100. Jet Propulsion Laboratory, Pasadena, California. pp.81-99. February 1990.
    [41]沈智翔.多天线信号合成关键技术研究与实现[D].郑州:信息工程大学. 2010.
    [42]孙正波,叶尚福.一种时延/频率差快速联合估计方法[J].电波科学学报. 2006, (21):641-646.
    [43] J. Falk, P.Handel, M.Jansson. Estimation of Receiver Frequency Error in A TDOA-based Direction-Finding System[C]. IEEE Signals Systems and Computers. 2004:2079-2083.
    [44] S. Stein. Algorithm for ambiguity function processing [J]. IEEE Trans. Acoust., Signal Processing, 1981, 29(3): 588-599.
    [45] D.C .Shin and C .L. Nikias. Complex ambiguity functions using nonstationary higher order cumulant estimation [R]. IEEE Trans Signal Processing. 1995,43(11): 2649-2663.
    [46] Z. T. Huang, Y. T Zhou and Q. Z .Lu. Joint estimation of Doppler and time diference of arrival exploiting cyclostationary property[R]. IEE Proceedings F. 2002, 149(4): 161-165.
    [47] G.A.Tsihrintzis, U.Tureli, C.L.Nikias. Fractional Lower-order Statistics-based Ambiguity Functions for Differential delay Doppler Estimation[C]. Radar, Sonar and Navigation,IEE proceeding. 1996(143):358-355.
    [48] S.M.Kay. A fast and accurate single frequency estimator [J]. IEEE Transactions on Acoust, Speech, Signal Processing, 1989, 12(37):1987-1990.
    [49] Steven A. Tretter. Estimating the Frequency of a Noisy Sinusoid by Linear Regression [J]. IEEE Transactions on Information Theory. 1985. VOL. IT-31, NO. 6.
    [50] B.C.Lovell and R.C.Williamson. The statistical performance of some instantaneous frequency estimators [J]. IEEE Transactions on Acoust, speech, Signal Processing, 1992,40(7): 1708-1723.
    [51] M.P.Fitz. Planar filtered techniques for burst mode carrier synchronization [A]. In: Global Telecommunications Conference[C]. Phoenix, Arizona, USA, 1991: 365-369.
    [52] M.Luise, R.Reggiannini. Carrier Frequency Recovery in ALL-Digital Modems for Burst-Mode Transmissions [J]. IEEE Transactions on Communication, 1995, 43(2): 1169-1178.
    [53] Umberto Mengali, M.Mprelli. Date-Aided frequency estimation for burst digital transmission [J]. IEEE Transactions on Communication, 1997, 45(1):23-25.
    [54] Knapp C. H. and Carter G. C. The generalized correlation method for estimation of time delay [J], IEEE Trans. Acoustic, Speech, Signal Processing, 1976, 24(4): 320-327.
    [55] W. A. Gardner and C. K. Chen. Signal-selective time-difference-of-arrival estimation for passive location of man-made signal source in highly corruptive environments, Part I: theory and method. IEEE Trans. Signal Processing, 1992, Vol. 40, No. 5: 1168-1184.
    [56] J. K. Tugnait. On time delay estimation with unknown spatially correlated Gaussian noise using fourth-order cumulants and cross cumulants. IEEE Trans. Signal Processing, 1991, Vol. 39(6): 1258-1267
    [57] Jingdong Chen, Yiteng Huang, Jacob Benesty. A Comparative Study on Time Delay Estimation in Reverberant and Noisy Environments[C]. 2005 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, New Paltz. 2005, pp: 21-24.
    [58]张群飞,黄建国,谢一清.时延估计的高分辨方法[J].声学学报. 1995, 20(3):211-217.
    [59]秦洪峰.水下多目标定位关键技术研究[D].西安:西北工业大学. 2002:27-33.
    [60] Kung Yao, Ralph E. Hudson, Chris W. Reed, Daching Chen, and Flavio Lorenzelli. Blind Beamforming on a Randomly Distributed Sensor Array System [J], IEEE Journal on selected areas in communications, 1998, 16(8):1555-1566.
    [61] Jingdong Chen, Jacob Benesty and Yiteng Huang. Robust time delay estimation exploiting redundancy among multiple microphones [J], IEEE Trans. Acoustic, Speech, Signal Processing, 2003, 11(6):549-557.
    [62] Jacob Benesty, Jingdong Chen and Yiteng Huang. Time-Delay Estimation via Linear Interpolation and Cross Correlation[J].IEEE Trans on Speech and Audio Processing. 2004,12(5): 509-519.
    [63] Jingdong Chen, Yiteng (Arden) Huang and Jacob Benesty. Time Delay Estimation via Multichannel Cross-Correlation[J]. ICASSP 2005:49-52.
    [64] Jacob Benesty, Yiteng Huang and Jingdong Chen. Time Delay Estimation via Minimum Entropy[J].IEEE Signal Processing Letters. 2007, 14(3):157-160.
    [65] Jacob Benesty, Yiteng Huang and Jingdong Chen. Laplace Entropy and its Application to Time Delay Estimation for Speech Signals[J]. ICASSP 2007:113-116.
    [66] R. L. Kirlin, D. F. Moore and R. F. Kubichek. Improvement of delay measurements from sonar arrays via sequential state estimation[J]. IEEE Trans. Acoust., Speech, Signal Processing.1981, 29(3):514–519.
    [67] T. Nishiura, T. Yamada, S. Nakamura, and K. Shikano. Localization of multiple soundsources based on a CSP analysis with a microphone array. Proc.IEEE ICASP, 2000, pp: 1053-1055.
    [68] S. M. Griebel and M. S. Brandstein. Microphone array source localization using realizable delay vectors. in Proc. IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, 2001: 71-74.
    [69] Huang Y, Benesty J, Elko G W. Adaptive Eignvalue Decomposition Algorithm for Realtime Acoustic Source Localization System [C].IEEE International Conference on Acoustic, Speech and Signal Processing. Seatle, WA, USA, 1998, 2:937-940.
    [70] Huang Y, Benesty J. Adaptive Blind Channel Identification: Multi-Channel Least Mean Square and Newton Algorithms[C]. Proceedings of the IEEE Conference on Acoustic, Speech and Signal Processing. Orlando, florida, USA, 2002, 2:937-940.
    [71] Jingdong Chen, Yiteng Huang and Jacob Benesty. An Adaptive Blind SIMO Identification Approach to Joint Multichannel Time Delay Estimation [J] ICASSP 2004. pp. 53-56.
    [72] Yiteng (Arden) Huang, and Jacob Benesty. A Class of Frequency-Domain Adaptive Approaches to Blind Multichannel Identification[J]. IEEE Trans on Signal Processing. 2003, 51(1): 11-24.
    [73] C. Shen and H. Yu. Time-delay alignment technique for a randomly distributed sensor array[J]. IET Communications. 2011, 5(8):1068-1072.
    [74] S.J.Dolinar. Cramer-Rao Bounds for Signal-to-Noise Ratio and Combiner Weight Estimation [R]. TDA Progress Report 42-86, Jet Propulsion Laboratory Pasadena California, pp.124-130. April- June 1986.
    [75] S.J.Dolinar and S.Kalson. Maximum Likelihood Estimation of Signal to Noise Ratio and Combiner Weight [R]. TDA Progress Report 42-85, Jet Propulsion Laboratory Pasadena California, pp.32-41. January-March 1986.
    [76] E.R.Rodemich, V.A.Vilnrotter. Digital Combining-Weight Estimation for Broadband Sources using Maximum-Likelihood Estimations [R]. TDA Progress Report 42-116, Jet Propulsion Laboratory Pasadena California, pp.98-109. February 1994.
    [77] V. A. Vilnrotter, E. R. Rodemich, A Real-Time Signal Combining System for Ka-Band Feed Arrays Using Maximum Likelihood Weight Estimates [R], TDA Progress Report 42-100, Jet Propulsion Laboratory Pasadena California, pp.81-99. February 1990.
    [78]万明康,罗柏文,于宏毅等.相关噪声条件下的多天线信号合成性能分析[J]. 2010, 46(23):12-15.
    [79] Pauluzzi D R,Beaulieu N C. A Comparison of SNR EstimationTechniques for the AWGN Thannel[J] .IEEE Transon Communications, 2000, 48(10): 1681-1691.
    [80]隋丹,葛临东.一种新的基于改进PASTd的中频信号盲信噪比估计算法[J].电子与信息学报, 2007, 29(7): 1657-1661.
    [81]张海瑛,袁超伟.一种实用的通信信号信噪比盲估计方法[J].无线电通信技术. 2007, 33(2): 49-51.
    [82]彭耿,黄知涛,陆凤波,姜文利.中频通信信号信噪比的快速盲估计[J].电子与信息学报. 2010, 32 (1): 102-106.
    [83] Shen Caiyao, Yang Ke, Yu Hongyi. Cramer-Rao Bounds of SNR Estimation for BPSK and QPSK Signals in Antenna Arraying[C]. In Proc. the 2nd International Comference in Signal Processing Systems (ICSPS'2010). DaLian, China, 2010: 647-650.
    [84]沈彩耀,于宏毅.多天线PSK信号合成权值估计的CRLB研究[J].数据采集与处理. 2011, 25(S):106-109.
    [85] Boujelben M A, Bellili F, Affes S, et al. EM Algorithm for Non-Data-Aided SNR Estimation of Linearly-Modulated Signals over SIMO Channels[A]. In: Proc. of IEEE Global Communications Conference [C]. Hawaii, USA, 2009, 30(4):1-6.
    [86] Alex Stéphenne, Faouzi Bellili, and Sofiène Affes. Moments-Based SNR Estimation for SIMO Wireless Communication Systems Using Arbitrary QAM[C]. In Proc. of the 41th Asilomar Conference on Signals, Systems and Computers (ACSSC′2007). Pacific Grove, CA, 2007:601-605.
    [87] Alex Stéphenne, Faouzi Bellili, and Sofiène Affes. Moments-Based SNR Estimation over Linearly Modulated Wireless SIMO Channels[J]. IEEE Transactions on Wireless Communications, 2010, 9(2): 714-722.
    [88]漆雪梅,张效义. SIMO信道中信噪比估计算法分析与仿真[J].计算机工程. 2011.
    [89]漆雪梅,沈彩耀,张效义. SIMO信道中基于奇异值分解的盲信噪比估计算法[J].信号处理. 2011, 27(4): 552-557.
    [90]沈彩耀,于宏毅,顾宇巍等.一种用于天线组阵的合成权值盲估计算法[J].计算机应用研究. 2010, 27(10): 3747-3749.
    [91] John G.Proakis著,张力军等译.数字通信第四版[M].电子工业出版社. 2004.
    [92] K.Scott, E.B.Olasz andA.Sendyk. Diversity Combining with MLSE Equalization[J].IEE Proc.-Commun. 1998.Vol145(2):105-108.
    [93] S. Venkataraman, S. A. Mahmoud and R. A. Goubran. Filter Structures for Equalization and Diversity Combining in Wireless Communications [C]. The 3th annual international conference on universal personal communications, 1994:204-209.
    [94] P. Balaban , J. Salz,“Optimum Diversity Combining and Equalization in Digital Data Transmission with Applications to Cellular Mobile Radio-Part I: Theoretical Considerations[J],”IEEE Trans. Commun. 1992, vol. 40(5):885-894.
    [95] P. Balaban ,J. Salz,“Optimum Diversity Combining and Equalization in Digital Data Transmission with Applications to Cellular Mobile Radio -Part II: Numerical Results[J],”IEEE IEEE Trans. Commun. 1992, vol. 40(5):895-907.
    [96]朱婕,郭业才.基于最大比合并空间分集判决反馈盲均衡算法[J].系统仿真学报. 2008. Vol.20(11):2843-2845.
    [97] Byoung-Jo Kim; Cox, D.C. Blind Diversity Combining Equalization for Short Burst Eireless Communications[C]. IEEE GLOBECOM.1997, vol.3: 1163-1167.
    [98]饶伟. Bussgang类盲均衡算法的扩展研究[D].安徽理工大学. 2007.
    [99]李霞.水声通信中的自适应均衡与空间分集技术研究[D].哈尔滨工程大学. 2005.
    [100]季仲梅,杨洪生,王大明等.通信中的同步技术及应用[M].清华大学出版社. 2008.
    [101] Dongmin Lim. A Modified Gardner Detector for Symbol Timing Recovery of MPSK Signals[J]. IEEE Transactions on Communication, 2004, 52 (10):1643-1647.
    [102]沈彩耀,于宏毅,胡赟鹏.频率选择性信道下的多天线信号分量合成算法.信息工程大学学报[J]. 2012, 13(1): 48-53.
    [103] Shuo Liu, Julian Cheng and Norman. Asymptotic Error Analysis of Diversity Schemes on Arbitrarily Correlated Rayleigh Channels[J]. IEEE Trans on Communications. 2010, 58(5): 1351-1355
    [104] D. G. Bernnan. Linear Diversity Combining Techniques[J]. Proceedings of IEEE, 2003,91(2): 331-356
    [105]黄开枝,陈国安.智能天线和空间分集接收技术[J].电视技术. 2002(4): 99-104.
    [106]金荣洪,耿军平,范瑜.无线通信中的智能天线[M].北京:北京邮电大学出版社. 2006.
    [107]王登伟.无线通信中多天线技术优化算法的研究[D].北京:北京邮电大学. 2008
    [108]张功国,陈路,徐成伍.下一代移动通信中的多天线技术[J].无线通信技术. 2004(1): 5-8.
    [109]李青侠,张力.无线通信中的多天线技术综述[J].计算机与数字工程. 2006, 34(9): 68-72.
    [110]黄韬,袁超伟,杨睿哲,刘鸣. MIMO相关技术与应用[M].北京:机械工业出版社. 2007.
    [111] David Gesbert,Mansoor Shafi, Da-shan Shiu, Peter J. Smith and Ayman Naguib. From Theory to Practice: An Overview of MIMO Space-Time Coded Wireless Systems[J]. IEEE Journal on Selected Areas in Communications. 2003, 21(3): 281-302.
    [112]周三文,卢满宏,黄建国.天线组阵全频谱合成效率分析[J].遥测遥控. 2009, 30(2): 46-52.
    [113] Steven M. Kay著,罗鹏飞等译.统计信号处理基础[M].北京:电子工业出版社. 2006.
    [114]易岷.时延及相关参数估计技术研究[D].成都:电子科技大学. 2004.
    [115] E.moulines, D.Slock, PDuhamel. Subspace Methods for the Blind Identification of Multichannel FIR Filters .IEEE Trans. on signal processing, 1995, 2(43):516-526.
    [116] Lang Tong,Guanghan Xu and Thomas Kailath. Blind Identification and Equalization based on Second-Order Statistic: A Time Domain Approach. IEEE Transaction on Information Theory, 1994 40(2):240-349.
    [117] Lang Tong,Guanghan Xu and Thomas Kailath. BlindI dentification and Equalization based on Second-Order Statistic: A Frequency Domain Approach. IEEE Transaction on Information Theory, 1995 41(1):329-334.
    [118] Lang Tong, Sylvie Perreau "Multi-channel Blind Identification: From subspace to Maximum Likelihood Methods .Proceedings of the IEEE. 1998, 86 (10):1951-1968.
    [119] Raphael Visoz and Elie Bejjani. Matched Filter Bound for Multichannel Diversity Over Frequency-Selective Rayleigh-Fading Mobile Channels[J]. IEEE Trans on Vehicular Technology. 2000, 49(5): 1832-1845
    [120] M.V.Clark, L.J.Greenstein, K. Kennedy, and M. Shafi, Matched Filter Performance Bounds for Diversity Combining Receivers in Digital Mobile Radio[J], IEEE Trans. Veh. Technol. 1992, 41(4):356-362.
    [121]樊昌信,张甫翊,徐炳祥等.通信原理[M].北京:国防工业出版社. 2003.
    [122] Philip Balaban, Jack Salz. Dual diversity combing and equalizeation in digital cellular mobile radio[J]. IEEE Trans on Vehicular Technology. 2000, 40(2): 342-354
    [123]陈星.盲最大似然序列估计算法的研究[D].太原:太原理工大学. 2006.
    [124] S. C. Lin. Accurate error rate estimate using moment method for optimum diversity combining and MMSE equalisation in digital cellular mobile radio[J]. IEE Proc. Commun. 2002. 149(3):157-165.
    [125]程云鹏,张凯院,徐仲.矩阵论[M].陕西.西北工业大学出版社. 2006
    [126]王骞.深空网中基于自适应算法的天线组阵技术研究[D].郑州:信息工程大学, 2008.
    [127] Nader Alagha. Cramer-Rao Bounds of SNR Estimates for BPSK and QPSK Modulated Signals[J].IEEE Communication Letter. 2001. 5(1):10-12.
    [128]杨珂,王丽,李鸥,于宏毅.基于最小二乘的天线组阵合成权值及信噪比盲估计[J].电路与系统学报. 2011, 16(3):123-128.
    [129]朱华,黄辉宁,李永庆等.随机信号分析[M].北京:北京理工大学出版社. 2002.
    [130]赵洪林,童玲玲,王钢,王磊.海上微波信道的传输特性[J].哈尔滨理工大学学报. 2006, 11(2): 16-20.
    [131] Mohamed-Slim Alouini, Andrea J. Goldsmith. A Unified Approach for Calculating Error Rates of Linearly Modulated Signals over Generalized Fading Channels[J]. IEEE Trans on Communications. 1999, 47(9):1325-1334.
    [132]于春锐.无线通信系统的信道建模与仿真研究[D].长沙:国防科学技术大学. 2007.
    [133]张贤达.现代信号处理[M].北京:清华大学出版社. 2000: 159-161.
    [134]杨永红,张尤赛,戴亮.关于信号正交分解在Fourier变换中的几点思考[J].电气电子教学学报. 2009, 31(6):110-114.
    [135] Godara. L.C. Application of the fast Fourier transform to broadband beamforming[J]. J.Acoust. Soc. Amen. 1995, 98(1):230-240.
    [136] Lal C. Godara and Mohammad R. Sayyah Jahromi. Limitations and Capabilities of Frequency Domain Broadband Constrained Beamforming Schemes[J]. IEEE Trans on Signal Processing. 1999, 47(9):2386-2395.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700