非理想阵列幅相响应下的空间谱估计算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空间谱估计是对空间某一区域内的多个感兴趣信号的方向进行估计的技术,是阵列信号处理最主要的研究方向之一。该技术广泛应用于雷达、声纳、通信、地震勘探、医学成像等多种军事和国民经济应用领域。
     虽然高分辨空间谱估计算法在理论上具有分辨精度高的特点,但是大多数算法都是以阵列流型精确已知为前提的,而在实际中阵列流型误差不可避免,这将严重影响高分辨空间谱估计算法的性能。因此在进行空间谱估计之前,有必要对阵列流型误差进行校正。本文对阵列幅度相位响应(简称阵列响应)存在误差时,不同的阵列模型下的空间谱估计算法进行了深入研究。
     本文对现有的空间谱估计算法进行改进,同时着重研究在阵列响应存在误差情况下的校正问题,在以下几个方面具有创新性成果:
     1)提出了均匀线阵下的阵列响应误差的自校正算法。对于均匀线性阵列,由于其导向矢量的范德蒙特性,阵列响应迭代自校正技术会存在模糊性,也就是入射源DOA和阵列响应的迭代估计中的解不唯一。针对这一问题,本文详细讨论了入射源DOA和阵列响应迭代估计中存在的相位模糊性关系。基于这种模糊性关系,提出了一种入射源DOA和阵列响应进行迭代估计的算法,其中迭代过程中包括了消除相位模糊的步骤。为了消除相位模糊,这里需要设置一个相位响应已经事先校正过的阵元。和现有的迭代算法相比,本文提出的迭代算法具有较好的鲁棒性,不需要好的初始值,在较大的阵列响应误差情况下,同样具有较高的估计精度和较快的收敛速度。
     2)提出了均匀平面阵列的二维DOA估计算法。该算法针对传统二维MUSIC算法计算量大的问题,对其进行了改进。根据均匀平面阵列流型向量的特点,把其分解成一个矩阵和一个向量相乘的形式,从而就可以把传统的二维MUSIC算法中需要的二维谱峰搜索转化成两个一维谱峰搜索,这样在保证估计精度的前提下,使算法的计算量大大降低。
     3)提出了均匀平面阵列下的阵列响应误差的自校正算法。与均匀线性阵列类似,均匀平面阵列的阵列响应迭代自校正技术同样会存在模糊性,入射源二维DOA和阵列响应的迭代估计中的估计值不唯一。本文针对均匀平面阵列模型,详细讨论了入射源二维DOA和阵列响应联合估计中存在的相位模糊性关系。基于这种模糊性关系,提出了一种入射源二维DOA和阵列响应进行迭代估计的算法,其中迭代过程中包括了消除相位模糊的步骤。为了消除相位模糊,这里需要设置两个相位响应已经事先校正过的阵元。
     4)提出了基于特殊累积量矩阵的近场源DOA和距离估计算法。该算法通过构建一个特殊的四阶累积量矩阵,消除一维待估计参数,然后应用ESPRIT算法,估计出一维参数;通过对协方差矩阵进行特征分解,应用MUSIC算法估计出另外一维参数。该算法只需要构建一个四阶累积量矩阵和一个协方差矩阵,仅需进行一维谱峰搜索,就能得出直接匹配的近场源DOA和距离参数。和现有算法相比,该算法计算量适中,估计性能好。
     5)在新提出的近场源定位算法基础上,进一步提出了近场源方位参数和阵列响应联合估计算法。针对近场源均匀线性阵列模型,本文讨论了近场源方位参数和阵列响应联合估计中存在的相位模糊性关系。基于这种模糊性关系,提出了一种近场源方位参数和阵列响应进行迭代估计的算法,其中迭代过程中包括了消除相位模糊的步骤。为了消除相位模糊,这里需要设置两个相位响应已经事先校正过的阵元。
     6)推导出了在阵列响应未知的情况下,近场源方位参数估计的CRB界(CramerRaoBound)的闭式表达式。该CRB表达式不包含复杂的矩阵操作,因此可以被直接有效的计算出。通过观察推导出的CRB表达式,对未知的阵列响应对CRB界的影响进行了分析。分析结果表明,阵列幅度响应是否已知不影响近场源参数估计的CRB界限,但是阵列相位响应是否已知会对近场源参数估计的CRB界限产生影响。
Estimating direction of arrival (DOA) and range of one or more interesting signals which are located in some spatial field simultaneously is one of the most important research area of array signal processing. It is widely used in various military and economic fields such as radar, sonar, communications, seismology and medical imaging.
     Most high-resolution spatial spectrum estimation algorithms require precise knowledge about the receiving array manifold. However, in reality the array manifold errors are inevitable, the high-resolution spatial spectrum estimation algorithms wil suffer form severe performance degradation. Hence it is very necessary to calibrate the array manifold errors before spatial spectrum estimation. This dissertation has made deep research on the spatial spectrum estimation algorithms of different array manifold when the array exists gain and phase response errors.
     This dissertation has made improvements on the existing source localization algorithms, and made deep research on the problem of array calibration when the array exists gain and phase response errors. Several new algorithms are proposed.
     1) The author proposes a self-calibrated algorithm of array gain and phase response errors for uniform linear array. Considering the special manifold of uniform linear array, we discuss the ambiguities of the estimations of DOA and sensor gain and phase response errors. Based on the ambiguous relations, we propose an iterative algorithm for the estimation of DOA and sensor gain and phase response errors. The step of removing the phase ambiguities is included. We also show that the phase ambiguities can be removed if we assume one sensor phase response of the array has been calibrated. Compared with the existing algorithms, the iterative algorithm is robust and doesn't need good initial value. It has high estimateion precision and fast convergent speed even when the array exists large gain and phase response errors.
     2) The author proposes a2-D DOAs estimated algorithm for uniform rectangular array. Considering the large computational complexity of the classical2-D MUSIC algorithm, we make an improvement. Based on the property of the steering vector of uniform rectangular array, it can be transformed two matrices multiplication form. Then the proposed algorithm can avoid2-D searching by transforming2-D searching into two1-D searchings. The computation load of the proposed algorithm is relieved effectively. The estimated parameters are paired automatically. Simulation results show that the proposed algorithm can achieve accurate and stable estimated results.
     3) A self-calibrated algorithm for unique planar equispaced array is proposed. Considering the special manifold of unique planar equispaced array, we discuss the ambiguities of the estimations of2-D DO As and sensor gain and phase response errors. Based on the ambiguous relations, we propose an iterative algorithm for the estimation of2-D DOAs and sensor gain and phase response errors. The step of removing the phase ambiguities is included. We also show that the phase ambiguities can be removed if we assume two sensor phase responses of the array have been calibrated.
     4) A new near-field source localization algorithm based on a uniform linear array was proposed. The proposed algorithm estimates each parameter separately but does not need pairing parameters. It can be divided into two important steps. The first step is bearing-related electric angle estimation based on the ESPRIT algorithm by constructing a special cumulant matrix. The second step is the other electric angle estimation based on the1-D MUSIC spectrum. It offers much lower computational complexity than the traditional near-field2-D MUSIC algorithm and has better performance than the high-order ESPRIT algorithm. Simulation results demonstrate that the performance of the proposed algorithm is close to the Cramer-Rao Bound (CRB).
     5) Based on the new near-field localization algorithm, a method for joint estimation of near-field source parameters and array gain/phase response is proposed. Considering the special uniform linear array manifold for near-field source, we discuss the ambiguities of the estimations of near-field source parameters and sensor gain and phase response. Based on the ambiguous relations, we propose an iterative algorithm for the estimation of near-field source parameters and sensor gain and phase response. The step of removing the phase ambiguities is included. We also show that the phase ambiguities can be removed if we assume two sensor phase responses of the array have been calibrated.
     6) Closed-form expressions of the CRB for the estimation of near-field source location under unknown array gain/phase responses are derived. The expressions do not involve complicated matrix operations such as matrix inverse. Hence they can be efficiently calculated. Various affecting factors on the behaviour of the bounds are analyzed. From the CRB analysis, we conclude that any priori unknown gain uncertainty will not affect the CRB, but unknown phase response will lead to worse CRB.
引文
[1]王永良,陈辉,彭应宁,等.空间谱估计理论与算法[M].北京:清华大学出版社,2004
    [2]Krim H. and Viberg M.. Two decades of array signal processing research:the parametric approach[J]. IEEE Signal Processing Magazine,1996,13(4):67-94
    [3]Huang Y. D. and Barkat M.. Near-field multiple sources localization by passive sensor array[J]. IEEE Trans. on Antennas Propagation,1991,39(7):968-975
    [4]Sehmidt R.O.. Multiple emitter location and signal parameter estimation[J]. IEEE Trans. on Antennas Propagation,1986,34(3):276-280
    [5]Roy R. and Kailath T.. ESPRIT-estimation of signal parameters via rotational invariance techniques[J]. IEEE Trans. on Acoustics, Speech and Signal Processing,1989,37(7):984-995
    [6]Bohme J.. Estimation of source parameters by maximum likelihood and nonlinear regression[A]. International Conference on Acoustics, Speech, and Signal Processing[C].1984:271-274
    [7]王布宏,王永良,陈辉.相干信源波达方向估计的广义最大似然算法[J].电子与信息学报,2004,26(2):225-232
    [8]Swindlehurst A. L. and Kailath T.. Passive direction of arrival and range estimation for near-field sources[A]. The4th Annual ASSP Workshop on Spectrum Estimation and Modeling[C]. Minneapolis, MN, USA:IEEE Press,1988:123-128
    [9]Chen J. C., Hudson R. E. and Yao K.. Maximum-likelihood source localization and unknown sensor location estimation for wideband signals in the near-field[J]. IEEE Trans, on Signal Processing,2002,50(8):1843-1854
    [10]Hung H. S., Chang S. H. and Wu C. H.. Near-field source localization using MUSIC with polynomial rooting[J]. Marine Sci. and Technol.,1998,6(1):1-7
    [11]Challa R. N. and Shamsunder S.. High-order subspace based algorithms for passive localization of near-field sources[A]. Proc.29th Asilomar Conf. Signals, Syst., and Comput.[C]. Pacific Grove, USA:CA,1995:777-781
    [12]梁军利,冀邦杰,赵峰,等.一种基于高阶累积量的近场源四维参数联合估计算法[J].电子学报,2007,35(9):1734-1738
    [13]Haardt M., Challa R. N. and Shamsunder S.. Improved bearing and range estimation via high-order subspace based Unitary ESPRIT[A]. Proc.30th Asilomar Conf. Signals, Syst., and Comput.[C]. Pacific Grove, USA:CA,1996:380-384
    [14]吴云韬,侯朝焕,王荣,等.一种基于高阶累积量的近场源距离、频率和方位联合估计算法[J].电子学报,2005,33(10):23-26
    [15]Starer D. and Nehorai A.. Passive localization of near-field sources by path following[J]. IEEE Trans, on Signal Processing,1994,42(3):677-680
    [16]Lee J. H., Lee C. M. and Lee K. K.. A modified path-following algorithm using a known algebraic path[J]. IEEE Trans, on Signal Processing,1999,47(5):1407-1409
    [17]马克江,李军,吴云韬,等.无需参数配对的近场源距离、方位、频率联合估计算法[J].电子学报,2010,38(6):1454-1458
    [18]陈建峰,张贤达,吴云韬.近场源距离、频率及到达角联合估计算法[J].电子学报,2004,32(5):803-806
    [19]Grosicki E., Abed-Meraim K. and Hua Y. B.. A weighted linear prediction method for near-field source localization[J]. IEEE Trans. Signal Processing,2005,53(10):3651-3660
    [20]Abed-Meraim K. and Hua Y. B..3-D near field source localization using second order statistics[A]. Conference Record of the Thirty-First Asilomar Conference on Signals, Systems&Computers[C]. Pacific Grove, USA:CA,1998:1307-1311
    [21]梁军利,王诗俊,高丽等.一种无需参数配对的近场源定位新算法[J].电子学报,2007,35(6):1123-1127
    [22]王波,王树勋.一种基于二阶统计量的近场源三维参数估计方法[J].电子与信息学报,2006,28(1):45-49
    [23]黄家才,石要武,陶建武.一种新的近场源距离及到达角联合估计算法[J].电子与信息学报,2007,29(11):2738-2742
    [24]陈德莉.波达方向估计中阵列误差校正技术研究[D].长沙,国防科技大学博士学位论文.2008
    [25]Friedlander B.. A sensitivity analysis of the MUSIC algorithm [J]. IEEE Trans, on Acoustics, Speech and Signal Processing,1990,38(10):1740-1751
    [26]Friedlander B.. Sensitivity analysis of the maximum likelihood direction-finding algorithm[J]. IEEE Trans. on Aerospace and Electronic Systems,1990,26(6):953-968
    [27]苏卫民,顾红,倪晋麟,等.通道幅相误差条件下MUSIC空间谱的统计性能[J].电子学报,2001,28(6):105-107
    [28]苏卫民,倪晋麟,刘国岁,等.通道失配对MUSIC空间谱及其分辨力的影响[J].电子学报,1998,26(9):143-145
    [29]刘剑,黄知涛,王延伟,等.通道失配对MUSIC算法测向性能影响研究[J].空军工 程大学学报,2007,8(3):74-77
    [30]Weiss A. J. and Friedlander B.. Effects of modeling errors on the resolution threshold of the MUSIC algorithm [J]. IEEE Trans. on Signal Processing,1994,42(6):1519-1526
    [31]Hamza R. and Buckley K.. An analysis of weighted eigenspace methods in the presence of sensor errors [J]. IEEE Trans. on Signal Processing,1995,43(5):1140-1150
    [32]Li F. and Vaccaro R. J.. Sensitivity analysis of DOA estimation algorithms to sensor errors[J]. IEEE Trans. on Aerospace and Electronic Systems,1992,28(3):708-717
    [33]Swindlehurst A. L. and Kailath T.. A performance analysis of subspace-based methods in the presence of model errors, part I:the MUSIC algorithm[J]. IEEE Trans. on Signal Processing,1992,40(7):1758-1773
    [34]Swindlehurst A. L. and Kailath T.. A performance analysis of subspace-based methods in the presence of model errors, part II:multidimensional algorithms[J]. IEEE Trans. on Signal Processing,1993,41(9):2882-2890
    [35]Don H. Johnson, Dan E. Dudgeon. Array signal processing:concepts and techniques[M]. Prentice-Hall,1993
    [36]Tuan Do-Hong and Russer P.. Signal processing for wideband smart antenna array applications[J]. IEEE microwave magazine,2004,5(1):57-67
    [37]Prabhakar S, Naidu. Sensor array signal processing[M]. CRC Press,2001
    [38]Cadzow J. A., Kim Y. S. and Shiue D. C. General direction-of-arrival estimation:a signal subspace approach[J]. IEEE Trans. on Aerospace and Electronic System,1989,25(1):31-46
    [39]Schmidt R. O.. Multilinear array manifold interpolation[J]. IEEE Trans, on Signal Processing,1992,40(4):857-866
    [40]Weiss A. J. and Friedlander B.. Manifold interpolation for diversely polarized arrays[J]. IEEE Proceedings-Radar, Sonar Navig,1994,141(1):19-24
    [41]Zhang M. and Zhu Z. D.. DOA estimation with sensor gain, phase and position perturbations[A]. Proc. IEEE National Aerospace and Electronics Conference[C].1993:67-69
    [42]王鼎,吴瑛.一种新的阵列误差有源校正算法[J].电子学报,2010,38(3):517-524
    [43]李相平,唐志凯,刘隆和,等.阵元位置误差有源估计方法研究[J].海军航空工程学院学报,2005,20(2):251-253
    [44]李全力,肖先赐.空间谱估计测向系统信号失配的单信号源校正方法[J].电子学报,1991,19(2):123-126
    [45]Ng B. C. and Samson C. M.. Sensor-array calibration using a maximum-likelihood approach[J]. IEEE Transactions on Antennas and Propagation,1996,44(7):827-835
    [46]胡建萍,肖华,彭启琮.麦克风阵列幅度相位误差有源校正方法[J].电子科技大学学报,2007,36(6):1505-1511
    [47]Hung E.. Matrix-construction calibration method for antenna arrays[J]. IEEE Trans, on Aerospace and Electronic System,2000,36(3):819-828
    [48]贾永康,保铮,吴洹.一种阵列天线阵元位置、幅度及相位误差的有源校正方法[J].电子学报,1996,24(3):47-52
    [49]章宏,陈荆花,周希朗.阵列天线阵元位置误差、通道不一致和互耦的校正[J].上海交通大学学报,2002,36(9):1284-1290
    [50]Rockah Y. and Schultheiss P. M.. Array shape calibration using sources in unknown locations-Part I:Far field sources[J]. IEEE Trans. on Acoustics, Speech and Signal Processing,1987,35(3):286-317
    [51]Rockah Y. and Schultheiss P. M.. Array shape calibration using sources in unknown locations-Part II:Near field sources and estimator implementation[J]. IEEE Trans, on Acoustics, Speech and Signal Processing,1987,35(3):724-735
    [52]Viberg M. and Swindlehurst A. L.. A Bayesian approach to auto-calibration for parametric array signal processing[J]. IEEE Trans. on Signal Processing,1994,42(12):3495-3507
    [53]毛健,葛利嘉.高分辨阵列测向的全局优化自校正算法[J].电子科技大学学报,1993,22(5):449-454
    [54]张铭,朱兆达.无需准确已知校正源方向的阵列通道不一致的单源校正法[J].电子科学学刊,1995,17(1):20-25
    [55]See C. M. S., Poh B. K.. Parametric sensor array calibration using measured steering vectors of uncertain locations[J]. IEEE Trans. on Signal Processing,1989,47(4):1133-1137
    [56]贾永康,保铮.线性阵相位误差校正约束条件性能分析[J].电子学报,1998,26(4):104-106
    [57]廖桂生,保铮,王波.基于高阶累积量的盲高分辨DOA估计及其性能分析[J].通信学报,1996,17(4):9-14
    [58]吴洹,贾永康,保铮.基于累积量的方向估计与阵列校正[J].电子学报,1997,25(4):77-81
    [59]Hong J. S.. Genetic approach to bearing estimation with sensor location uncertainties[J]. Electronics letters,1993,29(23):2013-2014
    [60]刘宏伟,张守宏.多馈源空间馈电阵列误差校正[J].电子学报,1999,27(9):105-107
    [61]郭振民,毛健,陈天麒.信号频率方向及模型误差联合估计的优化算法[J].扬州大学学报,1998,1(1):61-65
    [62]Jansson M., Swindlehurst A. L. and Ottersten B.. Weighted subspace fitting for general array error models[J]. IEEE Trans. on Signal Processing,1998,46(9):2484-2497
    [63]俞靖,鲍明.用MUSIC法确定声源频率和方位时误差的校正方法[J].南京航空航天大学学报,1998.30(6):680-684
    [64]王安义,保铮,张林让.阵列估计误差和扰动误差引起方向图畸变的校正[J].西安电子科技大学学报,1999,26(5):614-618
    [65]Viberg M., Ottersten B. and Kailath T.. Detection and estimation in sensor arrays using weighted subspace fitting[J]. IEEE Trans. on Signal Processing,1991,39(11):2436-2448
    [66]Weiss A.J., Friedlander B.. Array shape calibration using eigenstructure methods[J]. Signal Processing,1991,22(3):251-258
    [67]Friedlander B., Weiss A.J.. Eigenstructure methods for direction finding with Sensor gain and phase uncertainty [A]. International Conference on Acoustics, Speech, and Signal Processing[C].1988:2681-2684
    [68]Friedlander B. and Weiss A.J.. Direction finding in the presence of mutual coupling[J]. IEEE Trans. on Antennas and Propagation,1991,39(3):273-284
    [69]Weiss A.J. and Friedlander B.. Array shape calibration using sources in unknown locations-A maximum likelihood approach[J]. IEEE Trans. on Acoustics, Speech and Signal Processing,1989,37(12):1958-1966
    [70]Hung E. A critical study of a self-calibration direction-finding method for arrays[J]. IEEE Trans, on Signal Processing,1994,42(2):471-474
    [71]Pierre J. and Kaveh M.. Experimental performance of calibration and direction finding algorithms [A]. International Conference on Acoustics, Speech, and Signal Processing[C].1991,2:1365-1368
    [72]Wylie M. P., Roy S. and Messer H.. Joint DOA estimation and phase calibration of linear equispaced (LES) arrays[J]. IEEE Trans on Signal Processing,1994,42(12):3449-3459
    [73]Soon V. C., Tong L., Huang Y. F., et al. A subspace method for estimating sensor gains and phases [J]. IEEE Trans on Signal Processing,1994,42(4):973-976
    [74]Xie Zeming and Wang Jingsheng. The ability of blind calibration for the linear array[A]. Antennas and Propagation Society International Symposium[C].2006:4565-4568
    [75]Weiss A. J. and Friedlander B.. DOA and steering vector estimation using a partially calibrated array[J]. IEEE Trans. on Aerospace and Electronic Systems,1996,32(3): 1047-1057
    [76]王布宏,王永良,陈辉.方位依赖阵元幅相误差校正的辅助阵元法[J].中国科学E辑.2004,34(8):906-918
    [77]Wang B. H., Wang Y. L. and Guo Y.. Mutual coupling calibration with instrumental sensors[J]. Electronics Letters,2004,40(7):406-408
    [78]Wang B. H., Wang Y. L. and Chen H.. Array calibration of angularly dependent gain and phase uncertainties with instrumental sensors[A]. IEEE international symposium on phased array systems and technology[C]. Boston, Massachusetts, USA,2003:182-186
    [79]Klemm R.. Antenna design for adaptive airborne MTI[A]. Radar International Conference[C].1992:296-299
    [80]Lundgren S.. A study of mutual coupling effects on the direction finding performance of ESPRIT with a linear microstrip patch array using the method of moments[A]. International Symposium on Antennas and Propagation Society[C].1996,2:1372-1375
    [81]杨超,阮颖铮.阵列互耦对超分辨性能的影响及校正方法[J].系统工程与电子技术,1994,7(4):1-5
    [82]Yu Y. C., Okada M. and Yamamoto H.. Dummy elements add on both sides of monopole-array assisted doppler spread compensator for digital terrestrial television broadcasting receiver[A]. IEEE International Workshop on Antenna Technology Small Antennas and Novel Meta-materials[C].2006:377-380
    [83]刘超.阵列信号处理中的自校正技术[D].合肥,中国科学技术大学博士学位论文.2009
    [84]Stoica P. and Moses R.. Spectral Analysis of Signals[M]. Englewood Cliffs, NJ: Prentice-Hall,2005
    [85]Tam P. K. and Wong K. T.. Cramer-Rao Bounds for direction finding by an acoustic vector-Sensor under unknown gain/phase uncertainties[A], in:Proc. IEEE TENCON[C].2007:1-4
    [86]Stoica P. and Nehorai A.. MUSIC, maximum likelihood, and Cramer-Rao bound[J]. IEEE Trans, on Acoustic, Speech and Signal Processing,1989,37(5):720-741
    [87]杨志伟,贺顺,廖桂生.加权伪噪声子空间投影的修正MUSIC算法[J].信号处理,2011,27(1):1-5
    [88]游鸿,黄建国,金勇,等.基于加权信号子空间投影的MUSIC改进算法[J].系统工程与电子技术,2008,30(5):792-794
    [89]Rao B. D. and Hari K. V. S.. Weighted subpace methods and spatial smoothing:analysis and comparison[J]. IEEE Trans, on Signal Processing,1993,41(2):788-803
    [90]Silverstein S. D. and Zoltowski M. D.. The mathematical basis for element and fourier beam space MUSIC and Root-MUSIC algorithm[J]. Digital signal processing,1991,1(4):1-15
    [91]Krim H., Forster P. and Proakis J. G.. Operator approach to performance analysis of Root-MUSIC and root min-norm[J]. IEEE Trans. on Signal Processing,1992,40(7):1687-1696
    [92]Zoltowski M. D., Kautz G. M. and Silverstein S. D.. Beamspace Root-MUSIC [J]. IEEE Trans. on Signal Processing,1993,41(1):344-364
    [93]Zoltowski M. D., Silverstein S. D. and Mathews C. P.. Beamspace Root-MUSIC for minimum redundancy linear arrays [J]. IEEE Trans. on Signal Processing,1993,41(7):2502-2507
    [94]郑春弟,解春维,李有才.基于实值特征值分解的求根MUSIC算法[J].数据采集与处理,2010,25(2):154-159
    [95]Ren Q. S. and Willis A. J.. Fast Root-MUSIC algorithm [J]. IEE Electronics Letters,1997,33(6):450-451
    [96]Cadzow J. A., Kim Y. S. and Shiue D. C.. General direction-of-arrival estimation:a signal subspace approach[J]. IEEE Trans, on Aerospace and Electronic Systems,1989,25(1):31-46
    [97]Rao B. D. and Hari K. V. S.. Performance analysis of Root-MUSIC [J]. IEEE Trans. on Acoustic, Speech and Signal Processing,1989,37(12):1939-1949
    [98]吕荣峰,杨力生.酉变换步进搜索求根MUSIC算法的研究与仿真[J].计算机仿真,2009,26(1):327-330
    [99]Gabriel W. F.. Using spectral estimation technique in adaptive processing antenna system[J]. IEEE Trans. on Antennas Propagation,1986,34(3):291-300
    [100]董李梅,熊键,刁鸣.波束空间的超分辨算法及统计性能分析[J].电子信息对抗技术,2006,21(6):11-19
    [101]杜金香,冯西安.基于四阶累积量的波束域MUSIC方法[J].西北工业大学学报,2009,27(5):684-687
    [102]史文涛,黄建国,侯云山.基于非圆信号的波束域共轭MUSIC方法[J].系统工程与电子技术,2009,31(10):2317-2319
    [103]Mayhan J. T.. Spatial spectral estimation using multiple beam antennas[J]. IEEE Trans. on Antennas Propagation,1987,35(8):897-906
    [104]杨雪亚,陈伯孝,赵光辉,等.基于二维空间平滑的波束域MUSIC算法[J].系统工 程与电子技术,2010,32(5):895-899
    [105]Xu X. L., Buckley K. M.. A comparison of element and beam space spatial-spectrum estimation for multiple source clusters[A]. International Conference on Acoustics, Speech, and Signal Processing[C].1990,2643-2646
    [106]Kung S. Y., Arun K. S. and Rao D. V. B.. State space and SVD based approximation methods for the harmonic retrieval problem[J]. Opt. Soc. Amer.,1983,73(12):1799-1811
    [107]Kung S. Y., Lo C. K. and Foka R.. A toeplitz approximation approach to coherent source direction finding[A]. International Conference on Acoustics, Speech, and Signal Processing[C].1986,11:193-196
    [108]Rao B R, Arun K S. Model based processing of signals:a state space approach[A]. Proc. of the IEEE[C].1992,80(2):283-309
    [109]Eriksson A. and Stoica P.. Optimally weighted ESPRIT for direction estimation[J]. Signal processing,1994,38:223-229
    [110]Haardt M. and Nossek J. A.. Unitary ESPRIT:how to obtain increased estimation accuracy with a reduced computational burden[J]. IEEE Trans, on Signal Processing,1995,43(5):1232-1242
    [111]Hua Y. and Sarkar T. K.. Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise[J]. IEEE Trans. on Acoustic, Speech and Signal Processing,1990,38(5):814-824
    [112]Hua Y. and Sarkar T. K.. On SVD for estimating generalized eigenvalues of sigular matrix pencil in noise[J]. IEEE Trans. on Signal Processing,1991,39(4):892-900
    [113]Roy R. and Kailath T.. ESPRIT-a subspace rotation approach to estimation of parameters of cissoids in noise[J]. IEEE Trans. on Acoustic, Speech and Signal Processing,1986,34(10):1340-1342
    [114]Golub G. and Pereyra V.. The differentiation of pseudo-inverses and nonlinear least squares problems whose variables separate[J]. SIAM J. Numer. Anal.1973,10:413-432
    [115]Bohme J. F. Estimation of spectral parameters of correlated signals in wavefields[J]. Signal Processing,1986,11(4):329-337
    [116]Bresler Y.. Maximum likelihood estimation of linearly structured covariance with application to antenna array processing[A]. Proc.4th ASSP Workshop on spectrum estimation and modeling[C]. Minneapolis,1988:172-175
    [117]Jaffer A. G.. Maximum likelihood direction finding of stochastic sources:a separable solution[A]. International Conference on Acoustics, Speech, and Signal Processing[C].1988,5:2893-2896
    [118]Ottersten B., Wahlberg B., Viberg M., et al. Stochastic maximum likelihood estimation in sensor arrays by weighted subspace fitting[A]. Proc.23nd Asilomar Conf. Sig., Syst., Comput.[C]. Monterey, CA,1989:599-603
    [119]韩芳明,张守宏,潘复平.阵列误差对MUSCI算法性能的影响与校正[J].西安电子科技大学学报.2003,30(5):585-589
    [120]蔡乾.波达方向估计中阵列误差校正技术研究[D].西安:西安电子科技大学,2010
    [121]颜杰.阵列测向系统校正技术研究[D].成都:电子科技大学,2009
    [122]李鹏飞,张曼,钟子发.基于空间角稀疏表示的二维DOA估计[J].电子与信息学报,2011,33(10):2402-2406
    [123]赵益民,王琦,路宏敏.一种新的DOA估计方法[J].电子学报,2011,39(6):1428-1430
    [124]孙晓颖,陈建,林琳.基于时空处理的频率与二维DOA联合估计算法[J].通信学报,2009,30(8):39-44
    [125]陈建,王树勋.基于高阶累积量虚拟阵列扩展的DOA估计[J].电子与信息学报,2007,29(5):1041-1044
    [126]Swindlehurst A.L. and Kailath T.. Azimuth elevation direction finding using regular array geometries[J]. IEEE Trans. on Aerospace and Electronic Systems,1993,29(1):144-156
    [127]Wax M., Shan T. J. and Kailath T.. Spatial-temporal spectral analysis by eigenstructure motheds[J]. IEEE Trans. on Acoustic, Speech and Signal Processing,1984,32(4):817-827
    [128]Jiao Xinquan and Su Shujing. A method of2-D DOA estimation based on modified MUSIC algorithm[A]. International Workshop on Intelligent Systems and Applications (ISA)[C].2010:1-4
    [129]Bao Zheng, Wang Yong-Liang. A new approach for2-D spectrum estimation[A]. International Conference on Radar[C].2006:1-3
    [130]战金龙,胡国平.一种新的二维MUSIC算法的研究[J].通信学报,2004,25(4):69-74
    [131]刁鸣,王月瑜,司锡才.基于MUSIC算法的二维DOA估计的性能分析[J].弹箭与制导学报,2004,24(4):218-222
    [132]Gao Feifei, Nallanathan Arumugam and Wang Yide. Improved MUSIC under the coexistence of both circular and noncircular sources[J]. IEEE Trans. on Signal Processing,2008,56(7):3033-3038
    [133]Wong K. T. and Zoltowski M. D.. Root-MUSIC-Based azimuth-elevation angle-of- Arrival estimation with uniformly spaced but arbitrarily oriented velocity hydrophones[J]. IEEE Trans. on Signal Processing,1999,47(12):3250-3260
    [134]Wax M., Shan T. J. and Kailath T.. Spatio-temporal spectral analysis by eigenstructure methods[J]. IEEE Trans. on Acoustic, Speech and Signal Processing,1984,32(4):817-827
    [135]Odendaal J. W., Barnard E. and Pistorius C. W. I. Two-Dimensional Superresolution Radar Imaging Using the MUSIC Algorithm[J]. IEEE Trans. on Antennas and Propagation,1994,42(10):1386-1391
    [136]李国民,薛倩,王安义.一种快速二维虚拟ESPRIT算法[J].西安电子科技大学学报,2004,31(2):321-324
    [137]叶中付.一种快速TLS-ESPRIT算法[J].信号处理,1998,14(2):146-149
    [138]Chen, F. J, Sam Kwong, Kok, Chi-Wah, Two-Dimensional Angle and Polarization Estimation using ESPRIT without Pairing[A],2006IEEE International Symposium on Circuits and Systems[C].2006,4:1063-1066
    [139]Zoltowski M. D., Haardt M. and Mathews C. P.. Closed-form2-D angle estimation with rectangular arrays in element space or beamspace via unitary ESPRIT[J], IEEE Transactions on Signal Processing,1996,44(2):316-328
    [140]Wang Han, Wang Jin-Kuan and Song Xin. Azimuth/elevation angle estimation via TST-ESPRIT technique[A].2004IEEE Region10Conference on TENCON[C].2004,1:563-566
    [141]Ming Li, Lu Gan and Ping Wei, Improvement of2-D direction finding algorithm based on two L-shape arrays[A].9th International Conference on Signal Processing[C].2008:366-369
    [142]刁鸣,魏挺.一种改进的二维ESPRIT算法[J].山东大学学报,2010,40(2):149-152
    [143]Yuan-Hwang Chen and Jiann-Yan Lai, Two-dimensional angles of arrival estimation for antenna array[A]. Microwave Conference Proceedings[C].1993,1:74-77
    [144]Liang Junli and Liu Ding. Joint elevation and azimuth direction finding using L-shaped array[J]. IEEE Trans. on Antennas and Propagation,2010,58(6):2136-2141
    [145]Jian C., Wang S. and Lin L..2-D DOA estimation by MEMP based on L-shape array[A].8th International Conference on Signal Processing[C].2006
    [146]P F C Krekel and E F Deprettere, A two-dimensional version of the matrix pencil method to solve the DOA problem[A]. European Conference on Circuit Theory and Design[C].1989:435-439
    [147]Nuri Yilmazer and Tapan K. Sarkar, Efficient computation of the azimuth and elevation angles of the sources by using unitary matrix pencil method (2-D UMP)[A]. Antennas and Propagation Society International Symposium2006[C].2006:1145-1148
    [148]Clark M. P., Scharf L. L.. Two-dimensional modal analysis based on maximum likelihood[J]. IEEE Trans. on Signal Processing,1994,42(6):1443-1452
    [149]Liu Tsung-Hsien and Mendel J. M.. Azimuth and elevation direction finding using arbitrary array geometries [J]. IEEE Trans. on Signal Processing,1998,46(7):2061-2065
    [150]Liang Junli. Joint azimuth and elevation direction finding using cumulant[J]. IEEE Sensors Journal,2009,9(4):390-398
    [151]刁鸣,缪善林.一种二维ESPRIT算法参数配对新方法[J].系统工程与电子技术,2007,29(8):1226-1229
    [152]Mendel J. M.. Tutorial on higher-order statistics (spectra) in signal processing and system theory:theoretical results and some applications[A]. Proceeding of IEEE[C].1991,79(3):278-305
    [153]Nikias C. L. and Mendel J. M.. Signal processing with higher-order spectra[J]. IEEE Signal Processing magazine,1993,10(3):10-37
    [154]Zhi W. J. and Chia M. Y. W.. Near-field source localization via symmetric subarrays[J]. IEEE Signal Processing Letters,2007,14(6):409-412
    [155]El Korso M. N., Boyer R., Renaux A., et al. Conditional and unconditional Cramer-Rao Bounds for near-field source localization[J]. IEEE Trans. on Signal Processing,2010,58(5):2901-2907
    [156]L. L. Scharf, Statistical Signal Process. Detection, Estimation and Time Series Analysis[M]. Reading, MA:Addison-Wesley,1991
    [157]Ho K. C. and Le Y.. On the use of a calibration emitter for source localization in the presence of sensor position uncertainty [J]. IEEE Trans. on Signal Processing,2008,56(12):5758-5772

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700