频率域航空电磁法层状反演及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
航空电磁法广泛应用于地质填图、矿产勘查、水文地质和工程地质勘查、环境监测等。它成本低、效率高、适应性强,能够在地面难于进入的森林、沙漠、沼泽、湖泊和居民区等地区开展物探测量工作。特别适合大面的普查工作,是国土资源大调查中必不可少的物探方法。多年来国外一直将航空电磁法作为一种常规的物探方法,广泛应用。为了配合三频航空电磁系统的数据处理和解释,本文进行了如下研究:
    本文系统研究了多种视电阻率转换方法,对各种视电阻率转换方法都进行了比较详尽的计算分析和讨论,对每种视电阻率转换的性质都有了比较充分的认识,丰富了视电阻率解释方法。另外,本文对视电阻率及其性质的分析讨论为后面的快速近似反演和自动反演奠定了基础;
    快速近似反演是本文首次研究开发的适合三频航空电磁法解释方法。根据不同频率具有不同的趋肤深度的原理,在模型试验的基础上给出适合三频航空电磁系统的经验公式。首次绘制了三频航空电磁法视电阻率拟断面图,能直观地反映出地电断面的电性变化。此外快速近似反演方法还是自动反演初始模型设置的基础;
    应用了一种新的解非线性方程组方法即Brent 方法。应用效果表明,该方法与常用的传统反演方法相比,具有计算效率高、收敛稳定,对初始模型要求不严格等特点,是一种很有前途的反演方法;
    在研究了大量理论模型的基础上,根据视电阻率、视飞行高度、用于绘制航空视电阻率拟断面图的视电阻率和中心深度之间的关系,给出了初始模型的设置方法,使自动反演成为可能;
    将视电阻率转换、快速近似反演方法、Brent 反演方法、自动赋初值方法等应用于2004 年实测数据的处理上,取得了比较好的应用效果,证明上述方法切实可行;
    以上所用方法都形成了实用程序,可直接应用于实测资料的处理中。
Airborne electromagnetics (AEM) has been widely applied in geological mapping, mineral exploration, geohydrological investigation, engineering and geological environmental monitoring. AEM can be used in forest, desert, swamp, lake and residential area which is difficult to use ground geophysics based on its low cost, high efficiency and adaptability. AEM is the absolutely necessarily method in geological investigation and mineral exploration, especially in reconnaissance. AEM has been widely used as a conventional geophysical method overseas. The following has been studied for data process and interpretation of the triplex-frequency AEM system:
    1. A few new apparent resistivity transform methods have been systematically studied. The understanding to every apparent resistivity transform methods has been improved after theoretical modeling computation, analysis and discussion. In addition, some of the apparent resistivity transform methods can be used in fast approximate inversion and automatic inversion.
    2. Fast approximate inversion method for the triplex-frequency AEM system is firstly developed. Based on the theory of skin depth, we obtain the empirical formulae that adapt to the triplex-frequency AEM system after modeling. The apparent resistivity parasections derived from the triplex-frequency AEM data of 1-D models have been developed for the first time. The parasections can outline the resistivity changes. It is the basis of starting model for automatic inversion.
    3. A new Brent algorithm has been used to solve nonlinear equations. Compared with conventional methods, this algorithm has high efficiency, stable convergence with wide initial value. It’s a promising inversion method.
    4. The principle of instituting starting model has been found after analyzing the relation of apparent resistivity, apparent thickness and parasections derived from triplex-frequency AEM data based on modeling . Then the automatic inversion is realizable.
    5. The apparent transform, fast approximate inversion, Brent algorithm and automatic
引文
[1] 周凤桐,补偿式航空电磁法,物化探所研究报导,1982,11 期
    [2] 刘士毅等,公益性地质调查中航空物探方法技术现状、发展趋势与对策研究报告,中国地质调查局研究发展中心,2001,8
    [3] 中国地质调查局发展研究中心,航空时间域瞬变电磁方法技术及其在找水中的应用,中国地质调查局地质调查情报汇编,2002 年第5 期
    [4] 满延龙等,山东招远——平度地区航空物探(电/磁)综合测量成果报告,物化探研究所研究报告,1986,8
    [5] 欧介甫等,山东半岛东部地区航空物探(电/磁)综合测量成果报告,物化探研究所研究报告,1990,7
    [6] 欧介甫等,山东省昌邑——平度地区航空物探(电/磁)综合测量成果报告,物化探研究所研究报告,1987,7
    [7] 余恂等,辽宁省锦州——绥中地区航空物探(电/磁)综合测量成果报告,物化探研究所研究报告,1989,6
    [8] 满延龙等,安徽省蚌埠——五河地区航空物探(电/磁)综合测量成果报告,物化探研究所研究报告,1989,6
    [9] 满延龙等,河北省南宫——曲周地区频率域航空电磁法华北平原浅层地下水普查试验研究成果报告,物化探研究所研究报告,1990,4
    [10] 郑方中等,安徽省芜湖——宣称地区航空物探(电/磁)综合测量成果报告,物化探研究所研究报告,1991,2
    [11] 刘瑞德等,安徽省安庆——贵池地区航空物探(电/磁)综合测量成果报告,物化探研究所研究报告,1991,2
    [12] 张敬华等,吉林省四平——长春地区航空物探(电/磁)综合测量成果报告,物化探研究所研究报告,1992,3
    [13] 徐月娥等,湖北嘉鱼地区航空物探(电/磁)综合测量成果报告,物化探研究所研究报告,1991,12
    [14] 欧介甫等,安徽省滁州——巢湖地区航空物探(电/磁)综合测量成果报告,物化探研究所研究报告,1992,12
    [15] 刘维国等,山东省文登——荣成地区航空物探(电/磁)综合测量成果报告,物化探研究所研究报告,1993
    [16] 欧介甫等,胶东地区航空物探(电/磁)在金矿预测中的应用研究,物化探研究所研究 报告,1993,12
    [17] 孟庆敏等,江西省上高——高安地区航空物探(电/磁)综合测量(试生产)成果报告,物化探研究所研究报告,1995,10
    [18] 孟庆敏等,甘肃省安西——敦煌地区Y11B 航空物探(电/磁)综合站试生产测量成果报告,物化探研究所研究报告,1999,12
    [19] 孟庆敏等,内蒙古海拉尔——满洲里地区Y11B 航空物探(电/磁)综合站试生产测量成果报告,物化探研究所研究报告,2000,12
    [20] 孟庆敏等,吉林省乾安地区Y12 航空电磁法浅层地下水普查试生产测量成果报告,物化探研究所研究报告,2002,12
    [21] 周凤桐等,航空电磁/电阻率填图方法技术及应用研究,物化探研究所研究报告,1996,12
    [22] 孟庆敏等,Y11B 航空物探(电/磁)综合站方法研究及相应软件研制,物化探研究所研究报告,1997,12
    [23] 钱立新,频率域航空电磁法的一维反演及在航空电阻率填图中的应用,物化探研究所硕士毕业论文,1990,5
    [24] 雍蔚华,频率域航空电磁法资料的反演解释方法及其应用研究,中国地质大学硕士毕业论文,1993,5
    [25] chernyavskiy, A, et al, Three-dimensional inversion of helicopter-borne electromagnetic data using the spectral Lanczos decomposition method, SEG International Exploration and 72nd Annual Meeting, 2002
    [26] Smith, R.S., The moments of the impulse response, a new paradigm for the interpretation of transient electromagnetic data, SEG International Exploration and 72nd Annual Meeting, 2002
    [27] Hyde, C., The electromagnetic response of a sphere in the moment domain: a building block for the construction of arbitrary of 3D shapes, SEG International Exploration and 72nd Annual Meeting, 2002
    [28] Ellis, R.G., Electromagnetic inversion using the QMR-FFT fast integral equation method, SEG International Exploration and 72nd Annual Meeting
    [29] Sattel, D. , 2002, Modelling AEM data with Zohdy’s method, SEG International Exploration and 72nd Annual Meeting, 2002
    [30] Eaton, P., et al, NEWTEM –a novel time-domain helicopter electromagnetic system for resistivity mapping, SEG International Exploration and 72nd Annual Meeting, 2002
    [31] Balch, S.J., Mineral exploration with the AeroTEM system, SEG International Exploration and 72nd Annual Meeting, 2002
    [32] Sattel, D., AEM anomaly modeling with magnetic and electric dipoles buried inside a layered earth, SEG International Exploration and 72nd Annual Meeting, 2002
    [33] Vrbancich, J., et al, Airborne electromagnetic bathymetry of Sydney harbour, Exploration Geophysics, 2000, v31, 179-186
    [34] Huang, H., et al, Damped least-squares inversion of time-domain airborne EM data based on singular value decomposition, Geophysical Prospecting, 1991, v39, 827-844
    [35] Lane, R., et a, An example of 3D conductivity mapping using the TEMPEST airborne electromagnetic system, Exploration Geophysics, 200l, v31, 162-172
    [36] Xiong, Z., et al, Efficient solution of full domain 3D electromagnetic modeling problems, Exploration Geophysics, 2000, v31, 158-161
    [37] Reid, J., el al, Current channeling in time-domain airborne electromagnetic data, Exploration Geophysics, 2000, v31, 150-157
    [38] Sattel,D., The effect of magnetic anomalies on transient electromagnetic data, Exploration Geophysics, 2000, v31, 140-149
    [39] Sykes,M.P., Analytical computation of EM field components in a uniform half-space, Exploration Geophysics, 2000, v31, 126-133
    [40] Annetts,D., et al, Modelling the airborne electromagnetic response of a vertical contact, Exploration Geophysics, 2000, v31, 115-125
    [41] Yi, M.J., et al, Enhancing the resolving power of least-squares inversion with active constraint balancing, Geophysics, 2003, v68, 931-941
    [42] Mendonca, C.A., The face-current concept and its application to survey design in electrical exploration, Geophysics, 2003, v68, 900-910
    [43] Fountain, D., Airborne electromagnetic system –50 years of development, Exploration Geophysics, 1998, v29, 1-11
    [44] Peltoniemi, M., Depth of penetration of frequency-domain airborne electromagnetic in resistive terrains, Exploration Geophysics, 1998, v29, 12-15
    [45] Lane, R., et al, Streamed data –a source of insight and improvement for time domain airborne EM, Exploration Geophysics, 1998, v29, 16-23
    [46] Poikonen, A., et al, Novel dual frequency fixed-wing airborne EM system of geological survey of Finland(GTK), Exploration Geophysics, 1998, v29, 46-51
    [47] Elliott, P., The principles and practice of FLAIRTEM, Exploration Geophysics, 1998, v29, 58-60
    [48] Fitterman, D., Source of calibration errors in helicopter EM data, Exploration Geophysics, 1998, v29, 65-70
    [49] Buselli, G., et al, AEM noise reduction with remote referencing, Exploration Geophysics, 1998, v29, 71-76
    [50] Green, A., The use of multivariate statistical techniques for the analysis and display of AEM data, Exploration Geophysics, 1998, v29, 77-82
    [51] Archer, C.T., Integrated interpretation of SPECTREM geophysical data, Exploration Geophysics, 1998, v29, 83-86
    [52] Green, A., Attitude correction of time domain AEM data for image display and geological mapping using the apparent dipole depth(ADD) method, Exploration Geophysics, 1998, v29, 87-91
    [53] Sykes, M., et al, Removal of herringbone effects from AEM data maps using the radon transform, Exploration Geophysics, 1998, v29, 92-95
    [54] Morrison, H.F., et al, Physics of airborne EM systems, Exploration Geophysics, 1998, v29, 97-102
    [55] Raiche, A., Modelling the time-domain response of AEM systems, Exploration Geophysics, 1998, v29, 103-106
    [56] Barongo, J.O., Selection of an appropriate model for the interpretation of time-domain airborne electromagnetic data for geological mapping, Exploration Geophysics, 1998, v29, 107-110
    [57] Avdeev, D,B., et al, Three-dimensional frequency-domain modeling of airborne electromagnetic responses, Exploration Geophysics, 1998, v29, 111-119
    [58] Ellis, R.G., Inversion of airborne electromagnetic data, Exploration Geophysics, 1998, v29, 121-127
    [59] Chen, J., et al, Inverting AEM data using a damped eigenparameter method, Exploration Geophysics, 1998, v29, 128-132
    [60] Sengpiel, K.-P, et al, Examples of 1-D inversion of multifrequency HEM data from 3-D resistivity distributions, Exploration Geophysics, 1998, v29, 133-141
    [61] Deszcz-Pan, M., et al, Reduction of inversion errors in helicopter EM data using auxiliary information, Exploration Geophysics, 1998, v29, 142-146
    [62] Qian, W., et al, Automated inversion of broadband multiple transmitter-receiver airborne EM data for the parameters of a small, confined conductor, Exploration Geophysics, 1998, v29, 147-151
    [63] Seiberl, W., et al, Interpretation of airborne electromagnetic data with neural networks, Exploration Geophysics, 1998, v29, 152-156
    [64] Sattel, D., Conductivity information in three dimensions, Exploration Geophysics, 1998, v29, 157-162
    [65] Macnae, J., et al, Fast AEM data processing and inversion, Exploration Geophysics, 1998, v29, 163-169
    [66] Chen, J., et al, Automatic estimation of EM parameters in TAU-Domain, Exploration Geophysics, 1998, v29, 170-174
    [67] Eaton, P.A., Application of an improved technique for interpreting transient electromagnetic data, Exploration Geophysics, 1998, v29, 175-183
    [68] Walker, P., A new AEM imaging algorithm for use in conductive areas, Exploration Geophysics, 1998, v29, 184-190
    [69] Macnae, J., et al, Block modeling as a check on the interpretation of stitched CDI sections from AEM data, Exploration Geophysics, 1998, v29, 191-194
    [70] Singer, B.Sh., et al, Generalisation of the transient field solution for a thin layer of finite thickness, Exploration Geophysics, 1998, v29, 195-197
    [71] Worral, L., et al, Beyond bump finding –airborne electromagnetics for mineral exploration in regolith dominated terrains, Exploration Geophysics, 1998, v29, 199-203
    [72] Schaefer, M.J., et al, Case study: the evolution of airborne time domain electromagnetic applications for geologic mapping; a Noranda perspective, Exploration Geophysics, 1998, v29, 204-210
    [73] Keating, P.B., et al, Airborne conductivity mapping of the Bathurst mining camp, Exploration Geophysics, 1998, v29, 211-217
    [74] Dransfield, M.H., Black Range and Vernon Hill: a comparison of two airborne EM survey in south east Australia, Exploration Geophysics, 1998, v29, 218-224
    [75] Coppa, I, et al, Improving the management of drylang salinity in Australia through the national airborne geophysical project, Exploration Geophysics, 1998, v29, 230-233
    [76] Konishi, N., Landside surveys in Tertiary soft rock areas using HEM, Exploration Geophysics, 1998, v29, 234-239
    [77] Fitterman, D.V., et al, Helicopter EM mapping of saltwater intrusion in Everglades National Park, Florida, Exploration Geophysics, 1998, v29, 240-243
    [78] Soinimen, H., et al, Sea ice thickness mapping by airborne and ground EM method, Exploration Geophysics, 1998, v29, 244-248
    [79] Huang, H., et al, Magnetic permeability and electrical resistivity mapping with a multifrequency airborne EM system, Exploration Geophysics, 1998, v29, 249-253
    [80] Flis, M., et al, The application of multifrequency airborne electromagnetics to iron ore exploration, Exploration Geophysics, 1998, v29, 254-256
    [81] Hanneson J.E., Personal views on the effectiveness of airborne EM in Australian mineral exploration: a client perspective, Exploration Geophysics, 1998, v29, 259-262
    [82] Fraser, D.C., Resistivity mapping with an airborne multicoil electromagnetic system, Geophysics, 1978, v43, 144-172
    [83] Sinha, A.K., Airborne resistivity mapping using a multifrequency electromagnetic system, Geophysical Prospecting, 1983, v31, 627-648
    [84] Kirsch,R., et al, The use of electrical conductivity mapping in the definition of an aquifer vulnerability index, Near Surface Geophysics, 2003,v1,13-19
    [85] Ahl, A., Automatic 1D inversion of multifrequency airborne electromagnetic data with artificial nrural networks: discussion and a case study, Geophysical Prospecting, 2003, v51, 89-97
    [86] Beamish, D., Airborne EM footprints, Geophysical Prospecting, 2003, v51, 49-60
    [87] Calderon-Macias,C., et al, Artificial neural networks for parameter estimation in geophysics, Geophysical Prospecting, 2000, v48, 21-47
    [88] Christiansen, A.V., et al, A quantitative appraisal of airborne and ground-based transient electromagnetic(TEM) measurements in Denmark, Geophysics, 2003, v68, 523-534
    [89] Zhang, Z., 3D resistivity mapping of airborne EM data, Geophysics, 2003, v68, 1896-1905
    [90] Yin, C., et al, Attitude corrections of helicopter EM data using a superposed dipole model, Geophysics, 2004, v69, 431-439
    [91] Xie, G., et al, 3-D electromagnetic modeling and nonlinear inversion, Geophysics, 2000, v65, 804-822
    [92] Zhdanov, M.S., et al, Electromagnetic inversion using quasi-linear approximation, Geophysics, 2000, v65, 1501-1513
    [93] Huang, H., et al, Dielectric permeability and resistivity mapping using high-frequency helicopter-borne EM data, Geophysics, 2002, v67, 727-738
    [94] Huang, H., et al, Mapping of the resistivity, susceptibility, and permeability of the earth using a helicopter-borne electromagnetic system, Geophysics, 2001, v66, 148-157
    [95] Huang, H., et al, The use of quad–quad resistivity in helicopter electromagnetic mapping, Geophysics, 2002, v67, 459-467
    [96] Beamish, D., The canopy effect in airborne EM, Geophysics, 2002, v67, 1720-1728
    [97] Reid, J. E., et al, Resistive limit modeling of airborne electromagnetic data, Geophysics, 2002, v67, 492-500
    [98] Reeves, C.V., et al, Airborne Geophysics: Old Methods, New Images, Fourth Decennial International Conference on Mineral Exploration, 1997
    [99] Smith, R.S., et al, Advances in Airborne Time-Domain EM Technology, Fourth Decennial International Conference on Mineral Exploration, 1997
    [100] Holladay, S., et al, Airborne Frequency-Domain EM—Review and Preview, Fourth Decennial International Conference on Mineral Exploration, 1997
    [101] Oldenburg, D.W., et al, Geophysical Inversion: Fundamentals and Applications in Mineral Exploration Problems, Fourth Decennial International Conference on Mineral Exploration, 1997
    [102] Klinkert, P.S., et al, The Spectrem Airborne Electromagnetic System—Latest Developments and Field Examples, Fourth Decennial International Conference on Mineral Exploration, 1997
    [103] Sengpiel, K.-P., et al, Advanced Tools and Inversion Methods for AEM Exploration, Fourth Decennial International Conference on Mineral Exploration, 1997
    [104] George R.J.,et al, National airborne geophysics project(NAGP): national report, 1998, http://www.ndsp.gov.au/NAGP/nagp_nr.htm
    [105] Heislers,D., George, R. J, Speed,R., Gordon, I., Beasley,R., national airborne geophysics project(NAGP): state reports, 1998, http://www.ndsp.gov.au/NAGP/nagp_sr.htm
    [106] Newnham,G., Coppa, I., Ellis, G.., Evaluation of airborne geophysics for catchment management, 1998, http://www.ndsp.gov.au/NAGP/nagp_pub.htm
    [107] Street, G.L., Airborne geophysical survey-application in land management, Exploration Geophysics, 1992, V23, 333-338
    [108] Anderson A., et al, A comparison of airborne and ground electromagnetic techniques for mapping shallow zone resistivity variation, Exploration Geophysics, 1993, V24, 323-332
    [109] Street, G.L., Anderson A., Airborne electromagnetic survey of the regolith, Exploration Geophysics, 1993, V24, 795-800
    [110] Odins, J.A., et al, Supplementary ground geophysics for airborne electromagnetic salinity survey over Jemalong-Wylders area, Exploration Geophysics, 1995, V26, 195-201
    [111] Duncan, A.C., et al, SALTMAP-Airborne EM for the environment, Exploration Geophysics, 1992, V23, 123-126
    [112] Palacky, G. J., Geological mapping with airborne electromagnetic systems, Xi’an, Second Symposium on Exploration Geophysics, 1986,10
    [113] Sengpiel, K.-P., et al, Approximate inversion of airborne EM data from a multi-layered ground: Geophysical Prospecting, 1988, v36, 446–459
    [114] Sengpiel, K.-P., et al, Advanced inversion methods for airborne electromagnetic exploration, Geophysics, 2000, v65, 1983-1992
    [115] 孟庆敏等,吉林省白城地区航空电磁法浅层地下水普查测量设计书,中国地质科学院物化探研究所,2003 年6 月
    [116] Wynn, J., Evaluating groundwater in arid lands using airborne magnetic/EM methods: An example in the southwestern U.S. and northern Mexico, The Leading Edge, 2002,v1, 62-64.
    [117] Huang, H., et al, The differential parameter method for multifrequency airborne resistivity mapping, Geophysics, 1996, v61, 100-109
    [118] 李庆扬等,非线性方程组的数值解法,科学出版社,1997
    [119] 杨文采,地球物理反演的理论与方法,地质出版社,1997
    [120] 孟庆敏,层状介质中三维不均匀体的电磁响应,物化探研究所硕士学位毕业论文,1989,12
    [121] 许洪海,王守坦,虚分量电磁法,地质出版社,1987,6
    [122] 米萨克N·纳比吉安主编,赵经祥等译,勘查地球物理电磁法,第一卷理论,地质出版社,1992,1
    [123] Sengpiel K-P, Resistivity/depth mapping with airborne electromagnetic survey data, Geophysics, 1983, v48, 181-196
    [124] Seigel, H. O. and Pitcher, D.H., Mapping earth condcuctivities using a multifrequency airborne electromagnetic system, Geophysics, 1978, v 43, 563-575
    [125] Keller, G. V. and Frischnecht, F. C., Electromagnetic method in geophysical prospecting, Pergaman Press, 1966
    [126] 武汉地质学院金属物探教研室,电法勘探教程,地质出版社,1981
    [127] 满延龙等,Y11B 航空物探(电/磁)综合站研制报告,物化探研究所研究报告,1998,12
    [128] Johansen,H.K., and Sorensen,K., Fast Hankel Transforms, Geophysical Prospecting, 1979, 27, 876-901
    [129] Anderson,W.L., Computer Program Numerical integration of related Hankel transforms of orders 0 and 1 by adaptive digital filtering, Geophysics, 1979,V44, 1287-1305
    [130] 王延良,王启章,快速汉克尔变换及其用法,个人资料
    [131] 王家映,地球物理反演理论,中国地质大学出版社,1998
    [132] W.H.普雷斯等著,王璞等译,数值方法大全——科学计算的艺术,兰州大学出版社,1991
    [133] 徐示良,FORTRAN 常用算法程序集(第二版),清华大学出版社,1997
    [134] 何光渝,高永利,Visual Fortran 常用数值算法集,科学出版社,2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700