压电陶瓷(PZT)特性测试与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自1880年居里兄弟发现晶体的压电效应以来,压电器件已在水声、超声、传感技术及新型作动器等领域得到了广泛的应用。随着科学技术的发展,航空航天、光学精密工程等新技术领域对压电器件的特性要求也越来越高。特别是在相移干涉技术中,作为核心部分的压电陶瓷(PZT)受到越来越多的重视。由于PZT具有体积小、响应快、位移量大及精度高等优点,已成为目前应用非常广泛的微位移执行器。但由于材料自身的特性及制造工艺上的缺陷,PZT的位移与驱动电压之间总有一定的非线性。
     在光学精密测量中,PZT常作为移相驱动器用于各类干涉仪,作为纳米精度的微位移执行器驱动各种精密平移台,以及用于精密位移或压力传感器等。因此,PZT的非线性将直接影响到相移的精度。为了改善PZT的非线性,人们提出了各种各样的方法,包括设计压电陶瓷微位移反馈控制电路、利用傅立叶变换复原干涉条纹相位以及建立数学模型采取对非线性误差不敏感的算法等。采用上述方法可以明显改善PZT的非线性,但他们或者需要复杂的控制电路、较多的仪器设备,或者需要精确的数学算法,因此在实际运用中有诸多的不便。
     基于实验室的基本情况,本着简单、方便及精确的原则,本文设计的PZT非线性测量系统只需要光电探测器及数据采集卡等设备,运用光的干涉原理把PZT的位移量转换成干涉条纹移动的次数,方便准确的测出了不同驱动电压条件下PZT的位移特性曲线,并且达到了很好的精度。实验数据分析表明,对于DWY-3型PZT,电压步长为0.20v~0.60v、时间问隔为10ms~80ms的驱动参数比较理想,在上述条件下其位移线性度较好,由此为PZT的精确瘦用提供了充分的科学依据。
Since the Mile brothers discovered the piezoelectricity in 1880,the equipments of piezoelectricity have already been used in the sonar, ultrasonic, sensor technique and new type motion machine etc. With the development of the Science, the higher level has been requested in the fields of aviation and optical engineering etc. As the core of interfere technology, PZT have been more important than before. Because of minuteness, quickly responding and precision, today the PZT has become the applied very extensively tiny motion machine currently. But because of the characteristic of the material oneself and the technology of the manufacturing , PZT has the shortcoming of nonlinearity.In the measurement of optical, PZT is often used as driving machine to the interference instruments, then the nonlinearity should affect the precision of the measurement. Therefore, the PZT is not the accuracy that line will affect directly to move mutually. For the sake of the improvement PZT nonlinearity, people put forward to the method of various kinds, including the design to press or get an electric shock to the tiny of porcelain and ceramics moves the feedback control electric circuit and makes use of the to sign leaf's transformation to restore to original to interfere with the grain mutually and establish mathematics models adopt to not impressionable calculate way of the line error margin. All the above-mentioned methods can obviously improve the PZT's nonlinearity, but need complicated control electric circuit, more instrument equipments or mathematics calculate way etc.According to the actual conditions of the laboratory, thinking about the simple, convenience and precision, the System of PZT testing Characteristic only need the light electricity locator and collecting card , based on the light of interference principle, the PZT measures the conversion interference and calculates the number of stripes to find out the dissimilarity under the voltage condition. The characteristic curve gain a good accuracy. The experiment data shows that the voltage tread
    long for 0.20 v~0.60 v, time partition for 10 ms~ the 80 ms are more ideal. The linearity of the PZT is better under the condition of above mentioned and provide theorization for the PZT accurate application.
引文
[1] 金国藩,李景镇.激光测量学.北京:清华大学出版社.1998
    [2] 范华,张弛,任雅萍,谭玉山.相移测量技术中相移器研究.应用光学,1998,19 (6):33~37
    [3] 刘辉,陈进榜.PZT微位移装置控制系统的设计.测试技术学报,1996,10 (1):46~51
    [4] 朱日宏,王青,陈磊,陈进榜.压电晶体位移特性曲线干涉测量自动方法.光子学报,1998,27(2):181~184
    [5] 荣伟彬,曲东升,孙立宁,徐晶,蔡鹤皋.压电陶瓷微位移器件迟滞模型的研究.压电与声光,2003,25 (1):22~25.
    [6] 刘国华,王艳菊.压电陶瓷式执行器的动态特性的改善研究.压电与声光,2000,22(4):246-248
    [7] 罗印龙,吕晓旭,钟丽云.一种基于虚拟仪器的电陶瓷微位移器标定方法.昆明理工大学学报,2003,28(10):500~504
    [8] 谢廷廷,宋跃.LABVIEW及虚拟仪器系统的实现.火控雷达技术,1998,3 (27):56~61
    [9] 李蔚.LabView——简单易用、功能强大的开发环境.电子技术,2004,5:60~61
    [10] 张波,王继武,陈恳,李嘉.压电驱动晶体的特性研究[A].中国机械工程,2002,13 (5):446~449
    [11] 杨乐平,李海涛,肖相生.《LabVIEW程序设计与应用》.电子工业出版社,2001.
    [12] 贺安之,闫大鹏.全息散斑条纹的提取及图像处理.光学学报.1993.13(4):320~344
    [13] 吴东楼,叶莉华,干涉条纹的处理方法研究,光学学报,1997,19(1):45~49
    [14] 于起峰.基于图像的精密测量与运动测量.北京:科学出版社.2002.
    [15] C. Wyant. Interferomtric optical metrology: basic principles and new system. Laser Focus. 1982. 3: 65~71
    [16] Y. Ichioka and M. Inuiya. Direct phase Detecting System. Appl. Opt, 11 (7) : 1507~1514
    [17] T. E. Cartsson and A. Wei. Phase evaluation of speckle patterns during continuous deformation by use of phase-shifting speckle interferometry. Appl. Opt. 2000, 39: 2628~2637
    [18] Klaus Andresen. Displacement and strain calculation by the phase shift method. Appl. Opt. 1987. 26 (14) : 2747~2751
    [19] M. Takeda and Q. Ru. Computer-based sensitive electronwave interferometry. Appl. Opt, 1985. 24: 3068~3071.
    [20] J. Bruning, D. Herriott, J. Gallagher, D. Rosenfeld. Digital wavefront measuring interferometer for festing optical surfaces and lenses. Appl. Opt, 1974,13: 2693~2703
    [21] B. Bharath, K. C. Wyant. Measurement topography of magnetic tapes by Mirau interferometry. Appl. Opt, 1985, 24: 489~1497
    [22] Chang. M. Heigh precision deformation measurement by Digital phase shifting holographic interferometry. Appl. Opt, 1985, 24 (22) : 3780~3791
    [23] 金观昌.相位测量技术的新进展及其应用.物理.1993,22(6):374~377
    [24] 金观昌.计算机辅助光学测量.北京:清华大学出版社.1997.
    [25] 苏显渝.信息光学.北京:科学出版社.2000.
    [26] R. Crane. Interference Phase Measurement. Appl. Opt, 1969, 8: 538~542
    [27] C. Roddier, and F. Roddier. Interferogram analysis using Fourier transform techniques. App. Opt, 1987, 26: 1668~1673
    [28] D. J. Bone, H. -A. Bachor, and R. J. Sandeman. Fringe-pattern analysis using a 2-D Fourier transform. App. Opt, 1986, 25: 1653~1660
    [29] G. Lai, and T. Yatagai. Generalized phase-shifting interferometry. J. Opt. Soc. Am, A, 1991, 8: 822~827
    [30] R. Smythe, R. Moore, Instantaneous phase measuring interferometry. Opt. Eng, 23 (4) : 361~364
    [31] 于复生,司书春,艾 兴.一种D/A板输出控制的相移器设计.计量技术 2001,3:29~31
    [32] 潘新建.相移云纹干涉系统及在界面力学中的实验研究.硕士学位论文,2000
    [33] JIN G, BAO N. Applications of a novel phase-shifting method using a computer-controlled polarization mechanism. Opt. Eng, 1994, 33 (8) : 2733~2737
    [34] Hariharan P. Phase-stepping interferometry with laser diodes: effect of changes in laser power with output wavelength. Appl. Opt, 1989, 28 (1) : 27~29
    [35] Mercer C R, Beheim G. Fiber Optic Phase Stepping System for Inter ferometry. Appl. Opt, 1991, 30: 729~734
    [36] 姜力军,刘伟,谢磊.液晶相移剪切电子散斑干涉术的研究.光电子·激光,1995,6(3):174~177
    [37] 张海波,伍小平,李江伟.空气相移器及其应用.应用激光 1992,12(6):255~259
    [38] Johannes van wingerden. Linear approximation for measeurement errors in phase shifting interferomtry. Appl. Opt, 1991, 30 (19) : 2718~2728
    [39] J. Schwider. Digital wave-front measuring interferometry: some systematic error sources. Appl. Opt, 1983, 22 (21) : 3421~3432
    [40] Chiayu Ai, "Effect of piezoelectric transducer nonlinearity on phase shift interferomtry. Appl. Opt, 1987, 26 (6) : 1112~1116
    [41] Parameswaran Hariharn. Phase-shifting interferometry: minimization of systematic errors. Opt. Eng. 39 (4) : 967~969
    [42] 周利兵,苏显渝.相位测量轮廓术中探测器非线性误差的分析.激光杂志,2002,23(3):19~21
    [43] K. Hibino, B. F. Oreb, D. I. Farrant, and K. G. Larkin. Phase-shifting interferometry for non-sinusoidal waveforms with phase-shift errors. J. Opt. Soc. Am, Al2, 1995: 761~768
    [44] Don B. Neumannn and Harold W. Rose. Improvement of Recorded Holographic Fringes By Feedback Control. Appl. Opt, 1967, 6 (6) : 1097~1104
    [45] Mauro Melozzi, Luca Pezzati, and Alessandro Mazzoni. Vibration-insensitive interferometer for on-line measurements. Appl. Opt, 1995, 34 (25) : 5595~5601
    [46] B. K. A. Ngoi, K. Venkatakrishnam, and N. R. Sivakumar. Phase-shifting interferometry immune to vibration. Appl. Opt. 2001, 40 (19) : 3211~3214
    [47] K. G. Larkin, and B. F. Oreb. Design and assessment of Symmetrical Phase-shifting Algorithm. J. Opt. Soc. Am, 1992, 9: 1740~1748
    [48] P. Hariharan, B. F Oreb, and T. Eiuj. Digital phase-shifting interferometer: a simple error-compensating phase calculation algorithm. Appl. Opt, 1987, 26, 2504-2506
    [49] Kong I B, Kin S W. General algorithm of phase-shifting interferometry by iterative least-squares fitting. Opt. Eng, 1995, 34 (1) : 183~187
    [50] Kenichi Hibino. Phase-shifting algorithms for nonlinear and spatially nonuniform phase shifts. J. Opt. Soc. Am. A, 1996, 14 (4) : 918~930
    [51] H. O. Phillion. General methods for generating phase-shifting interferometry algorithm. Appl. Opt, 1997, 36: 8089~8115
    [52] J. A. Quiroga, A. Gonzalez-Cano, and E. Bernabeu. Phase-unwrapping algorithm based on an adaptive criterion. Appl. Opt, 1995, 34 (14) : 2560~2563
    [53] 许利华,苏显渝.位相展开中的三类极点分析和处理.光电子·激光,2001,12(12):1267~1270
    [54] 苏大图.光学测试技术.北京:北京理工大学出版.1996.
    [55] 山东大学压电与铁电物理研究室.压电陶瓷及其应用.山东人民出版社,1973
    [56] 张福学,王丽坤.现代压电学.科学出版社,2002
    [57] 吴一辉,王立鼎.纳米定位控制中消除PZT滞后及蠕变的方法,压电与声光,1996,18(3):207~211
    [58] 刘国华,王艳菊.压电陶瓷式执行器的动态特性的改善.自动化仪表,2000,21(4):14~16
    [59] 孙涛,谭久彬.压电陶瓷微驱动器用于超精定位的技术研究.压电与声光,1999,21(6):493~497
    [60] 刘晖,朱日宏等.压电晶体微位移器位移精度及测试的理论分析.压电与声光,1999,21(6):508~509
    [61] 赵辉,蒲昭邦.压电器件在微位移系统中的应用.压电与声光,2000,22(4):243~245
    [62] 曲东升,孙立宁.压电陶瓷致动器自适应逆控制方法的研究.压电与声光,2002,24(5):354~357
    [63] 施珍珠,张玮.虚拟仪器技术.国外电子测量技术,2002,1:9~10
    [64] 赵勇,杨乐平.虚拟仪器软件平台技术现状和发展趋势.国外电子测量技术,2002,1:2~4
    [65] LabVIEW User Manual. National instruments Corporation, 1998
    [66] DAQ PCI-1200. User Manual National instruments Corporation, 1998
    [67] 张桂才,王巍译.光纤陀螺仪,国防工业出版社,2002
    [68] Yeou-Yen Cheng and James C. Wynt. Phase shifter calibration in phase-shifting intrrferometery. Appl. Opt, 1985. 24 (18) : 3049~3052
    [69] 范华,谭玉山等.相移干涉计量中高精度相移器的研究.中国激光,1999,26(1):21~25
    [70] 李万松,苏显渝.基于快速傅立叶变换的实时相移校正算法.光学学报,1999,19(10):1390~1394
    [71] 朱日宏.相移干涉技术中相移器的自校正方法.光学学报,1998,18(7):932~937
    [72] C. T. Farrell, and M. A. Player. Phase-step insensitive algorithms for phase-shifting interferometry. Meas. Sci. Techol, 1994, 5: 648~652
    [73] C. T. Farrell, and M. A. Player. Phase step measurement and interferometry. Meas. Sci. Techol, 1992, 3: 953~958
    [74] A. W. Fitzgibbon, M. Pilu, and R. B. Fisher. Direct least squares fitting of ellipses. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999, 21: 476~480
    [75] X. Chen, M. Gramaglia and J. A. Yeazell. Phase-shifting interferometry with uncalibrated pahse shifts. Appl. Opt, 2000, 39: 585~591
    [76] G. S. Han, and S. W. Kim. Numerical correction of reference phasee in phase-shifting interferometry by interative least-squres fitting. Appl. Opt, 1994, 33: 7321~7325
    [77] I. -B. Kong, and S. -W. Kim. General algorithm of phase-shifting interferometry by iterative least-squares fitting. Opt. Eng, 1995, 34: 183-188
    [78] J. Schwider, T. Dresel, and B. Manzke, Some considerations of reduction of reference phase error in phase-stepping interferometry. Appl. Opt. 1999, 38: 655~659
    [79] Chiayu Ai and James C. Wyant Effect of piezoelectric transducer nonlinearity on phase shift interferometry. Appl. Opt, 1987, 26 (6) : 1112~1116
    [80] J. Schwider, O. Falkenstorfer, H. Schreiber, A. Zoller, etal. New compensating four-phase algorithm for phase-shift interferometry. Opt. Eng. 1993, 32: 1883~1885
    [81] Y. Surrel. Phase stepping: a new self-calibrating algorithm" . Appl. Opt, 1993, 32: 3598~3600
    [82] K. A. Nugent. Interferogram analysis using an accurate fully automatic algorithm. Appl. Opt, 198524, 3101~3105
    [83] M. Chen, H. Guo, and C. Wei. Algorithm immune to tilt phase-shifting error for phase-shifting interferometers. Appl. Opt, 2000, 39, 3894~3898
    [84] P. L. Wizinowich. Phase-shifting interferometry in the presence of vibration: a new algorithm and system. Appl. Opt, 1990, 29: 3271~3279
    [85] P. Wizinowich. Phase shifting interferometry in the presence of vibration: a new algorithm and system. Appl. Opt, 1990, 29: 3271~3279
    [86] P. de Groot, and L. Deck. Numerical simulations of vibration in pahse-shifting interferometry. Appl. Opt, 1996, 35 (13) : 2172~2178
    [87] PeterJ, DeGroot. Vibration in phase-shifting interferometry. J. Opt. Soc. Am, 1995. 12 (2) : 354~365.
    [88] K. A. Goldberg, and J. Bokor. Fourier-transform method of phase-shift determination. Appl. Opt, 2001, 40: 2886~2894
    [89] Ichirou Yamaguchi. Active phase-shifting interferometers for shape and deformation measurements. Opt. Eng, 1996, 35 (10) : 2930~2937
    [90] Hedz, DavN. Time Delay Estimation Between Two Phase Shifted Signal via Generdized Cross—Correlation Method. Signal Processing, 1985, 8 (2) : 235~257
    [91] 康新,何小元,Quan C.基于正弦条纹投影的三维传感及去包裹处理.光学学报,2001,21(12):1444~1447
    [92] Frank chen, Gordon M. Brown, Mumi Song. Overview of three dimensional shape measurement using optical methods. Opt. Eng, 2000, 39 (1) : 10~22
    [93] 苏显渝,李继陶.三维面形测量技术的进展.物理,1996,25(10):614~620
    [94] 刘智,张红,王超.星载合成孔径雷达干涉测量.科学出版社,2002
    [95] Dennis C. Ghiglia and Louis A. Romero. Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iteractive methods. OSA, 1994. 11 (1) : 107~117
    [96] J. W. Goodman and R. W. Lawrence. Digital image formation from electronically detected holograms. App. Phys. Lett, 1967, 11: 77~79
    [97] Tristan Colomb, Pia Dahlgren and Christian Depeursinge. Polarization imaging by use of digital holography. Appl. Opt, 2002, 41 (1) : 27~37
    [98] Giancarlo Pedrini, Hans J. Tiziani, and Igor Alexeenko. Digital-holographic interferometry with an image-intensifier system. Appl. Opt, 2002, 41 (4) : 648~653
    [99] Gang Pan and Hui Meng. Digital holography of particle fields: reconstruction by use of complex amplitude. Appl. Opt, 2003, 42 (5) : 827~833
    [100] 陈家壁,李继陶,苏显渝.光信息科学技术原理及应用.高等教育出版社.2001
    [101] TongZhang, IchirouYamaguchi. Three-dimensional microscopy with phase-shifting digital holography. Opt. Lett, 1998, 23 (15) : 1221~1223
    [102] Ongcan Lai, Brian King, Mark A. Neifeld. Wave front reconstruction by means of phase-shifting digital in-line holography. Opt. Comm, 2000, 1: 155~160

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700