相位检测技术在表面等离子体波传感器中的应用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
表面等离子共振(SPR)型传感器是一种结构简单,灵敏度高的新型测量仪器,它具有非破坏性、实时在线检测的特点,目前已经成为传感器领域的研究热点。表面等离子体共振传感器在生物学、医学、化学等领域获得了十分广泛的应用,越来越多的研究者开始致力于这一项目的研究。
     本课题主要研究了相位检测方法及相关的实验技术,研究如何能够更好的提高表面等离子共振传感器的检测灵敏度。首先,本文介绍了表面等离子型传感器的研究现状及发展方向,比较了不同类型表面等离子体共振检测方法的优点和局限。其次,我们从电磁学基本理论出发,描述了表面等离子波的特殊性质以及产生表面等离子波的激发结构。第三,采用Kretschmann激发方法对不同的激发层模型进行了模拟计算,分析了各种实验条件对于表面等离子体共振的影响。最后,我们对相位检测技术进行了讨论,相位的提取过程分为两步,先要获得一幅干涉图像,然后根据干涉图像的移动获取相位信息。基于共光路的平行偏振光干涉成像的方法,我们装配了表面等离子波干涉成像的实验装置,并利用CCD摄像机获得了干涉图像。再利用相关的程序,就可以获得相位信息。我们在实验上进行了对相位测量的研究,给出实验数据以及对实验结果的初步讨论。
Surface plasmon resonance (SPR) sensors are new kinds of sensors with the advantages of simple structure and high sensitivity. They have the non-invasive nature and the capability of real-time monitoring and have recently attracted many attentions in the field of sensoring. SPR sensoring technologies have been widely used in various fields such as biology, medicine, chemistry, and so on. More and more researchers devote themselves to the studies of SPR technology and its applications.
     The article mainly concentrates on the study of SPR sensor with the phase detection method and its experimental implementing technique, the aim is to further improve the detection sensitivity of SPR sensor. The work has been done consists of four parts. Firstly, we review the current status and trends of the researches in SPR sensors and give the features and limitations of different schemes of SPR sensors. Secondly, on the basis of electromagnetic theory, we have described the characteristics of surface plasmon wave and its exciting configuration. In the third part, we numerically simulate the different excitation layer model by adopting Kretschmann type excitation. The effects of various experimental conditions on the SPR excitation have been discussed. In the last part, we have discussed the phase detection technique, the phase extraction process usually involves first capturing a set of interference fringes, then followed by converting the movement of the fringes into a phase quantity. we present a experimental setup which use a common optical path to generates the interference fringes, and use a CCD camera to capture the interference fringes. With the help of program, then the phase change can be extracted. We have experimentally performed the measurements of phases, the experimental data and the analyses have been given.
引文
1. 吴英才,袁一方,徐艳平. 表面等离子共振传感器的研究进展. 传感器技 术. 2004,23(5): 1~2
    2. Yu, X. L., Wang, D. S., Wang, D. X., Ouyang, J. H., Yan, Z. B., Dong, Y.G., Liao, W., Zhao, X. S. Sens. Actuators B, 2003, 91: 133
    3. Homola, J. Anal. Bioanal. Chem., 2003, 377: 528
    4. Jordan, E. C., Frutos, G.A., Fhiel, J. A., Corn, M. R. Anal. Chem., 1997, 69: 4939
    5. Jiri Homola, Sinclair S. Yee, Gunter Gauglits. Surface plasmon resonance sensors: review. Sensors and Actuators B, Chem. 1999,54: 3~15
    6. Liedberg B, Nylander C, Lundstrom I. Surface plasmon resonance gas detection and biosensing. Sensors & Actuators, 1983, 4: 299~304
    7. K .S. Johnston, S. R. Karlson, C. Jung, et al. New analytical technique for characterization of thin films using surface plasmon resonance. Materials Chemistry and Physics, 1995, 42: 242~246
    8. S. G.. Nelson, K. S. Johnston, S. S. Yee. High sensitivity surface plasmon resonance sensor based on phase detection. Sensors and Actuators B, Chem.,1996, 35~36:187~191
    9. Yu Xinglong, Zhao Lequn, Jiang Hong, et al. Immunosensor based on optical heterodyne phase detection. Sensors and Actuators B, Chem. 2001,76: 199~209
    10. Wu CM, Jian ZC, Joe SF, et al. High-sensitivity sensor based on surface plasmon resonance and heterodyne interferometry. Sensors and Actuators B, Chem., 2003, 92(1-2): 133~136
    11. C. E. H. Berger, T. A. M. Beumer, R. P. H. Kooyman, Surface plasmon resonance multisensing, Anal. Chem., 1998, 70 (4): 703~706
    12. L. J. Hye, GT. Terry, C. M. Robert. SPR imaging measurements of 1D and 2D DNA microarray created from macrofluidic channels on gold thin films. Anal. Chem., 2001, 73(22): 5525~5531
    13. Yu Xinglong, Wang Dongsheng, Wang Dingxin, et al. Micro-array detection system for gene expression products based on surface plasmon resonance imaging. Sensors and Actuators B, Chem., 2003, 91: 133~137.
    14. Jordan CE, Frutos AG, Thiel AJ, et al. Surface plasmon resonance imaging measurements of DNA hybridization adsorption and streptavidin/DNA multilayer formation at chemically modified gold surfaces. Analytical Chemistry, 1997, 69 (24): 4939~4947
    15. Nelson BP, Frutos AG, Brockman JM, et al. Near-infrared surface plasmon resonance measurements of ultrathin films. 1. Angle shift and SPR imaging experiments. Analytical Chemistry,1999,71(18): 3928~3934
    16. Nikitin, P. I.; Beloglazov, A. A.; Valeiko, V. E. ; Ksenevich, T. I. Sens. Actuators B, 1999, 54: 43
    17. Jin G, Jansson R, Arwin H. Imaging ellipsometry revisited: Developments for visualization of thin transparent layers on silicon substrates. Rev. Sci. Instrum., 1996, 67 (8): 2930~2936
    18. Kabashin AV, Nikitin PI. Interferometer based on a surface-plasmon resonance for sensor applications. Quantum. Electron., 1997 27 (7): 653~654
    19. Grigorenko AN, Nikitin PI, Kabashin AV, Phase jumps and interferometric surface plasmon resonance imaging. Applied Physics Letters., 1999, 75(25): 3917~3919
    20. P. I. Nikitin, A.N. Grrigorenko, A. A. Beloglazov, et al. Surface plasmon resonauce interferometry for micro-array biosensing. Sensors and Actuators B, Chem., 2000, 85: 189~193
    21. Ho HP, Lam WW. Application of differential phase measurement technique to surface plasmon resonance sensors. Sensors and Actuators B, Chem., 2003,96(3): 554~559
    22. 王艳霞,曹振新,吴乐南. 分布式棱镜SPR传感器. 仪表技术与传感器. 2004,(5):1
    23. 赵晓君,陈焕文,宋大千.表面等离子体子共振传感器I: 基本原理. 分析 仪器. 2000,(4):2
    24. 阎守胜. 固体物理基础. 北京大学出版社. 2000: 22~23
    25. Garet Glenn Nenninger. High-Resolution Surface Plasmon Resonance Biosensing. A Doctoral Dissertation of University of Washington. 2001: 5~6
    26. 方容川. 固体光谱学.中国科学技术大学出版社.2001:18~19
    27. 陈丽华,苏忠民,王荣顺. 用表面等离子共振仪进行生物分子相互作用研 究的评述. 分子科学学报. 2004,20(4): 44
    28. 金红涛,马万云. 动态范围可调的波导型SPR传感器模型. 传感器技术. 2002,21(8): 8
    29. 刘国华,文可,牛文成. 表面激元共振(SPR)传感器理论分析. 传感器技术. 2003,(11): 1
    30. 曹庄琪,导波光学中的转移矩阵方法.上海交通大学出版社.2000:171~178
    31. Jiri Homola, Sinclair S. Yee, Gunter Gauglitz. Surface Plasmon Resonance Sensors: Review. 1999, (54): 4
    32. Kyle S. Johnston, Karl S. Booksh, Timothy M. Chinowsky. Performance Comparison Between High and Low Resolution Spectrophotometers Used in a White Light Surface Plasmon Resonance Sensor. Sensors and Actuators B. 1999, (54): 80~82
    33. A. Otto. Z. Physik, 1968. 216: 368
    34. E.Kretschmann. Z. Physik, 1971, 248: 313
    35. 宋大千,赵晓君,陈焕文. 表面等离子体子共振传感器Ⅱ: 实验装置与仪 器. 分析仪器. 2001,(1): 1~3
    36. 顾铮,冯仕猛,梁培辉. 表面等离子体激元共振溶胶-凝胶薄膜传感器. 光学学报. 2001,21(1): 83~84
    37. Masahiro. Yamamoto. Surface Plasmons. Resonance Theory: Tutorial.13~20
    38. 余兴龙,魏星,王鼎新,定翔,廖玮,赵新生. 蛋白质微阵列 SPR 实时相位检测.物理化学学报.2005,21(8):888~892
    39. A. D. Boardman, Elect romagnetic SurfaceModes John wiley & sons. Chichester, 1982: 119~142
    40. Brecht A, Gauglitz G.. Optical probes and transducers. Biosensors& Bioelectronics 1995, (10): 923~936.
    41. 杨国光.近代光学测试技术.浙江:浙江大学出版社,1997.38
    42. 周明宝,林大键,郭履容等. 基于白光的双波长相移干涉的误差分析. 光 学精密工程,1999,7(5): 106~113

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700