用户名: 密码: 验证码:
大气湍流下空间光通信的性能及补偿方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自由空间光通信具有频带宽、成本低、部署快速、无需频谱许可等优点,应用潜力巨大,近年来许多国家投入巨资进行研究开发。但由于光束在大气中传输时,易受到大气湍流的影响,导致传输光束的波前随机起伏,造成光斑漂移、光强起伏(闪烁)等,使传输的光束质量严重下降,造成自由空间光通信系统误码率增加、信道容量减小、甚至通信中断,严重影响通信链路的稳定性和可靠性。
     本文针对上述问题着重研究了大气湍流对自由空间光通信系统的影响,分析了大气湍流信道下自由空间光通信系统的性能,采用新颖的自适应光学技术减小大气湍流效应对自由空间光通信的影响,主要研究工作如下:
     首先,研究了大气衰减效应和大气湍流效应对光束传输的影响,着重研究了大气湍流的机理及大气折射率起伏模型,依据高斯光束在大气湍流中传播的基本理论,基于修正的Rytov方法,给出了内尺度和外尺度效应时的闪烁指数,并给出了光强起伏概率分布模型。
     其次,为了分析大气湍流对自由空间光通信系统性能的影响,提出了一种Meijer G函数表示的新颖闭合表达式。首先假设自由空间光通信系统采用开关键控(OOK)强度调制直接检测(IM/DD),大气湍流信道为gamma-gamma分布的,是具有加性高斯白噪声(AWGN)的、独立同分布的、无记忆平稳遍历的,且信道状态信息在发射端和接收端都可以利用的前提下,推导得出了大气湍流信道下自由空间光通信系统用Meijer G函数表示的误码率、中断概率、平均容量(遍历容量)的闭合表达式。建立了大气湍流下空间光到单模光纤耦合效率表达式。仿真分析了湍流效应对自由空间光通信系统性能的影响。
     为了减小大气湍流效应的影响,采用自适应光学技术对自由空间光通信系统进行补偿。根据自适应光学原理及大气湍流理论,得出了基于自适应光学补偿的自由空间光通信系统的误码率和耦合效率表达式,同时还得出了耦合效率与斯特列尔比的关系,通过仿真分析了自适应光学对自由空间光通信系统的补偿效果。
     常规自适应光学技术对自由空间光通信具有较好的补偿效果,但有一定的局限性:一是补偿所需的相位调制量不能够直接测量,需波前传感器检测畸变信息再进行波前重构,计算量大,严重影响了相位补偿的实时性。二是在强湍流条件下,相位畸变引起光强起伏,致使难以测量重构畸变波前。三是波前传感器一般体积庞大,价格昂贵,系统复杂。为此,提出了一种采用盲优化自适应光学来补偿自由空间光通信系统。盲优化自适应光学技术无需波前传感器检测波前畸变信息重构波前相位,而根据光电探测器信号,利用优化控制算法,对系统所要控制的性能指标直接优化,达到减小湍流效应的目的。根据构建的基于盲优化自适应光学补偿的自由空间光通信系统模型,进行了盲优化补偿数值模拟实验,结果表明盲优化自适应光学补偿技术不仅能够校正畸变相位还能校正闪烁所造成的影响,提高了系统的性能。但优化过程中如果增益系数取值太大,则系统收敛速度较快,但收敛精度较低;如果取值太小,则系统收敛精度较高,但收敛速度较慢。为此提出了一种自适应增益的随机并行梯度下降优化算法,提高了系统收敛速度和精度。
Free space optical communication(FSO) has attracted significant attention for avariety of applications with a high bandwidth, low cost, fast and easy deployment,license-free. In recent years, many countries have a growing increase in research anddevelopment activites. However, the free space optical communication is vulnerableto the impact of atmospheric turbulence which resulting wavefront randomfluctuations, beam wander, intensity fluctuations. Deterioration of the beam qualitymake performance of free space optical communications worsen such as bit errorrate increased, channel capacity decreased, even the communication interrupted,which seriously affect the stability and reliability of communication links.
     This article have focused on the impact of atmospheric turbulence on FSO andhave analyzed performance of FSO system over atmospheric turbulence. To mitigateeffects of atmospheric turbulence, a novel adaptive optics compensation technologyhave been used in FSO.
     First, we investigate atmospheric attenuation effects and atmosphericturbulence effects on the beam propagation. We have researched mechanism ofatmospheric turbulence and models of refractive index fluction. Based on theoryof Gaussian beam transmission in turbulent atmosphere and modified Rytov method,the scintillation index is given define and the scintillation been derived within zeroinner scale and outer scale effects. Several intensity fluctuation probabilitydistribution models have been given.
     Second, in order to analyze link performance of FSO system over atmosphericturbulence, we consider a FSO system using IM/DD with OOK. The laser beamspropagate through a gamma-gamma turbulence channel with additive whiteGaussian noise (AWGN). The channel is assumed to be memoryless, stationary andergodic, with independent and identically distributed (i.i.d.) intensity fadingstatistics. We also consider that the channel state information (CSI) is available atboth the transmitter and the receiver. The closed-form expressions of bit errorrate(BER), outage probability and the average capacity (ergodic capacity) have beenderived and coupling efficiency has been given. How performance of FSO areaffected by the atmospheric is analyzed in simulations
     In order to mitigate atmospheric turbulence effects, expressions of BER andcoupling efficiency for FSO system based on adaptive optics compensation isderived using theory of adaptive optics and atmospheric turbulence. Adaptive opticscompensation effects for FSO are analyzed in simulations.
     Although adaptive optics have a good correction results, it has some limitations.First, the conventional adaptive optics can not measure directly the distorted phase.It require wavefront sensor to measure the aberration information and reconstructwavefront which increase complexity and time-consuming calculation affectingseriously the real-time. Second, it is difficult to measure distorted wavefront instrong turbulence causing intensity scintillation. Third, the general wavefront sensoris bulky, expensive, cost and large. We propose blind optimization adaptive optics tocompensate the FSO systems. Blind optimization adaptive optics system is a systemwithout wavefront sensor which measure and reconstruct wavefront. It canmaximize the performance metric by using the optimization algorithm to mistigateturbulence effects. We establish FSO system based on blind optimization adaptiveoptics. According to the system model, numerical simulation compensationexperiments are done, the results show that not only phase can be corrected, but alsointensity scintillation can be corrected by the blind optimization adaptive optics. Inthe optimization process, if the gain value is too large, then the system convergenceis faster, but it may cause oscillation and low accuracy. If the gain value is too small,then accuracy is high, but the system convergence is slow. In order to improve theconvergence speed and accuracy, an adaptive gain stochastic parallel gradientdescent optimization algorithm is proposed.
引文
[1] Morio Toyoshima. Trends in Laser Communications in Space. Tenerife:National Institute of Information and Communications Technology,2010:1-6.
    [2]王佳,俞信.自由空间光通信技术的研究现状和发展方向综述.光学技术,2005,31(2):259-265.
    [3] W S Rabinovich, C I Moore, H R Burris, et al. Free space opticalcommunications research at the U.S. Naval Research Laboratory. Proc. SPIE,2010,7587,7587021-15.
    [4]胡渝,刘华.空间激光通信技术及其发展.电子科技大学学报,1998,27(5):453-460.
    [5]刘华,胡渝.欧洲卫星间光通信发展现状.电子科技大学学报,1998,27(5):552-556.
    [6]尹道素,皮德忠.日本空间光通信技术的发展状况.电子科技大学学报,1998,27(5):546-551.
    [7]柯熙政,席晓莉.无线激光通信概论.北京:北京邮电大学出版社,2004.
    [8]蔡燕民,陈刚,董作人,等.空间激光通信系统进展.激光与光电子学进展,2000,(5):1-7.
    [9]马惠军,朱小磊.自由空间激光通信的最新进展.激光与光电子学进展,2005,42(3):7-1l.
    [10]王玲,冯莹.卫星相干光通信的研究进展及趋势.激光与光电子学进展,2007,44(6):49-53.
    [11]于思源,马晶,谭立英.提高卫星光通信扫描捕获概率的方法研究.光电子激光,2004,15(4):472-476.
    [12]于思源,谭立英,马晶,等.激光星间链路中振动补偿技术研究.光电子激光,2004,15(4):472-476.
    [13]马晶,韩琦琦,于思源,等.卫星平台振动对星间激光链路的影响和解决方案.激光技术,2005,29(3):228-232.
    [14]于思源,马晶,谭立英,等.激光星间链路中天线扫描捕获技术实验室模拟研究.中国激光,2005,16(5):498-502.
    [15]韩琦琦,于思源,马晶,等.卫星光通信中耦合运动对光信号跟踪影响分析.宇航学报,2006,27(4):405-409
    [16]马晶,高宠,谭立英.星地光通信中PAT链路的衰落冗余.光学精密工程2007,15(3):308-314.
    [17]马晶,李密,谭立英,等.卫星光通信中空间辐射对EDFA性能的影响分析.宇航学报,2009,1(30):250-254
    [18]谭立英,谢宛青,马晶.非高斯畸变对星间光通信瞄准偏差的影响.强激光与离子束,2011,5(23):1193-1196.
    [19]佟首峰,姜会林,刘云清,等.自由空间激光通信系统APT粗跟踪伺服带宽优化设计.光电工程,2007,34(9):16-20
    [20]姜会林,刘志刚,佟首峰,等.机载激光通信环境适应性及关键技术分析.2007年激光技术发展与应用学术交流会,2007:20-25.
    [21]艾勇,陈晶,叶德茂,等.2.3km距离1.25Gb/s速率自由空间光通信实验.光通信技术,2007,(09):55-57.
    [22]熊准,艾勇,单欣.4.6km距离5Gb/s DWDM自由空间光通信实验.红外与激光工程,2011,10(40):1959-1962.
    [23]饶瑞中.光在湍流大气中的传播.安徽,安徽科学技术出版社,2005:1-149.
    [24]陈纯毅,杨华民,姜会林,等.大气光通信中大气湍流影响抑制技术研究进展.兵工学报,2009,30(6):779-791.
    [25] Linda M. Wasiczko, Christopher C Davis. Aperture averaging of opticalscintillations in the atmosphere: Experimental results. Proc.SPIE,2005,5793:197-208.
    [26] Andrews L C, Phillips R L, Hopen C Y. Aperture averaging of opticalscintillations: power fluctuations and the temporal spectrum. Waves in RandomMedia,2000,10(1):53-70.
    [27] Heba Yuksel, Christopher C Davis. Aperture averaging analysis and apertureshape invariance of received scintillation in free space optical communicationlinks. Proc.SPIE,2006,6304:63041E1-11.
    [28] Heba Yuksel, Christopher C Davis. Aperture averaging for studies ofatmospheric turbulence and optimization of free space optical communicationlinks. Proc.SPIE,2005,5892:58920P1-13.
    [29] David T Wayne, Ronald L Phillips, Larry C Andrews, et al. Comparing theLog-Normal and Gamma-Gamma model to experimental probability densityfunctions of aperture averaging data. Proc. SPIE,2010,7814,78140K1-13.
    [30] Frida Stromqvist Vetelino, Cynthia Young, Larry Andrews, et al. Apertureaveraging effects on the probability density of irradiance fluctuations inmoderate to strong turbulence. Appl.Opt,2007,46(11):2099-2108.
    [31] Ricardo Barrios, Federico Dios, Jaume Recolons and Alejandro Rodriguez.Aperture averaging in a laser Gaussian beam: simulations and experiments.Proc. SPIE,2010,7814:78140C1-8.
    [32] C Ben Naila, A Bekkali, K Kazaura,et al. Evaluating M-ary PSKmultiple-subcarrier modulation over FSO links using aperture averaging. Proc.SPIE,2010,7814,78140V1-11.
    [33] Kumar A, Jain V K. Antenna aperture averaging with different modulationschemes for optical satellite communication links. Journal of OpticalNetworking,2007,6(12):1323-1328.
    [34] Feng Pan, Jing Ma, Liying Tan, et al. Scintillation characterization of multipletransmitters for ground to satellite laser communication. Proc. SPIE,2004,5640:448-454.
    [35] Jaime A Anguita, Mark A Neifeld, Bane V Vasic. Spatial correlation andirradiance statistics in a multiple2beam terrestrial free space opticalcommunication link. Appl. Opt,2007,46(26):6561-6571.
    [36] Ibrahim M M, Ibrahim A M. Performance analysis of optical receivers withspace diversity reception. IEE Proc. Commun,1996,143(6):369-372.
    [37] Vilnrotter V, Lau C W, Andrews K, et al. Real time combining of optical arraysignals. Proc. SPIE,2006,6105:50-60.
    [38] Vilnrotter V, Lau C W, Srinivasan M, et al. Optical array receiver forcommunication through atmospheric turbulence. IEEE Journal of LightwaveTechnology,2005,23(4):1664-1675.
    [39] S Mohammad Navidpour, Murat Uysal, Mohsen Kavehrad. BER performanceof free space optical transmission with spatial diversity. IEEE Trans. onWireless Communications,2007,6(8):2813-2819.
    [40] Cvijetic Neda, Wilson Stephen G, Brandt Pearce Maite. Performance boundsfor free space optical MIMO systems with APD receivers in atmosphericturbulence. IEEE J. Sel. Areas Commun,2008,26(3):3-11.
    [41] Aniceto Belmonte, Joseph M Kahn. Capacity of coherent free-space opticallinks using diversity-combining techniques. Opt.Express,2010,18:17748-17748.
    [42] T A Tsiftsis, H G Sandalidis, G K Karagiannidis, et al. Optical Wireless Linkswith Spatial Diversity over Strong Atmospheric Turbulence Channels. IEEETransactions on Wireless Communications,2009,8(2):951-957.
    [43] S Mohammad Navidpour, Murat Uysal, Mohsen Kavehrad. BER Performanceof Free-Space Optical Transmission with Spatial Diversity. IEEE Transactionson Wireless Communications,2007,6(8):2813-2819.
    [44] Zhu Xiaoming, Kahn J M. Maximum likelihood spatial diversity reception oncorrelated turbulent free space optical channels. IEEE Global CommunicationConference,2000,2:1237-1241.
    [45] W O Popoola, Z, Ghassemlooy, Allen E, Leitgeb and S Gao. Free-spaceoptical communication employing subcarrier modulation and spatial diversityin atmospheric turbulence channel. IET Optoelectron,2008,2(1):16–23.
    [46] Ghassemlooy Z, Popoola W O, Leitgeb E. Free-Space Optical CommunicationUsing Subearrier Modulation in Gamma-Gamma Atmospheric Turbulence.ICTON '07.9th International Conference on transparent Optical Networks,2007:156-160.
    [47] Kamran Kiasaleh. Scintillation index of a multiwavelength beam in turbulentatmosphere. J. Opt. Am. A,2004,21(8):1452-1454.
    [48] Kamran Kiasaleh. On the scintillation index of a multiwavelength Gaussianbeam in a turbulent free space optical communications channel. J. Opt. Am.A,2006,23(3):557-566.
    [49] Kamran Kiasaleh. Impact of turbulence on multiwavelength coherent opticalcommunications. Proc. SPIE,2005,5892:58920R21-29.
    [50] Avner Peleg, Jerome V. Moloney. Scintillation index for two Gaussian laserbeams with different wavelengths in weak atmospheric turbulence. J. Opt. Soc.Am,2006,A23:3114-3122.
    [51] Pavel Polynkin, Avner Peleg, Laura Klein, et al. Optimized multiemitterbeams for free-space optical communications through turbulent atmosphere.Opt. Lett,2007,32:885-887.
    [52] Alan Harris, Jr Sluss, J James, et al. Free space optical wavelength diversityscheme for fog mitigation in a ground to unmanned aerial vehiclecommunications link. Opt. Eng,2006,45(8):086001-12.
    [53] Dirk Giggenbach, Hennes Henniger, Nicolas Perlot. Wavelength diversitytransmission for fading mitigation in the atmospheric optical communicationchannel. Proc. SPIE,2006,6304:63041H1-12.
    [54] Al Akkoumi Mouhammad K, Harris Alan, Huck Robert C, et al. Performanceof a wavelength diversified FSO tracking algorithm for real time battlefieldcommunications. Proc. SPIE,2008,6977:68770A1-9.
    [55] Jing Chen, Yong Ai, and Ying Tan. Improved free space opticalcommunications performance by using time diversity. Chin. Opt. Lett,2008,6:797-799.
    [56] Yaoqiang Han, Anhong Dang, Yongxiong Ren, et al. Theoretical andexperimental studies of turbo product code with time diversity in free spaceoptical communication. Opt. Express,2010,18:26978-26988.
    [57] Sugianto Trisno, Igor I Smolyaninov, Stuart D Milner, et al. Characterizationof time delayed diversity to mitigate fading in atmospheric turbulencechannels. Proc. SPIE,2005,5892:5892151-58921510.
    [58] Korotkova O, Andrews L C, Phillips R L. Phillips. Model of a partiallycoherent Gaussian beam in atmospheric turbulence with application inlasercom. Opt. Eng,2004,43(2):330-341.
    [59] Korotkova O, Andrews L C, Phillips R L. Phase diffuse at the transmitter forlasercom link: effect of partially coherent beam on the bit error rate. Proc.SPIE,2003,4976:70-77.
    [60] Alavinejad M, Ghafary B, Razzaghi D. Spectral changes of partially coherentflat topped beam in turbulent atmosphere. Opt. Commun,2008,281(8):2173-2178.
    [61] Jennifer C R, Frederic M D. Point To Point wireless communication usingpartially coherent optical fields. Proc. SPIE,2002,4489:156-165.
    [62] Deva K Borah, David G Voelz. Spatially partially coherent beam parameteroptimization for free space optical communications. Opt. Express,2010,18:20746-20758.
    [63] Xiao Xi feng, Voelz David. Toward optimizing partial spatially coherentbeams for free space laser communications. Proc. SPIE,2007,6709:67090P1-67090P8.
    [64] Drexler Kyle, Roggemann Michael, Voelz David. Use of a partially coherenttransmitter beam to improve the statistics of received power in a free-spaceoptical communication system: theory and experimental results. OpticalEngineering.2011,50(2):0250021-0250027.
    [65] Mukai R, Arabshahi P, Yan T Y. An adaptive threshold detector and channelparameter estimator for deep space optical communications. GlobalTelecommunications Conference,2001,1:50-54.
    [66] Nader Namazi, Ray Burris, G. Charmaine Gilbreath. Analytical approach tocalculation of probability of bit error and optimum thresholds in free spaceoptical communication. Proc. SPIE,2005,5892:58920T1-15.
    [67] Zhu Xiaoming, Kahn Joseph M. Communication techniques and coding foratmospheric turbulence channels. J. Opt.Fiber.Commun.Rep,2007,(4):363–405.
    [68] Zhu Xiaoming, Joseph M. Kahn, Wang Jin. Mitigation of turbulence inducedscintillation noise in free space optical links using temporal domain detectiontechniques. IEEE Photonics Technology Letters,2003,15(4):623-625.
    [69] Zhu Xiaoming, Joseph M Kahn. Markov chain model in maximum likelihoodsequence detection for free space optical communication through atmosphericturbulence channels. IEEE Trans. on Communications,2003,51(3):509-516.
    [70] Michael Cole, Kamran Kiasaleh. Signal intensity estimators for free spaceoptical communications through turbulent atmosphere. IEEE PhotonicsTechnology Letters,2004,16(10):2395-2397.
    [71] Davidson Fredericm, Koh Yutait. Interleaved convolutional coding for theturbulent atmospheric optical communication channel. IEEE Transactions onCommunications,1988,36:993-1003.
    [72] Ohtsuki T, Sasase I, Mori S. Overlapping multi-pulse pulse positionmodulation in optical direct detection channel. Communications,1993.ICC93.IEEE International Conference on,1993:1123-1127.
    [73] J P Kim, K Y Lee, J H Kim, et al. A performance analysis of wireless opticalcommunication with convolutional code in turbulent atmosphere.International Technical Conference on Circuits Systems,Computers andCommunications (ITC-CSCC'97),Okinawa,1997:15-18.
    [74] C Berrou, A Glavieux, P Thitimajshima. Near Shannon Limit Error-correctingCoding and Decoding: Turbo-codes. Proceeding of the IEEE InternationalConference on Communications,1993,2:1064-1070.
    [75] Kiasaleh, K. The performance enhancement of severely impaired unguidedlaser communication systems using turbo codes. MILCOM97Proceedings,1997,1:10-14.
    [76] Ohtsuki T. Turbo-coded atmospheric optical communication systems.Communications, IEEE International Conference on,2002,5:2938-2942.
    [77] Jun Chen, Xizhen Hu, Dexiu Huang,et al. Analysis of turbo-coded opticalwireless communication system based on on-off keying, binary phase-shiftkeying, and binary pulse position modulation. Opt. Eng,2007,46:095001.
    [78] Ivan B Djordjevic. LDPC-coded MIMO optical communication over theatmospheric turbulence channel using Q-ary pulse-position modulation. Opt.Express,2007,15:10026-10032.
    [79] Ivan B Djordjevic, Stojan Denic, Jaime Anguita, et al. LDPC-Coded MIMOOptical Communication Over the Atmospheric Turbulence Channel. J.Lightwave Technol,2008,26:478-487.
    [80] Ivan B Djordjevic, Murat Arabaci. LDPC-coded orbital angular momentum(OAM) modulation for free-space optical communication. Opt. Express,2010,18:24722-24728.
    [81] R K Tyson. Adaptive optics and ground-to-space laser communications.Appl. Opt,1996,35(19):3640-3646.
    [82] Pierre R Barbier, David W Rush, Mark L Plett, et al. Performanceimprovement of a laser communication link incorporating adaptive optics.Proc. SPIE,1998,3432:93.
    [83] Zocchi F E. A simple analytical model of adaptive optics for direct detectionfree space optical communication. Optics Communications.2005,248(4-6):359-374.
    [84] Jennifer Roberts, Mitchell Troy, Malcolm Wright, et al. Performance of theoptical communication adaptive optics testbed. Proc. SPIE,2005,5892:589212.
    [85] Malcolm W. Wright, Jennifer Roberts, William Farr, et al. Improved opticalcommunications performance combining adaptive optics and pulse positionmodulation. Opt.Eng,2008,47:016003.
    [86] S C Wilks, J R Morris, J M Brase, et al. Modeling of adaptive optics-basedfree-space communications systems. Proc. SPIE,2002,4821:121-128.
    [87] Thomas Berkefeld, Dirk Soltau, Reinhard Czichy, et al. Adaptive optics forsatellite-to-ground laser communication at the1m Telescope of the ESAOptical Ground Station, Tenerife, Spain. Proc. SPIE,2010,7736:77364C.
    [88] B M Levine, E A Martinsen, A Witth, et al. Horizontal line-of-sight turbulenceover near-ground paths and implications for adaptive optics corrections inlaser communication. Appl. Opt.,1998,37(21):4553-4560.
    [89] V P Lukin, B V Fortes. Phase correction of an image turbulence broadingunder condition of strong intensity fluctuations. Proc. SPIE,1999,3763:61-72.
    [90] C A Primmermen, T R Price, R A Humphreys, et al. Atomophericcompensation experiments in strong scintillation conditions. Appl.Opt.,1995,34(12):2081-2088.
    [91] R.K.Tyson. Bit-error rate for free-space adaptive optics laser communications.J. Opt. Soc. Am. A,2002,19(4):753-758.
    [92]王英俭,王春红,汪超,等.激光实际大气传输湍流效应相位校正一些实验结果[J].量子电子学报,1998,15(2):164-169.
    [93] T Weyrauch, M A Vorontsov. Atmospheric compensation with a specklebeacon in strong scintillation conditions:directed energy and lasercommunication applications. Appl. Opt.,2005,44(30):6388-6401.
    [94] T Weyrauch, M A Vorontsov. Free-space laser communications with adaptiveoptics: atmospheric compensation experiments. J. Opt. Fiber. Commun.Rep,2004,1:355-379.
    [95]杨慧珍,蔡冬梅,陈波,等.无波前传感自适应光学技术及其在大气光通信中的应用.中国激光,2008,35(5):680-684.
    [96]杨慧珍,李新阳,姜文汉.自适应光学技术在大气光通信系统中的应用进展.激光与光电子学进展,2007,44(10):61-68.
    [97]杨慧珍,陈波,李新阳,等.自适应光学系统随机并行梯度下降控制算法研究.光学学报,2008,28(2):205-210.
    [98]杨慧珍,李新阳,姜文汉.自适应光学系统几种随机并行优化控制算法比较.强激光与粒子束,2008,20(1):11-16.
    [99]杨慧珍,李新阳,姜文汉.自适应光学系统随机并行梯度下降控制算法仿真与分析.光学学报,2007,27(8):1355-1360.
    [100]S Zommer, E N Ribak, S G Lipson, et al. Adler. Simulated annealing in ocularadaptive optics. Opt. Lett,2006,31,939-941.
    [101]杨平,许冰,姜文汉,等.遗传算法在自适应光学系统中的应用.光学学报,2007,27(9):1628-1632.
    [102]Yang Ping, Liu Yuan, Ao Mingwu, et al. A wavefront sensor-less adaptiveoptical system for a solid-state laser. Optics and Lasers in Engineering,2008,46(7):517-521.
    [103]李晓峰.星地激光通信链路原理与技术.北京,国防工业出版社,2007:49-68.
    [104]L C Andrews, R L Phillips. Laser Beam Propagation through Random Media.Bellingham,SPIE Press,2005:321-390.
    [105]J C Ricklin, W B Miller, L C Andrews. Effective beam parameters and theturbulent beam waist for convergent Gaussian beams. Appl. Opt,1995,34:7059-7065.
    [106]易修雄.湍流大气中高斯波束的传播特性研究.西安:西安电子科技大学学位论文,2005:15-37.
    [107]Kiasaleh K. Performance of coherent DPSK free-space opticalcommunication systems in K-distributed turbulence. IEEE Transactions oncomunication,2006,54(4):604-607.
    [108]WO Popoola, Z Ghassemlooy. Performance of sub-carrier modulatedFree-Space Optical communication link in negative exponential atmosphericturbulence environment. International Journal of Autonomous and AdaptiveCommunications Systems,2008,1(3):342-355.
    [109]Uysal M, Jing Li, Meng Yu. Error rate performance analysis of codedfree-space optical links over gamma-gamma atmospheric turbulence channels.IEEE Transactions on wireless comunication,2006,5(6):1229-1233.
    [110]Ehsan Bayaki, Robert Schober, and Ranjan K Mallik. Performance Analysis ofFree-Space Optical Systems in Gamma-Gamma Fading. IEEE GlobalCommunications Conference (Globecom), New Orleans, Dec.2008:1-6
    [111]W Gappmair,S S Muhammad. Error performance of PPM/Poisson channelsin turbulent atmosphere with gamma-gamma distribution. Electr. Lett.,2007,43:880–882.
    [112]T A Tsiftsis. Performance of Heterodyne Wireless Optical CommunicationSystems over Gamma-Gamma Atmospheric Turbulence Channels. ElectronicsLetters,2008,44(5):373-375.
    [113]Nistazakis H E, Tsiftsis T A, Tombras G S. Performance analysis of free-spaceoptical communication systems over atmospheric turbulence channels. IETCommunications.2009,3(8):1402-1409.
    [114]Andrews LC. Special Functions for Engineers and Applied Mathematicians.New York: MacMillan.1985:1-45.
    [115]http://functions.wolfram.com.
    [116]Peter J Winzer,Walter R Leeb.Fiber coupling efficiency for random light andits applications to lidar. Opt. Lett,1998,23:986-988.
    [117]Morio Toyoshima. Maximum fiber coupling efficiency and optimum beamsize in the presence of random angular jitter for free-space laser systems andtheir applications. J Opt Soc Am,2006,A23:2246-2250.
    [118]Yama D, Frederic M D. Fiber-coupling efficiency for free-space opticalcommunication through atmospheric turbulence. Applied Optics,2005,44(23):4946-4952.
    [119]Dong-Yiel Song, Yoon-Suk Hurh, Jin-woo Cho, et al.410Gb/s terrestrialoptical free space transmission over1.2km using an EDFA preamplifier with100GHz channel spacing. Opt. Express,2000,7:280-284.
    [120]Hans Bruesse lbach, Monica L. Minden, Shuoqin Wang,etc. A coherentfiber-array-based laser link for atmospheric aberration mitigation and powerscaling. Proc. SPIE,2004,5338:90-101.
    [121]Jobling S, McCuske K T, Kwiat P G. Adaptive Optics for ImprovedMode-Coupling Efficiencies. in Laser Science XXIV, OSA Technical Digest(CD),Rochester, NY: Optical Society of America,2008: JWA32.
    [122]Weyrauch T, Vorontsov M A, Gowens J W, et al. Fiber coupling with adaptiveoptics for free-space optical communication. Proc. SPIE,2002,4489:177-184.
    [123]Hanling Wu, Haixing Yan,Xinyang Li. Modal correction for fiber-couplingefficiency in free-space optical communication systems through atmosphericturbulence. Optik-International Journal for Light and Electron Optics,2010,121(19):1789-1793.
    [124]Daniel V H, David M B, Nathan W R, etc. Fiber optic bundle array widefield-of-view optical receiver for free space optical communications. Opt. Lett,2010,35:3559-3561.
    [125]Hideki Takenaka, Morio Toyoshima.Study on the fiber coupling efficiency forground-to-satellite laser communication links. Proc. SPIE,2010,7587:75870U1-12.
    [126]Jing Ma, Fang Zhao, Liying Tan, etc.Degradation of single-mode fibercoupling efficiency due to localized wavefront aberrations in free-space lasercommunications. Opt.Eng,2010,49:0450041-0450046.
    [127]周仁忠.自适应光学.北京,国防工业出版社,1996:35-47.
    [128]R K Tyson. Bit-error rate for free space adaptive optics laser communications.Optical Society of America Journal,2002,19(4):753-758.
    [129]Chueh Ting, David G Voelz. Laser satellite communication with adaptiveoptics. Proc. SPIE,2005,5892:370-376.
    [130]M.P. Cagigal, V.F. Canales. Generalized Fried parameter after adaptive opticspartial wave-front compensation. J. Opt. Soc. Am,2000,A17:903–910.
    [131]T. Weyrauch, M.A. Vorontsov, J.W. Gowens, T.G. Bifano. Fiber coupling withadaptive optics for free-space optical communication. Proc. SPIE,2002,4489:177–184.
    [132]Booth M J. Wavefront Sensorless Adaptive Optics for Large Aberrations. Opt.Lett,2007,32:5-7.
    [133]Booth M J. Wavefront Sensorless Adaptive Optics:a Model Based ApproachUsing Sphere Packings. Opt. Express,2006,14:1339-1352.
    [134]MA Vorontsov, GW Carhart and JC Ricklin. Adaptive phase-distortioncorrection based on parallel gradient descent optimization. Opt. Lett.,1997:22,907-909.
    [135]Ruilier C. A study of degraded light coupling into single-mode fibers. Proc.SPIE,1998,3350:319-329.
    [136]J W Hardy. Adaptive Optics for Astronomical Telescopes. New York: OxfordUniversity Press,1998.
    [137]Dai, Guang-ming. Modal compensation of atmospheric turbulence with theuse of Zernike polynomials and Karhunen–Loève functions. JOSA A,1995,12(10):2182-2193.
    [138]张慧敏,李新阳.大气湍流畸变相位屏的数值模拟方法研究.光电工程,2006,33(1):14-19.
    [139]梁咏辉,王三宏,龙学军.随机并行梯度下降净化光束实验研究.光学学报,2008,28(4):613-618.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700