星载InSAR数据处理中的几个关键问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
星载合成孔径雷达干涉测量是正在发展并极具潜力的一种空间对地观测技术,具有高分辨率、全天时、全天候、大范围等优势,已在数字高程模型重建、地表形变探测、地球物理研究等方面表现出了良好的应用前景。然而,由于采用了单天线双航过模式,其获取的DEM的精度和可靠度受到四个因素的严重制约,即时间/空间失相关、大气延迟、地形因子及热噪声。为此,本文对星载合成孔径雷达干涉技术进行系统研究,重点分析这四个影响因子,探索克服这些因素的关键理论和方法,旨在提高InSAR DEM的精度和可靠度,为InSAR的相关数据处理提供新的思路和途径。具体研究内容和相关结论有:
     噪声类型和特点的分析是InSAR干涉图滤波的前提,论文从小波系数能量和分布特征两个角度对干涉图进行了研究。结果表明:(1)干涉相位图中只含加性噪声,不含乘性噪声;(2)高频子带中的显著系数的分布规律并不是随机的,它呈成簇分布且在同一尺度或各尺度之间都具有一定的相关性,而噪声对应的小波系数是随机分布的,不具有相关性;(3)加性噪声经小波分解,其系数服从标准正态分布。
     根据干涉图噪声在小波域内的标准正态分布特征,论文将小波变换和维纳滤波的优势结合,提出了一种基于小波-维纳滤波的InSAR干涉图滤波算法;又由于同一小波尺度间干涉信号具有相关性而噪声不具相关性这一特点,本文还提出了一种基于小波相位分析的干涉图滤波算法。美国Phoenix地区高信噪比干涉图和伊朗Bam地区低信噪比干涉图的两组滤波实验表明,不论是对高信噪比干涉图,还是低信噪比干涉图,这两种算法都能获得较好的效果。
     研究了大气延迟对雷达传播和干涉相位的影响,结果显示,气压和湿度越大,引起的雷达传播延迟量就越大,对于干涉相位而言,大气压力变化引起的相位偏差要比由水汽变化引起的相位偏差小得多。此外,根据大气延迟项的“1/f过程”特征,本文利用1/f过程的小波模型估算了研究区六幅干涉图中的噪声和大气影响值。
     研究了地形坡度、坡向对InSAR DEM质量的影响。结果显示:InSARDEM的精度与地形坡度存在明显的相关性。地形坡度小于10°时,DEM的偏差变化不大且精度较高,在[10°,30°]区间时,高程精度与地形坡度呈线性反比关系,大于30°时,高程精度变得不可预知;但很难发现InSAR DEM精度与地形坡向之间存在何种规律。
     研究了InSAR DEM精度与空间基线、时间基线之间的关系。在一定范围内,空间基线和垂直基线越长,获取的DEM的精度越高,而在空间基线长度相当的情况下,垂直基线越长,获取的DEM的精度越高。InSAR DEM的精度或多或少与干涉对的时间间隔有关,尤其在植被覆盖地区,植被生长变化对雷达回波信号的影响很大,导致了DEM精度的降低。
     为消弱噪声、大气延迟及空间基线对InSAR DEM精度的影响,提出了一种基于小波变换的多基线InSAR DEM融合算法。即在消除空间基线影响后,利用1/f过程的小波模型估计噪声和大气延迟对InSAR干涉相位的贡献值,并在此基础上实现小波域内的多基线InSAR DEM加权融合。美国Phoenix地区的6个InSAR DEM的融合实验表明,该算法能够有效地降低噪声、大气延迟及空间基线的影响,获得较高精度的DEM。
As a developing and promising space geodetic technique, satellite synthetic aperture radar interferometry (InSAR) has the advantages of high resolution, all day, all weather, large range and so on. A number of experiments have demonstrated that InSAR is very useful in such fields as digital elevation model (DEM) reconstruction, ground deformation detection, geophysical studies, etc. However, due to the pattern of single-antenna and repeat-pass, the precision and reliability of DEM derived by InSAR would be seriously restricted by four major negative factors, i.e., temporal and geometrical decorrelation, atmospheric delay, topography as well as thermal noise. Therefore, this thesis selects these impact factors as research topics, and explores key theoretics and methods to overcome the effects of thermal noise, decorrelation, atmospheric delay and topography. The motivation of this research is to improve both accuracy and reliability in InSAR DEM and to offer new ideas and approaches for data processing of InSAR. The main research contents and relevant conclusion are as follows:
     In order to filter InSAR interferogram effectively in wavelet transform domain, the thesis has analyzed the types and characteristics of interferogram noises in terms of the energy and distribution of wavelet coefficients. The results are as follows:(1) there is only additive noises without multiplicative noises in interferogram. (2) The distribution regularity of remarkable coefficients in high-frequency sub-bands is not random but clustering distribution, and these remarkable coefficients have some correlation with in the same scale or among different scales, whereas the distribution regularity of the wavelet coefficients corresponding to noises is random distribution without any correlation; (3) The wavelet coefficients corresponding to additive noises obey standard normal distribution.
     According to the standard normal distribution of interferogram noises in wavelet domain, an algorithm of wavelet-wiener combined (WWC) filter is proposed by utilizing the merits of wavelet transform and wiener filtering. Due to the trait that the wavelet coefficients corresponding to interference signals in a same wavelet scale have some relativity, this thesis proposes an algorithm of filtering InSAR interferogram that is based on wavelet phase analysis. For validating the effects of two algorithms, two C-band interferograms, i.e., high-SNR one over Phoenix, USA and low-SNR one over Bam, Iran are selected to carry out the experiments of filter and analysis, and the results indicate that not only to the high-SNR interferogram, but also to the low-SNR interferogram, the two algorithms can both suppress noises successfully.
     The effects of radar propagation and interferometric phases caused by atmospheric delay are analyzed, and the results show that the bigger pressure and humidity are, the bigger retardation of radar propagation is, and for interferometric phase, the deviation caused by atmospheric pressure change is much more less than that caused by water vapor change. In addition, according to the "1/f" characteristic of atmospheric delay in frequency domain, the value of noises and atmospheric influence of six interferograms that selected for this experiment are estimated by using the wavelet model of 1/f processes.
     Compared to the SRTM DEM, the InSAR DEMs are evaluated to determine the impacts of terrain slope and aspect on elevation accuracy. The results show that there is an obvious relativity between InSAR DEM accuracy and terrain slope. When terrain slope is less than 10°, the deviation of DEM changes little and the accuracy is high. The DEM accuracy degrades almost linearly with increasing slope when the terrain slope is between 10°snd 30°. The accuracy of steep slopes over 30°is unacceptable. However, the rule between the InSAR DEM accuracy and the terrain slope is hardly found.
     InSAR DEMs are evaluated to determine the impacts of spatial baseline and time baseline on elevation accuracy. In certain extent, the longer spatial baseline and vertical baseline are, the higher accuracy is. Moreover, when the lengthes of all spatial baselines are equivalent, the longer vertical baseline is, the higher accuracy of DEM is. In terms of temporal impact, the DEM accuracy is more or less related to the time intervals of the InSAR pairs, especially for vegetation regions. Because the changes of vegetation growth seriously affect radar echo signal and lead to the accuracy reducing of DEM.
     To weaken the influence of noises, atmospheric delay and spatial baseline, a multi-baseline InSAR DEM fusion algorithm based on wavelet transform is proposed. After eliminating the influence of spatial baseline, this algorithm realizes the multi-baseline InSAR DEM weighted fusion on the basis of that the values of interferometric phase caused by noises and atmospheric delay are estimated by using the wavelet model of 1/f processes. Six InSAR DEMs over Phoenix, USA are selected to carry out the experiments of fusion, and the results indicate that this algorithm can effectively reduce the influence of noises, atmospheric delay and spatial baseline, and acquire DEM with higher accuracy.
引文
[1]Carlos L. M., F. Xavier. Modeling and reduction of SAR interferometric phase noise in the wavelet domain [J]. IEEE Transactions on Geoscience Remote Sensing,2002,40(12):2553-2566.
    [2]Zebker H. A., C. L.Werner, P. A. Rosen, etal. Accuracy of topographic maps derived from ERS-1 interferometric radar [J]. IEEE Transactions on Geoscience Remote Sensing,1994,32(4):823-836.
    [3]刘国祥,丁晓利,李志林,等.InSAR DEM的质量评价[J].遥感信息,2000,4:7-11.
    [4]刘国祥,丁晓利,李志林,等.使用InSAR建立DEM的试验研究[J].测绘学报,2001,30(4):337-343.
    [5]史世平.使用ERS-1/2干涉测量SAR数据生成DEM[J].测绘学报,2000,29(4):317-323.
    [6]Shan Xinjian, Song Xiaoyu, Liu Jiahang, etal. Obtaining digital elevation data in different terrain and physiognomy regions with spaceborne InSAR and its application analysis [J]. Chinese Science Bulletin,2002,47(10):868-873.
    [7]廖明生,林珲.雷达干涉测量——原理与信号处理基础[M].测绘出版社,2003.
    [8]Zebker H. A., R. M. Goldstein. Topographic mapping from interferometric synthetic aperture radar observation [J]. Journal of Geophysical Research, 1986,91:4933-4999.
    [9]Gabriel A. k., R. M. Goldstein, H. A. Zebker. Mapping small elevation changes over large areas:differential radar interferomtry [J]. Journal of Geophysical Research,1989,94:9183-9191.
    [10]Massonnet D., K. L. Feigl. Radar interferometry and its application to changes in the Earth's surface [J]. Reviews of geophysics,1998,36: 441-500.
    [11]Rosen P. A., S. Hensley, I. R. Joughin, etal. Synthetic aperture radar interferometry [J]. Proceedings of the IEEE,2000,88:10791-10806.
    [12]周春霞,鄂栋臣.InSAR技术在南极地区的应用[J].测绘与空间地理信 息,2005,28(5):4-7.
    [13]周春霞,鄂栋臣,廖明生.InSAR用于南极测图的可行性研究[J].武汉大学学报(信息科学版),2004,29(7):619-623.
    [14]Joughin I.R., D. P. Winebrenner, M. A. Fahnestoek. Observation of ice-sheet motion in Greenland using satellite radar interferometry [J]. GeoPhysical research letters,1995,22(5):571-574.
    [15]王超,张红,刘智.星载合成孔径雷达干涉测量[M].北京:科学出版社,2002.
    [16]刘国祥.Monitoring of Ground Deofmrations with Radar Interefrometry[M].北京:测绘出版社,2006.
    [17]Galloway D. L., K. W. Hudnut, S. E. Ingebritsen, etal. Detection of aquifer System compaction and land subsidence using interferometric synthetic aperture radar, Antelope Valley, Mojave Desert, California [J]. Water Resources Research,1998,34:2573-2585.
    [18]Amelung F., D. L. Galloway, J. W. Bell, etal. Sensing the ups and downs of Las Vegas:InSAR reveals structure control of land subsidence and aquifer-system deformation [J]. Geology,1999,27(6):483-486.
    [19]Schmidt D. A., R. Burgmann. Time-dependent land uplift and subsidence in the Snata Claa valley, Caliofmia, from a large interferometric synthetic aperture radar dataset [J]. Journal of Geophysical Research,2003,108(B9): 2416-2429.
    [20]Liu Guoxiang, Ding Xiaoli, Chen Yongqi, etal. Ground settlement of Chek Lap Kok airport Hong Kong, detected by satellite synthetic aperture radar interferometry [J]. Chinese Science Bulletin,2001,46(21):1778-1782.
    [21]Li Zhiwei, Ding Xiaoli, Liu Guoxiang. Modeling atmospheric effects on InSAR with meteorological and continuous GPS observations:algorithms and some test results [J]. Journal of Atmospheric and Solar-Terrestrial Physics,2004,66:907-917.
    [22]Li Zhiwei, Ding Xiaoli, Liu Guoxinag. Atmospheric effects on InSAR measurements-a review [J]. Geometrics Research Australia,2003,79:43-55.
    [23]Zebker H. A., J. Villasenor. Decorrelation in interferometric radar echoes [J]. IEEE Transactions on Geoscience and Remote Sensing,1992,30(5): 950-959.
    [24]LI F. K., R. M. Goldstein. Studies of multibaseline spaceborne interferometric synthetic aperture radars [J]. IEEE Transactions on Geoscience and Remote Sensing,1990,38:88-97.
    [25]Ferretti A., P. Claudio, A. Rocca. Nonlinear subsidence rate estimation using permanent scatters in differential SAR interferometry [J]. IEEE Transactions on Geoscience and Remote sensing,2000,38:2202-2212.
    [26]袁孝康.星载合成孔径雷达导论[M].北京:国防工业出版社,2003.
    [27]Zebker H. A., P. A. Rosen, S. Hensley. Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps [J]. Journal of Geophysical Research,1997,103 (4):7547-7563.
    [28]刘国祥,刘文熙,黄丁发.InSAR技术及其应用中的若干问题[J].测绘通报,2000,8:10-12.
    [29]Goldstein R. Atmospheric limitations to repeat-track radar interferometry [J]. Geophys. Res. Lett,1995,22(18):2517-2520.
    [30]Tarayre H. Atmospheric propagation heterogeneities revealed by ERS-1 interferometry [J]. Geophys. Res. Lett,1996,23(9):989-992.
    [31]Ferretti A., P. Claudio, R. Fabio. Multibaseline InSAR DEM reconstruction: the wavelet approach [J]. IEEE Transactions on Geoscience Remote Sensing, 1999,37(2):705-715.
    [32]Giorgio F., L. Riccardo. Synthetic Aperture Radar Processing [M]. Boca Raton London New York:CRC Press,1999,135-241.
    [33]郭华东.雷达对地观测理论与应用[M].北京:科学出版社,2000.
    [34]Hanssen R. F. Radar interferometry:data interpretation and error analysis [M]. Dordrecht:Kluwer Academic Publishers,2001.
    [35]Yuan Yunneng, Hu Qing-dong, Mao Shi-yi. Denoising methods in interferometric SAR images processing [J]. Chinese journal of aeronautics, 1999,12(2):1000-9361.
    [36]赵争.基于匀场退火理论InSAR相位解缠实用化算法研究[D].中国测绘科学研究院,2003.
    [37]Touzi R., A. Lopes. Statistics of the stokes parameters and of the complex coherence parameters in one-look and multilook speckle fields [J]. IEEE Tranactions on GRS,1996,34(2):519-531.
    [38]Seymour M. S., I. G. Gumming. Maximum likelihood estimation for SAR interferometry [J]. Proc. IGARSS 94, California Institute of Technology, Pasadena, California, USA,1994,8(8-12):2212-2275.
    [39]Tough R. J. A., D. Blacknell, S. Quegan. Estimators and distributions in single and multi-look polarimetric and interferometric data [J]. Proc. IGARSS 94, California Institute of Technology, Pasadena, California, USA, 1994,8(8-12):2176-2178.
    [40]Lee J. S., K. P. Papaihanassiou, etal. A new technique for noise filtering of SAR interferometric phase images [J]. IEEE Transactions On GRS,1998, 36(5):1456-1465.
    [41]Trouve E., J. M. Nicolas, H. Maitre. Improving phase unwrapping techniques by the use of local frequency estimates [J]. IEEE Transactions on GRS,1998,36(6):1963-1972.
    [42]Sandwell D.T., E. Price. Sums and differences of interferograms:Imaging the troposphere [J]. Eos Trans. AGU,1997,78(46):1-144.
    [43]金双根,朱文耀.GPS观测数据提高InSAR于涉测量精度的分析[J].遥感信息,2001,4:8-11.
    [44]Janssen V., L. GE, C. Rizos. SAR interferometry:tropospheric corrections from GPS observations [J].
    [45]郑芳,马德宝,裴怀宁.InSAR中基线精度要求的探讨[J].现代雷达,2005,27(9):18-21.
    [46]刘国祥.InSAR系统中的误差传播[J].四川测绘,2005,28(2):92-95.
    [47]刘国林,郝晓光等.影响InSAR测高精度因素的相关性分析[J].武汉大学学报(信息科学版),2007,32(1):55-58.
    [48]杨福芹,郭增长.InSAR中基线不同表达形式要素分析[J].科技信息,2006:185-188.
    [49]张磊,伍吉仓,陈艳玲.InSAR高程模型及其精度分析[J].武汉大学学报(信息科学版),2007,32(2):108-111.
    [50]宋小刚,王尚,席广永.InSAR中的误差分析和可靠性理论[J].工程勘察,2007,2:57-60.
    [51]Toutin T. Impact of terrain slope and aspect on radargrammetric DEM accuracy [J]. ISPRS Journal of Photogrammetry and Remote Sensing,2002, 57:228-240.
    [52]Li Zhilin, Liu Guoxiang, Ding Xiaoling. Exploring the generation of digital elevation models from same-side ERS SAR images:topographic and temporal effects [J].2006:114-124
    [53]丁琼,刘国祥,蔡国林,等.InSAR DEM精度与地形特征的关系分析[J].测绘科学,2009,34(1):147-148.
    [54]毛建旭.合成孔径雷达干涉(InSAR)三维成像处理技术研究[D].湖南大学,2002.
    [55]Just D., R. Bamler. Phase statistics of interferograms with applications to synthetic aperture radar [J]. Applied Optics,2000,33(20):4361-4368.
    [56]Prati C., F. Rocco, A. M. Guarnieri, etal. Report on ERS-1 SAR interferometric techniques and applications [J]. Dipartimento di Eletronica, Politecnico di Milano.1994.
    [57]曾琪明,解学通.基于谱运算的复相关函数法在干涉复图像配准中的应用[J].测绘学报,2004,33(2):127-131.
    [58]Gabriel A. K., R. M. Goldstein. Crossed orbit interferometry:theory and experimental results from SIR-B [J]. International Journal of Remote Sensing,1988,9(8):857-872.
    [59]汪鲁才,王耀南,毛建旭.基于相关匹配和最大谱图像配准相结合的InSAR复图像配准方法[J].测绘学报,2003,32(4):320-324.
    [60]Qian Lin, J. F. Vesecky, H. A. Zebker. Registration of interferometric SAR images[J]. Geoscience and Remote Sensing Symposium,1992. IGARSS'92. International,1992,2:1579-1581.
    [61]Lin Q., J. F. Vesecky, H. A. Zebker. New approaches in interferometric SAR data processing [J]. IEEE Transactions on Geoscience and Remote Sensing,1992,30(3):560-567.
    [62]Liu Zhi, Wang Chao, Zhang Hong. A new registration of interferometric SAR:Least-Square Registration [J]. The 22nd Asian Conference on Remote Sensing,2001.
    [63]Zhang Hong, Wang Chao, Tang Yixian, etal. A new image registration method for multi-frequency airborne high-resolution SAR images [J]. Geoscience and Remote Sensing Symposium,2003. IGARSS'03. Proceedings.2003 IEEE International,2003,1:167-169.
    [64]Liu Yonghuai. Robust geometric registration of overlapping range images [J]. Industrial Electronics Society,2003. IECON'03. The 29th Annual Conference of the IEEE,2003,3:2494-2499.
    [65]Le M. J. Towards a parallel registration of multiple resolution remote sensing data [J]. Geoscience and Remote Sensing Symposium,1995. IGARSS'95.'Quantitative Remote Sensing for Science and Applications', International,1995:1011-1013.
    [66]舒宁.雷达影像干涉测量原理[M].武汉大学出版社,2003.
    [67]Ghiglia D. C., M. D. Pritt. Two-dimensional phase unwrapping:theory, algorithms and software [M]. A wiley-interscience publication,1998.
    [68]Goldstein R. M., H. A. Zebker, C. L. Werner. Satellite radar interferometry: two-dimensional phase unwrapping [J]. Radio Science,1988,23(4): 713-720.
    [69]Bone D. J. Fourier fringe analysis:the Two dimensional phase unwrapping problem [J]. Applied Optics,1991,30(25):3627-3632.
    [70]Xu Y., C. Ai. Simple and effective phase unwrapping technique [J]. Interferometry IV:Techniques and Analysis, Proceedings of the SPIE, Vol.2003, Society of Photo-Optical Instrumentation Engineers, Bullingham, WA,1993:254-263.
    [71]Quiroga J. A., A. Gonzalez-Cano, E. Bernabeu. Phase-unwrapping algorithm based on an adaptive criterion [J]. Applied Optics,1995,34(14):2560-2563.
    [72]Lim H., Xu W., Huang X. Two new practical methods for phase unwrapping [J]. Proceedings of the 1995 International Geoscience and Remote Sensing Symposium, Tokyo, Japan,1995:196-198.
    [73]Xu W., Cumming I. A region growing algorithm for InSAR phase unwrapping [J]. Proceedings of the 1996 International Geoscience and Remote Sensing Symposium, Lincoln, NE,1996:2044-2046.
    [74]Roth M. W. Phase unwrapping for interferometric SAR by the least-error path [J]. Johns Hopkins University Applied Physics Lab Technical Report, Laurel, MD,1995.
    [75]Prati C., M. Giani, N. Leuratti. SAR interferometry:A 2-D phase unwrapping technique based on phase and absolute values information [J]. Proceedings of the 1990 International Geoscience and Remote Sensing Symposium, IEEE, Piscataway, NJ,1990,2043-2046.
    [76]Derauw D. Phase unwrapping using coherence measurements[J]. Synthetic Aperture Radar and Passive Microwave Sensing. Proceedings of the SPIE, Vol.2584, Society of Photo-Optical Instrumentation Engineers, Bellingham, WA,1995:319-324.
    [77]Flynn T. J. Consistent 2-D phase unwrapping guided by a quality map[J]. Proceedings of the 1996 International Geoscience and Remote Sensing Symposium, Lincoln, NE,1996:2057-2059.
    [78]Flynn T. J. Two-dimensional phase unwrapping with minimum weighted discontinuity [J]. Jurnal of the Optical Society o America A,1997,14(10): 2692-2701.
    [79]Ghiglia D. C., L. A. Romero. Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods [J]. Jounal of the Optical Society of America A,1994,11:107-117.
    [80]Ghiglia D. C., L. A. Romero. Direct phase estimation from phase differences using fast elliptic partial differential equation solvers [J]. Optics Letters, 1989,14:1107-1109.
    [81]Hunt B. R. Matrix formulation of the reconstruction of phase values from phase differences [J]. Jounal of the Optical Society of America A,1979, 69(3):393-399.
    [82]Takajo H., T. Takahashi. Least-square phase estimation from phase differences[J]. Jounal of the Optical Society of America A,1988,5(3): 416-425.
    [83]Takajo H., T. Takahashi. Noniterative method for obtaining the exact solution for the normal equation in least-squares phase estimation from the phse difference [J]. Jounal of the Optical Societh of America A,1988,5(11): 1818-1827.
    [84]Busbee B. L., G. H. Gollub, C. W. Nielson. On direct methods for solving Poisson's equations [J]. SIAM Jounal of Numerical Analysis,1970,7: 627-656.
    [85]Chen C. W., H. A. Zebker. Two-dimensional phase unwrapping with use of statistical models for cost functions in nonlinear optimization [J]. Jounal of the Optical Society of America A,2001,18:338-351.
    [86]Chen C.W., H. A. Zebker. Network approaches to two-dimensional phase unwrapping:intractability and two new algorithms [J]. Jounal of the Optical Society of America A,2000,17:401-414.
    [87]Chen C.W., H. A. Zebker. Phase unwrapping for large SAR interferograms: Statistical segmentation and generalized network models [J]. IEEE Transactions on Geoscience and Remote Sensing,2002,40:1709-1719.
    [88]Kampes B. Delft Object-oriented Radar Interferometric Software User's manual and technical documentation [R]. http://www.geo.tudelft.nl/fmr/research/insar/sw/doris/Usersmanual/index.ht ml,1999:62-122.
    [89]Gatellif F., A. M. Guarnieri, F. Parizzi, etal. The wavenumber shift in SAR interferometry [J]. IEEE transactions on Geosciences and Remote Sensing, 1994,32(4):855-865.
    [90]Rosen P. A., S. Hensley, etal. Synthtic Aperture Radar Interferometry. Proceedings of the IEEE,2000,88(3):333-382.
    [91]邓炜,张艳宁,万余庆,等.DEM分形内插方法及其在消除SAR图像地形畸变中的应用[J].西北工业大学学报,2001,19(3):430-433.
    [92]Giancarlo B. A Locally Adaptive Approach for Interferometric Phase Noise Reduction [J]. IEEE transactions on Geoscience and Remote Sensing,1999: 264-266.
    [93]Rodriguez E., J. M. Martin. Theory and Design of Interferometric Synthetic Aperture Radar [J]. IEEE Proceedings-F,1992,139(2):147-159.
    [94]Yu Jingtao, Chen Ying. A New Filter on Interferogram Fringe [J]. A cta Geodaetica et Cartographica Sinica.2004,33(2):121-126. (in Chinese).
    [95]Braunisch H., B. I. Wu, A. K. Jin. Phase Unwrapping of SAR Interferograms after Wavelet Denoising [J]. IEEE transactions on Geoscience and Remote Sensing 2000:752-754.
    [96]汪鲁才,王耀南,毛六平.基于小波变换和中值滤波的InSAR干涉图像滤波方法[J].测绘学报,2005,34(2):108-112.
    [97]Witkin A. Scale space filtering [J]. Proc.8th Int. Joint Conf. Artificial Intell, 1983.
    [98]Xu Yansun. Wavelet transform domain filters:a spatially selective noise filtration technique [J]. IEEE Trans. Image Processing,1994,3(6):747-758.
    [99]徐晨,赵瑞珍,甘小冰.小波分析应用算法[M].北京科学出版社,2004,5:133-136.
    [100]赵艳明,全子一.一种有效的小波-Wiener滤波去噪算法[J].北京邮电大学学报,2004,27(4):41-45.
    [101]张泾周,张光磊,戴冠中.自适应算法与小波变换在心电信号滤波中的应用[J].生物医学工程学杂志,2006,23(5):977-980.
    [102]潘泉,张磊,孟晋丽,等.小波滤波方法及应用[M].北京:清华大学出版社,2005.
    [103]Mallat S. Theory from Multi-resolution Signal Decomposition:the Wavelet Representation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1989,11(7):674-693.
    [104]刘文耀.小波图像编码与专用VLSI设计[M].北京:电子工业出版社,2006.
    [105]徐飞,施晓红,等.Matlab应用图像处理[M].西安:西安电子科技大学出版社,2002:92-96.
    [106]王大凯,彭进业.小波分析及其在信号处理中的应用[M].北京:电子工业出版社,2006:75-79.
    [107]Goldstein R. M., C. L. Werner. Radar Interferogram Filtering for Geophysical Applications [J]. Geophysical Research Letter,1998,25(21): 4035-4038.
    [108]Tatarskii V. I. Wave Propagation in a Turbulent Medium [J]. New York: Dover,1961.
    [109]Goldhirsh J., J. R. Rowland. A tutorial assessment of atmospheric height uncertainties for high-precision satellite altimeter missions to monitor ocean currents [J]. IEEE Trans. Geo. Rem. Sens.,1982, GE-20(4):418-433.
    [110]Smith E. K., S. Weintraub. The constants in the equation for atmospheric refractive index at radio frequencies [J]. Proc. of the IRE,1953:1035-1037.
    [111]Wornell G. W., A. V. Oppenheim. Estimation of fractal signals from noisy measurements using wavelets [J]. IEEE Transactions on Signal Processing, 1992,40(3):611-623.
    [112]张淑宁,熊刚,赵惠昌,等.分形随机噪声信号处理的小波谱相关方法[J].电子学报,2005,33(7):1213-1217.
    [113]Wornell G. W. Wavelet-based representations for the 1/f family of fractal processes [J]. Proceedings of the IEEE,1993,81(10):1428-1450.
    [114]王尔丹,李晓华,沈兰荪.基于多尺度分析和分形的人群密度估计方法 [J].计算机工程与应用,2005,41(29):35-38.
    [115]Mandelbrot B. B. The fractal geometry of nature [J]. San Franciseo, CA: Freeman,1982.
    [116]张贤达,保铮.非平稳信号分析与处理[M].国防工业出版社,2001.
    [117]Tarayre H., D. Massonnet. Effects of a refractive atmosphere on interferometric processing [J]. In Proc. IGARSS'94, Pasadena, CA,1994: 717-719.
    [118]Ferretti A., C. Prati, F. Rocca, etal. Multi-baseline SAR interferometry for automatic DEM reconstruction [J]. In Proc.3rd ERS Symp., Florence, Italy,1997, http://florence97.ers-symposium.org/.
    [119]李志林,朱庆.数字高程模型[M].武汉大学出版社,2003.
    [120]周启鸣,刘学军.数字地形分析[M].科学出版社,2006.
    [121]张永红,张继贤,林宗坚.由星载InSAR生成DEM的理论误差分析[J].遥感信息,1999(2):12-15.
    [122]穆冬.干涉合成孔径雷达成像技术研究[D].南京航空航天大学,2001.
    [123]陈艳玲.星载SAR及InSAR技术在地球科学中的应用研究[D].中国科学院研究生院,2007.
    [124]王运锋.SAR图像与光学图像数据融合算法研究[D].电子科技大学,2002.
    [125]Saha R. K., K. C. Chang. An efficient algorithm for multisensor track fusion [J]. IEEE Trans. Aeros. Elect. Sys.,1998,34(1):200-210.
    [126]Subotic N. S., B. J. Thelen, J. D. Gorman, etal. Multiresolution detection of coherent radar targets [J]. IEEE Trans. Image Processing,1997,6(1): 21-35.
    [127]王欣.多传感器数据融合问题研究[D].吉林大学,2006.
    [128]Durrant-Whyte H. F. Consistent Integration and Propagation of Disparate Sensor Observations [J]. International Journal of Robotics Research,1987, 6(3):3-24.
    [129]Dempster A. P. Upper and lower probabilities induced by a multivalued mapping [J]. Annals of Mathematical Statistics,1967,38(2):325-339.
    [130]Shafer G. A mathematical theory of evidence [M]. Princeton, New Jersey: princet on university Press,1976.
    [131]Pawlak Z. Rough sets [J]. International Journal of Computer Information Sciences,1982,11:341-359.
    [132]Gens R. J. L. Van Gerideren. SAR interferometry-Issues, techniques [J]. IEEE Transactions on Geoscience Remote Sensing,1997:1803-1835.
    [133]岳焕印.基于小波变换的干涉SAR数据处理方法研究[D].中国科学院遥感应用研究所,2002.
    [134]靳国旺.InSAR获取高精度DEM关键技术研究[D].解放军信息工程大学,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700