分布式马赫—泽德干涉仪的原理与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光纤传感器经历了近20年的发展,取得了引人注目的成就,在军事,工业,科研等领域发挥了巨大的作用。其具备了灵敏度高、动态范围大、不受电磁干扰等突出的优点。在包括强度、频率、波长、偏振调制等多种光纤传感形式当中,相位调制型具有最高的灵敏度,而分布式干涉型光纤振动传感器则可以实现连续高精度定位传感,具备广阔的应用前景。本论文从应用的角度对分布式干涉型光纤振动传感器技术中的一些基础问题进行研究了探讨。论文由以下6个部分组成:
     (1)管道检测技术的现状与发展趋势。
     (2)不同分布式光纤传感之间的原理对比以及理论分析。
     (3)干涉型分布式光纤振动传感器中光源的驱动设计。
     (4)从理论和实验两个方面对分布式干涉型光纤振动传感器的信号解调处理进行分析和探讨。
     (5)分布式光纤传感器信号检测以及数据采集系统的研究。
     (6)结束语。
     论文的第一部分是在参阅其他文献的基础上,对管道检测技术的现状和发展趋势作一个一般性的总结。论文的第二部分对分布式光纤传感器的原理分析作一简单的说明后,重点研究了分布式干涉型光纤振动传感器中的一些关键技术问题。论文的第三部分从分布式干涉型光纤振动传感器对光源的要求出发,采用了高稳定度的恒温控制以及功率稳恒控制方法,通过高信噪比的运算放大器,半导体制冷器,设计了一种激光电源驱动系统,并进行了理论分析和实验验证。结果表明,本系统不仅结构简单,而且温度控制稳定、准确度高。可使半导体激光器的输出波长保持稳定,保证了干涉型光纤传感器的测量准确度。论文的第四部分从理论上推导分析干涉型光纤振动传感器信号调制和解调原理。指出解调的必要性和目前常用的解调方法,设计信号解调方案,根据实验说明3×3耦合器解调方法的特点。由此分别介绍讨论了Labview软件相位解调的方法和效果。论文的第五部分着重研究讨论数据处理系统的实现方法,给出了以高性能数字信号处理器(DSP)、可编程逻辑器件(CPLD)和USB2.0接口为基础的硬件实现框架,并详细介绍了硬件实现的各个组成部分,包括芯片选用、电路连接和软件编程等,以此硬件平台为基础,实现了输出光功率检测子系统的数据处理。在论文的最后,根据实验结果及相应的理论分析,对整个研究作了一简单的总结。
Optical fibre sensing technology has been expanding rapidly in the latest decades, and is playing an important role in the area of military, industry and scientific research. It possessed the outstanding advantages based on its high sensitivity, widely dynamic range and immunity to electromagnetic interference. In various kinds of fiber sensor including intensity, frequency, wavelength and polarization modulation, the optical fiber interferometer sensor had the most sensitive. Moreover, the distributed optical fiber interferometer vibration sensor could achieve continuous and high sensitive detecting and locating of the vibration signals, so it has the broad application prospect. This paper conducted research and discussion on several fundmental problems of optical fibre sensing. The paper is composed of 7 parts as listed below:
     (1) Introduction.
     (2) The status and trends of real-time monitoring system for pipeline leakage. The simple explanation of distributed optical fiber sensor.
     (3) The design for accurately controlling output and frequency of the laser diode was invented in interferometic optical fibre sensing.
     (4) The modulation and demodulation theory of the optical fiber interferometer sensor had been deduced through theoretical and experimental analysis.
     (5) Research on detection and signal processing system of optical fiber sensor.
     (6) Conclusion.
     In the first part, the project was introduced simply from background and task. In the second part, on the basis of referneces, the author gave an overview of status and trends of real-time monitoring system for pipeline leakage. In the third part, after a simple explanation of Optical fiber sensor, emphasis was given on research of important technology of distributed optical fiber interferometer sensor. In the fourth part, through theoretical and experimental analysis, the operation amplifier with high S/N, and a semiconductor cooler were used. A laser power driving system was invented. The experimental data indicate the method is not only simple, but also highly accurate and stable in terms of temperature control. The application maintains the output wavelength of the laser diode at a constant level and assures the measure accuracy in optical fiber interferometer sensor (OFIS). In the fifth part of the paper, the modulation and demodulation theory of the optical fiber interferometer sensor had been deduced and analyzed. Designed the scheme of signal demodulation, and illuminated the characteristic of 3×3 couplers demodulation method by this experiment. Introduced and discussed the effects of the phase demodulation methods using the Labview software. In the sixth part, the author had paid much concern on the hardware realization of the data processing system, which consists of high performance DSP chips, CPLD and USB2.0 interface. Also, each part of the realization is introduced particularly, including chip choosing, circuit connecting and the software program. On the basis of the hardware platform, the author realized signal processing of the child system of output optical power detection. At the end of this paper, a roughly conclusion was given based on the experimental result and corresponding theoretical analysis.
引文
[1] Abdul Hameed, V N. Malhotra. Detection of leaks from process pipes. Pipes & Pipelines International , 1999 , 44 (5) : 23~33
    [2] 靳世久,王立宁,李健. 瞬态负压波结构模式识别法原油管道泄漏检测技术. 电子测量与仪器学报, 1998,12(1) :59~64
    [3] 唐家秀,颜大椿. 基于神经网络的管道泄漏检测方法与仪器. 北京大学学报(自然科学版) ,1997 ,33(3) :319~327
    [4] 胡志新,张陵. 分布式光纤布拉格光栅在油气管道检测中的应用. 应用光学, 2000 ,21(4) :35~37
    [5] Wai Rafei, Barnes RJ. Underlying the performance of real - time software- based pipeline leak - detection systems. Pipes & Pipelines International, 1999, 44 (6) :44~51
    [6] Zhang X J. Statistical leak detection in gas and liquid pipelines. Pipes &Pipelines International , 1993 , 38 (4) :26~29
    [7] Jun Zhang , Ling Xu. Real Time Pipeline Leak Detection on Shell’s North Western Ethylene pipeline. Technical Paper from REL Instrumentation Limited , 1999, 14(5): 36~38
    [8] 刘唱. 对油气输送管道提高效益的思考. 油气储运, 1997 , 16(1): 5
    [9] M. S. Yoon et al. Leak Detection Performance Specification. Pipeline Engineering. ASME 1991, 34 :21~26
    [10] Chet Sandberg. The Application of a Continuous Leak Detection System to Pipeline and Associated Equipment. IEEE Transaction on Industy Applications , 1989, 25(5) : 906~909
    [11] J . P. Kurmeretal. Application of a Novel Distributed Fiber Optic Acoustic Sensor for Leak Detection. Distributed and Multiplexed Fiber Optic Sensors Ⅱ. SPIE ,1992 , 1797 : 63~71
    [12] 勒世久. 原油管道泄漏检测与定位. 仪器仪表学报, 1997;18 (4) :343~347
    [13] D. P. Saini, S. L. Coulter. Fiber Sensors Sniff out Environmental Pollutants.Photonics Spectra , 1996, 5: 91~94
    [14] I. R. Ellul. Advance in Pipeline Leak Detection. Pipeline Engineering , ASME ,1991, 34: 15~19
    [15] Jun Zhang. Designing a Cost - effective and Reliable Pipeline Leak - detection System. Pipes &Pipelines International, 1997, 26: 68~72
    [16] 李科杰. 传感器最新进展和技术动向. 传感器世界, 1996, 12(5): 13~15
    [17] M. A kber, M. Shanblat. Temperature compensation of piezo-resistive pressure sensor. Sensors and Actuators , 1992, 18(33): 155~162
    [18] Yicai Sun, Xinyu Sun, Bing Sun, et al. Electric drift of the bridge offset for pressure sensors and its utilization. Sensors and Actuators, 1997, 23(58) : 249~256
    [19] 陈春刚,王毅,杨振坤. 长输油管道泄漏技术综述.石油与天然气化工, 2002, 31(1): 52~54
    [20] 张布悦,王桂增,刘吉东等. 输油管线泄漏检测和定位技术综述. 上海海运学院学报, 2001, 22(3): 13~16
    [21] 胡晓东,刘文晖,胡小唐. 分布式光纤传感技术的特点与研究现状. 航空精密制造技术, 1999, 35(1): 28~31
    [22] 耿军平,许家栋,郭陈江等. 全分布式光纤温度传感器研究的进展及趋势. 传感器技术, 2001, 20(2): 4~9
    [23] Kenneth O hill. Fiber Bragg grating technology fundamental and overview. Lightwave Tech, 1997, 15(8) :1263~1276
    [24] 胡志新,张陵,乔学光等,分布式光纤布拉格光栅在油气管道检测中的应用. 应用光学, 2000, 21(4) : 35~37
    [25] 王延年,赵玉龙,朱笠等. 分布式光纤传感器在管道泄漏监测中的应用. 郑州大学学报(理学版), 2003, 35(2): 1~3
    [26] 胡晓东,刘文晖,胡小唐. 分布式光纤传感技术的特点与研究现状. 航空精密制造技术, 1999, 35(1): 12~14
    [27] 王惠文. 光纤传感技术与应用. 北京: 国防工业出版社, 2001. 81~88
    [28] 黄尚廉. 分布式光纤温度传感器系统的研究. 仪器仪表学报, 1991, 12(4): 359~364
    [29] Rogers A. Distributed optical-fiber sensing. Proc. SPIE., 1991, 1511: 2~24
    [30] Tkach. Spontaneous Brillouin scattering for single mode optical fiber characterisation. Electron. Lett, 1986, 22(19): 1011~1013
    [31] Parker T.R. Temperature and strain dependence of the power level and frequency of spontaneous Brillouin scattering in optical fibers.Optics Letters, 1997, 22(11): 787~789
    [32] Horiguchi T, Tateda M. Optical fiber attenuation investigation using stimulated Brillouin scattering between a pulse and a continuous wave. Optics Letters, 1990, 2: 352~357
    [33] Garus D. Brillouin optical fiber frequency domain analysis for distributed temperature and strain measurements. Lightwave techonl, 1997, 15(4): 654~662
    [34] Franks. Birefringent stress locaton sensor. Proc. SPIE, 1986, 186: 103~106
    [35] D. A. Jackson, R. Priest, A. Dandridge. Elimination of drift in a single-mode optical fiber interferometer using piezoelectrically stretched coiled fiber. Appl. Opt., 1980, 19(17) : 2926~2929
    [36] V. Gusmeroli, M. Martinelli. Nonincremental interferometric fiberoptic measurement method for simultaneous detection of temperature and strain. Opt. Lett., 1994, 19(24) : 2164~2166
    [37] K. Liu, S. M. Ferguson, R. M. Measures. Fiber-optic interferometric sensor for the detection of acoustic emission within composite materials. Opt. Lett., 1990, 15(22): 1255~1257
    [38] H. Lamela, J. A. García-Souto, A. J. Varo. Temperature measurements in fiber optic interferometric multichannel automated instrumentation system. in Smart Structures and Materials, SPIE, 1999, 3670: 26~33
    [39] J. B. Kwon, D. H. Choi, M. Y. Choi. Real-time health monitoring of a scaled-down steel truss bridge by passive-quadrature 3×3 fiber optic Michelson sensors. in Smart Structures and Materials, SPIE, 1998, 3325: 253~261
    [40] A. Dandridge, A. B. Tveten. Phase compensation in interferometric fiber opticsensors. Opt. Lett., 1982, 7: 279~281
    [41] J. H. Cole, B. A. Danver, J. A. Bucaro. Synthetic-heterodyne interferometric demodulation. IEEE Journal of Quantum Electronics, 1982, 18(3): 694~697
    [42] Anthony Dandridge, Alan B. Tveten, Thomas G. Giallorenzi. Homodyne Demodulation Scheme for Fiber Optic Sensors Using Phase Generated Carrier. IEEE Journal of Quantum Electronics, 1982, 18(10): 1647~1652
    [43] Charles B. Cameron, Robert M. Keolian, Steven L. Garrett. A symmetric analogue demodulator for optical fiber interferometric sensors. in: Proceedings of the 34th Midwest Symposium, 1991. 666 ~671
    [44] H. W. Wang, X. J. Jiang. The Technology and Application of Optical Fiber Sensing. 2001, 15(6):151~160
    [45] P. Nash. Review of interferometric optical fibre hydrophone technology. IEEE Proc. Radar, Sonar and Navigation, 1996, 143(3): 204~209
    [46] HO, H.P. Phase-locked fibre nterferometer with intensity noise compensation. Electron. Lett., 1997, 33: 1650~1651
    [47] LO, Y.L., and STRKLS, J.S. Strain-rate sensor based on in-fiber Doppler velocimetry. Opt. Eng., 1998, 37: 1648~1654
    [48] T. Mizuochi, K. Ouchi, T. Kobayashi. Experimental demonstration of net coding gain of 10.1 dB using 12.4 Gb/s block turbo code with 3-bit soft decision. The Optical Fiber Communications Conf., Atlanta, GA: OFC 2003, 2003. 615~620
    [49] G. Kanter, P. Capofreddi, S. Behtash. Electronic equalization for extending the reach of electro-absorption modulator based transponders. presented at the Optical Fiber Communications Conf., Atlanta, GA: OFC 2003, 2003. 718~722
    [50] Jason G Z. Rainbow three-dimensional camera: new concept of high-speed three-dimensional vision systems. Optical Enaineerina, 1996, 35(2): 376~383
    [51] Yu Fusheng, Shen Xiaoqin. Finite element analysis of laser-diode heat emission and design of PIfuzzy cooling system. in: Proceeding of SPIE. Bellingham: WA SPIE, 2005. 189~195
    [52] 张 娜,于永力,田小建. 半导体激光器恒温控制理论与应用. 吉林大学学报(理学版), 2002, 7: 284~287
    [53] Zhang Guangwu. Temperature Control system of high power semiconductor laser for communication. Applied Optical, 2000, 21(5): 5~8
    [54] 陆耀华. 仪器用的高稳定度半导体激光电源. 电子技术,1994, 6: 5~7
    [55] 陈凯良. 恒流源及其应用电路. 杭州: 浙江科学技术出版社, 1992. 102~124
    [56] Daniel C. Senft and Diego F. Pierrottet. Comparison of radiometric and chemical detection sensitivities for heterodyne and direct detection DIAL. Proceedings of SPIE, 2003, 5085: 83~90
    [57] D.L. Gardner and S.L. garrett. Fiber Optic seismic sensor. Photo-Optical Inst. Eng.(SPIE), 1987, 838: 271~278
    [58] 奥诚喜,金克新,李潭. Mach-Zehnder光纤温度传感器的研究. 陕西科技大学学报,2001, 22(6): 104~107
    [59] 唐继. Mach-Zehnder光纤干涉仪相位检测方案研究. 传感技术学报,2000, 6(2): 96~100
    [60] 屈社省. 光纤干涉仪信号检测技术. 应用光学, 2002, 21(4): 29~34
    [61] 赵玉成,王琥,简水生. Mach-Zehnder光纤干涉仪零差检测方案. 光通信技术,2001, 18(3): 187~191
    [62] 王廷云. 利用全光纤干涉仪检测小相位移的研究. 仪表技术与传感器,1996, 12: 28~33
    [63] 李斌祥, 戴文瑞, 李杰. 全光纤零差式Mach-Zehnder干涉仪的数学模型. 传感器技术, 1994, 5 : 18~21
    [64] 江毅, 娄英明, 王惠文. 基于对称3×3 耦合器的光纤干涉信号的软件解调技术. 光子学报, 1998, 27(2): 152~155
    [65] 邹翔,孙肖子. 基于图形化编程语言Labview虚拟仪器的方法. 现代电子技术, 2003, 1: 36~38
    [66] 何 毅, 刘德明, 孙琪真. 基于的光纤传感器相位解调技术. 信阳师范学院学报, 2005, 19(1): 94~97
    [67] Liu Kexing, Measures R M. Singnal processing techniques for interferometric fiberoptic strain sensors. J of Intell Meter Syst and Struct ,1992 ,3 : 432~461
    [68] Brown D A ,Cameron B ,Keolian R M ,Gardner D L ,Garrett S L. A symmetric 3 ×3 coupler based demodulator for fiber optic interferometric sensors. SPIE , 1991, 1584 : 328~335
    [69] 张雄伟. DSP 芯片的原理与开发应用. 北京: 电子工业出版社, 1997. 1~2
    [70] 常胜利,陈 哲,胡永明 等. 用于光学相位检测的数字信号处理系统. 半导体光电, 1999, 20(3): 201~204
    [71] 左炜,王殊. DSP 的 HPI 与 USB 通信的实现方法. 单片机与嵌入式系统应用, 2005, 5: 75~78
    [72] Donald E. Thomas, Philip R. Moorby. 硬件描述语言 Verilog. 刘明业, 蒋敬旗译. 北京: 清华大学出版社, 2001. 115~128
    [73] 彭启琮,管庆. DSP 集成开发环境-CCS 及 DSP/BIOS 的原理与应用. 北京: 电子工业出版社, 2004. 98~126
    [74] 李方慧,王飞,何佩琨. TMS320C6000 系列 DSPs 原理与应用. 北京: 电子工业出版社, 2003. 64~85
    [75] 蒋建国,李福翠. TMS320C62X DSP 的混合编程研究. 电子技术应用,2003, 11: 78~80
    [76] 程佩青. 数字信号处理教程. 北京: 清华大学出版社, 1995. 86~102
    [77] Laopoulos T.L. Karybakas C. A phase locked motor speed control system with a sample and hold phase detector. IEEE. Transactions on Industrial Electronics, 1988, 35: 245~252
    [78] 王诚,薛小刚,钟信潮. Xilinx ISE5.X 使用详解. 北京: 人民邮电出版社, 2003. 65~98
    [79] Chris Cant. Writing Windows WDM Device Drivers. 北京: 机械工业出版社, 2000. 35~69
    [80] Jou H.L. Wu J.C. Fast response phase detector for phase locked loop. Internatinal Journal of Electronics, 1995, 78: 557~562

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700