激光光束波前畸变的径向剪切干涉诊断及其控制新方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
波前畸变的检测和控制一直是ICF激光驱动器等其它高功率固体激光器关心的重要课题,它将直接对光束的质量和激光器的造价产生影响。本论文在激光光束波前畸变检测和控制上进行了新的探索,主要就空间相位调制环路径向剪切干涉仪以及它对波前畸变的检测和液晶空间光调制器及其对中频段波前畸变的控制进行了研究,其研究的内容和取得的成果如下:
     一、根据标量衍射理论,结合低频波前畸变的高斯随机位相分布模型,研究了不同均方根梯度低频畸变波前对激光光束焦斑聚焦性的影响,并采用描述中频段波前畸变的功率谱密度概念,模拟计算了它对激光焦斑旁瓣的贡献。
     二、为了实现激光光束在确定平面上的波前畸变的准确检测,采用中继成像技术建立了一套基于空间相位调制的环路径向剪切干涉波前传感硬件系统,实验证明,它可用于中低频段波前畸变的检测。
     三、为实现任意波前的环路径向剪切干涉条纹图的解释,提出了一种新的波前重建算法,并对其收敛性进行了分析,数值计算和实验结果都证明了该算法的正确性。此外,还对台阶波前的环路径向剪切干涉条纹图进行了解释,从中发现了环路径向剪切干涉仪在一定条件下检测陡变波前畸变上的困难和台阶波前在光路调整中的应用。
     四、从光学系统衍射效应的角度分析了本文建立的环路径向剪切干涉仪的空间分辨率,并利用波前功率谱密度的概念对该干涉仪的空间频率响应特性进行了标定,分析了限制该干涉仪测量精度的主要因素以及径向剪切比与测量精度的关系,并指出了该干涉仪的测量范围,结果显示该干涉仪基本上可用于准确测量中低频段的波前畸变。
     五、利用环路径向剪切干涉仪共光路、双光束干涉的特点,全场准确测量了液晶空间光调制器的位相调制特性,并且利用它的位相调制特性实现了台阶
    
    位相板畸变波前的补偿,由此证明了液晶空间光调制器可用于控制波前畸变。
     六、通过利用液晶空间光调制器的位相调制特性,成功地模拟产生了任意
    畸变波前,指出若该器件有更大的位相调制动态范围和均匀性,将有可能成为
    校验波前传感设备和波前畸变控制系统性能的有力工具。
     七、采用已建立的空间相位调制环路径向剪切干涉仪及其波前重建算法,
    和位相调制持性已知的两块液晶空间光调制器,创建了一套用于模拟产生任意
    畸变波前并加以检测和反馈控制的自适应光学硬件系统,并通过台阶波前对该
    系统实现了像素级校准。特别地,还在此基础上验证了LCSLM对中频段任意波
    前畸变的控制和校正,并且验证了环路径向剪切干涉结合双LCSLM的波前传感
    与控制系统的自适应波前控制能力。
     通过以上研究,说明我们建立的环路径向剪切干涉仪可以用于ICF激光驱
    动器的中低段波前畸变的检测,并且液晶空间光调制器可用于它的前级中存在
    的中频段波前畸变的校正。
The diagnosis and control of distorted wavefront is a key issue in the
    field of high power laser system, Which will directly decide the laser beam
    quality and the cost of a laser system. In this doctOral dissertation, a new
    research of the diagnosis and control of laser wavefront distortion has
    been imPlemented. A cyclic radial shearing interferometer was used to
    diagnose the wavefront distortion of a laser system and an LCSLM(liquid
    crysnd spatial ligh modulator) was used to control it. Some results have
    been summarized as follows:
    l. According tO the theory of scalar quanity diffeaction and the model
    of the random Gaussian phase screen of low frequency wavefront, the
    effect of the low frequency wavefront with different RMS gradient on the
    focal sPot of a laser beam was stUdied. And a numerical simulation which
    the portion of the PSD(power spectral density) contributes to the tail of the
    main focal spot was studied too. -
    2. In order to accomPlish the eXtraction measuremellt of distOrted
    wavefrOnt on specific plane of a laser beam, a CRSI(cyc1ic radial shearing
    interferometer) based on relay imaging technique was built. The
    eXPeriInental result on this CRSI shows it can used to test the spatial mid
    and low frequency wavefront distortion.
    3. A new algorithIn to be used to recontrict the distorted wavefront
    from itS CRSI ffinge pattem has been presented. It can be used to exactly
    exPlain the CRSI funge pattem of an arbitrary wavefront. And the
    convergence of this algorithm was analyzed too. The results of numerical
    complltaion and eaperiment show that our algorithIn is correct. Moreovef,
    the CRS interferogram of a step wavefront was exPlained. It shows that a
    disadvantag ekistS when a CRSI is used to measure a steP strUcture in a
    wavefrOnt, but it is useful tO adjust a CRSI system with LCSLM.
    4.According to the didriction effect of an aPertUre, the spatial
    resolution of our CRSI was analyzed and the transform function of our
    CRSI was calibrated by using the PSD method of a step wavefront. And
    some factOrs Which are associated with the accuracy of our CRSI were
    analyzed too. The relationship betWeen radial sheared ratio and the
    accuray of ffos CRSI was investigated. Furthermore, the range of
    measurement of it was pointed out. All the analysis shows that our CRSI
    1Il
    
    
    can be used to measure the spatial mid and low frequency wavefront distortion.
    5.Based on our CRSI and algorithm, the phase modulation characteristic of an LCSLM was measured. And the correction of a step wavefront produced by a step phase plate is accomplished successfully.
    6.According to the phase modulation characteristic of an LCSLM, arbitrary complicated wavefronts were modeled. The result shows that LCSLM can be use to test the wavefront sensors and controller if LCSLM has wider dynamic range and perfect optical quality.
    7.Based on our CRSI and algorithm and double LCSLM, an adaptive optical hardware system which c&n be used to model arbitrary complicated wavefront and the compensation of the wavefront can be accomplished was built. And according to the characteristic of a CRS interferogram of a step wavefront produced by an LCTV, the pixel-level calibration of this system is implemented. The control of the spatial mid frequency wavefront distortion was achieved based on our CRI wavefront sensing and LCTV wavefront correcting system.
    The results of our research show that CRS interferometer can be used to diagnosing the mid and low frequency wavefront distortion of a laser beam and LCSLM can be used to availably controlled it.
引文
[1]王淦昌,“21世纪主要能源展望”,核科学与工程,18(2):97~108,1998
    [2]范滇元,贺贤士,“惯性约束能源与激光驱动器”,大自然探索,18(Sum 67):31~35,1999
    [3]胡希伟,“受控核聚变”,超星电子出版社,p110,1981
    [4]K.Mima, H.Azechi, and H.Fujita, et al,"Progress of direct drive laser fusion research at ILE,Osaka", SPIE., 3492:34~41, 1999
    [5]叶青编译,“美国惯性约束聚变计划的现状与成就”,激光与光电子学进展,7:1~7,2000
    [6]H.S.Peng, X.M.Zhang, and X.F. Wei, et al, "Status of the SG-Ⅲ solid state laser project", SPIE., 3492:25~33, 1999
    [7]D.M.Aikens, and H.D.Bissinger, "Overview of small optics for the National Ignition Facility",SPIE., 3782:476~487, 1999
    [8]J.E.Rothenberg, "Two dimensional beam smoothing by spectral dispersion for direct drive inertial confinement fusion", SPIE., 2633:633~644, 1997
    [9]R.Zacharias, E.Bliss, and M.Feldman, et al "The National Ignition Facility(NIF) wavefront control system", SPIE., 3492:678-692, 1999
    [10]W.Williams, "NIF design optimization", UCRL-LR-105821-96-4, 6(4): 181
    [11]孟绍贤,“高功率脉冲激光系统的原理和进展”,物理学进展,18(4):333~357,1998
    [12]景峰,彭志涛,朱启华等,“高功率固体激光驱动器的优化设计”,强激光与粒子束,12(st):117~121,2000
    [13]陈怀新,“利用液晶空间光调制器进行激光光束的空间整形与波前检测”,四川大学博士学位论文,2001
    [14]M.Rotter, K.Jancaitis, and C.Marshall, et al, "Pump-induced wavefront distortion in prototypical NIF/LMJ amplifier modeling and comparison with experiment", SPIE., 3492:638~659, 1999
    [15]P. Arnoux, G.L.Touz(?), and J.P. Caltagirone, "Thermal recovery of LMJ amplifiers", SPIE.,3492:660~664, 1999
    [16]S.Sutton, A.Erlandson, and R.London, et al, "Thermal recovery of the NIF amplifier ", SPIE., 3492:665~675, 1999
    [17]M.D.Rotter, R.W. McCracken, and A.C.Erlandson, "Thermal recovery measurement on multisegment amplifier", SPIE, 2633:70~81, 1997
    [18]W.H.Williams, J.M.Auerbach, and M.A.Henesian, et al, "The NIF's basic focal spot for temporally flat pulse", SPIE., 3492:22~38, 1999
    [19]D.M.Aikens, C.R.Wolfe, and J.K.Lawson, "The use of power spectral density(PSD) function in specifying optics for the National Ignition Facility", SPIE, 2576:281~292,1995
    
    
    [20]W.H.Williams, J.M.Auerbach, and M.A.Henesion et al, "Modeling characterization of the National Ignition Facility focal spot", SPIE., 3264:93~104, 1998
    [21]J.K.Lawson, C.R.Wolf, and K.R. Manes, et al, "Specification of optical components using the power spectral density function", SPIE., 2536:38~50, 1995
    [22]V.I.Bespalov, and V.I.Talanov, "Filamentary structure of light beams in non-linear liquid",Soviet Physics JEPT Lett., 3:307, 1966
    [23]J.K.Lawson, J.M.Auerbach, and R.E.English, et al, "NIF optical specification the importance of the RMS gradient", SPIE., 3492:336-343, 1998
    [24]N.Nakano, K.Tsubakimoto,and N.Miyanaga, et al, "Spectrally dispersed amplified spontaneous emission for improving irradiation uniformity into high power Nd:glass laser system", J.Appl.Phys., 73(5):2122~2131, 1993
    [25]S.N.Dixit, I.M.Thomas, and B.W. Woods, et al, "Random phase plates for beam smoothing on the Nova laser", Appl.Opt., 32(14):2543~2554, 1993
    [26]S.Skupsky, R.W. Short, and T. Kessier, et al, "Improved laser beam uniformity using the angular dispersion of frequency-modulated light", J.Appl. Phys., 66(8):3456~3462, 1989
    [27]J.E.Rothenberg, J.M.Auerbach, and B.D.Moran, et al, "Implementation of smoothing by spectral dispersion on Beamlet and NIF", SPIE., 3492:970~979, 1999
    [28]J.K.Lawson, S.N.Dixit, and D.Eimerl, et al, "Phase screens for the control of the focal irradianee of the Nova laser", SPIE., 1870:88~94, 1993
    [29]K.Tsubakimoto, N.Miyanaga, and M.Okuo, et al, "Design of kinoform phase plate for irradiating spherical target", SPIE., 3492:839~842, 1999
    [30]D.Veron, H.Ayral, and C.Gouedard, et al, "Optical spatial smoothing of Nd:glass laser beam",Opt.Comm.,65(1):42~46, 1988
    [31]X.Deng, X.Liang, and Z, Chen, et al, "Uniform illumination of large targets using a lens array", Appl.Opt., 25:377~381, 1986
    [32]钱列加,朱宝强,张筑虹等,“位相畸变激光束的谐波转换”,光学学报,15(4):417~420,1995
    [33]陈家斌,郑志坚,唐道远等,“提高腔靶激光能量注入的新途径”,强激光与粒子束,10(2):239~242,1998
    [34]B.M.V. Wonterghem, J.R.Murray, and J.H.Campbell, et al, "Performance of a prototype for a large aperture multipass Nd:glass laser for inertial confinement fusion", Appl. Opt.,36(21):4392~4953, 1997
    [35]R.Zacharias, E.Bliss. and S.Winters, et al, "Wavefrom control of high-power beams in the
    
    national ignition facility", SPIE., 3889:332~343, 2000
    [36]P.J.Wegner, M.A.Henesian, and J.T. Salmon, et al, "Wavefront and divergence of the Beamlet prototype laser", SPIE., 3492:1019~1030, 1999
    [37]周仁忠主编,“自适应光学”,国防工业出版社,北京,1996
    [38]W.H.Jiang, X.J.Rao, and N.Ling, et al, "Laser wave-front measurement of ICF amplifiers using Hartmann-Shack wave-front sensor", SPIE.,4124:1461~567
    [39]李新阳,姜文汉,王春红等,“湍流大气中哈特曼传感器的模式复原误差”,强激光与粒子束,12(2):149~154,2000
    [40]J.E.Murray, D.Milam, and C.D.Boley, et al, "Spatial filter pinhole development for the national ignition facility", Appl. Opt., 39(9): 1405~1420, 2000
    [41]C.A.Thompson, M.W. kartz, and S.S.Olivier, et al, "Performance of a high-resolution wavefront control system using a liquid crystal spatial light modulator", SPIE., 4124:170~177,2000
    [42]J.C.Chanteloup, A.Migus, and B.L.Loiseaux. et al, "Wave-front control solid state lasers using an optically addressed light valve in an adaptive optics loop and applications to ultra-intense pulses", SPIE., 3492:702~707, 1999
    [43]粟敬钦,魏晓峰,马弛等,“激光束低频畸变波前模型的计算模拟”,强激光与粒子束,12(s1):163~166,2000
    [44]W.Williams, A.Auerbach, and J.Hunt, et al, "NIF optics phase gradient specification", UCRL-ID- 127297, Lawrence Livermore National laboratory, Livermore, 1997
    [45]朱自强,王仕蹯,苏显渝编著,“现代光学教程”,四川大学出版社,p44,1990
    [46]袁静,魏晓峰,粟敬钦等,“产生旁瓣的激光波前功率谱密度渝焦斑性能分析”,强激光与粒子束,12(s1):153~157,2000
    [47]S.Olivier, V. laude, and J.P. Huignard, "Liquid-crystal Hartmann wavefront scanner", Appl.Opt., 39(22):3838~3846, 2000
    [48]W.H.Jang, H.G.Li. S.F.Huang, et al, "Hartmann-Shack wavefront sensing and wavefront control algorithm", SPIE.,1271:82~93
    [49]J.Pfimot, "Three-wave lateral shearing interferometer", Appl.Opt., 32(31):6242~6249, 1993
    [50]L.T. Jiang, L.Chen, and X.J.Rao, et al, "High resolution measurement for optical effect of atmosphere turbulence", SPIE. 2828:450~456, 1996
    [51]饶长辉,姜文汉,凌宁,“应用哈特曼-夏克波前传感器测量大气湍流参数”,光学学报,20(9):1201-1207,2000 1998
    [52]姜文汉,鲜浩,杨泽平等,“哈特曼波前传感器的应用”,量子电子学报,15(2):228~235,
    
    1998
    [53]F.Roddier, "Curvature sensing and compensation: a new concept in adaptive optics", Appl.Opt., 27:1223~1225, 1988
    [54]姜文汉,鲜浩,沈峰,“夏克-哈特曼波前传感器的探测误差”,量子电子学报,15(2):218~227,1998
    [55]杨国光主编,“近代光学测试技术”,浙江大学出版社,p60,2001
    [56]金国藩,李景镇主编,“激光测量学”,科学出版社,p337,1998
    [57]J.H.Buming, D.R.Herriott, and J.E.Gallagher, et al, "Digital wavefront measuring interferometer for testing optical surfaces and lenses", Appl.Opt.,13(11):2693~2703, 1974
    [58]侯慧英,“用于大尺寸光学玻璃光学均匀性检测的干涉仪”,光学精密工程,6(3):89~94,1998
    [59]J.C.Wyant, "White light extended source shearing interferometer", Appl.Opt., 13(1): 200~202 1974
    [60]徐德衍编著,“剪切干涉仪及其应用”,机械工业出版社,P8,1987
    [61]许晓军,陆启生,刘泽金,“剪切干涉仪与哈特曼波前传感器的波前复原比较”,强激光与粒子束,12(3):269~272,2000
    [62]R.N.Smartt,W.H.Steel,"Theory and application of point-diffraction interferometer", J.Appl. Phys., 14suppl 14-1:351~356, 1972
    [63]D.Malacara,"Optical shop testing", John Wiley & Sons, Inc., New York, p 105, 1978.
    [64]W.J.Bates, "A wavefont shearing interferometer", Proc. Phys.Soc., 59:940~952, 1947
    [65]M.P.Rimmer,"Method for evaluating lateral shearing interferograms", Appl.Opt.,13(3):623~629, 1974
    [66]I.Weing(?)rtner, and H.Stenger,"A simple shear-tilt interferometer for the measurement of wavefi'ont aberration", Optik, 70:124~126, 1985
    [67]K.Matsuda, S.Watanabe, and T. Eiju, "Real-time measurement of large liquid surface deformation using a holographic shearing interferometer", Appli. Opt., 24(24): 4443~4447,1985
    [68]H.Philipp, H.Fuchs, and E.Winklhofer, "Flame diagnostics by light sheet imaging and shearing intefferometry", Opt. Eng., 32(5): 1025~1032,1993
    [69]熊树生,陈勇,詹樟松等,“剪切干涉法用于测量燃烧温度的研究”,农业机械学报,31(3):81~83,2000
    [70]明海,周晨冈,刘宇等,“双频光栅纹影剪切干涉法对温度场的诊断”,光学学报,14(2):214~218,1994
    
    
    [71] Y.W.Lee, H.M.Cho, and I.W.Lee, "Measurement of a long radius of curvature using a half-aperture bi-directional shearing interferometer", Opt.Eng.,35(2) :480-483, 1996
    [72] 白剑,程上彝,刘承等,“显微物镜数字剪切波面像差评价仪”, 仪器仪表学报19(3) : 285-288,1998
    [73] T.Yatagai, T.Kanou, "Aspherical surface testing with shearing interferometer using fringe scanning detection detection method", Op.Eng., 23(4) :357-360, 1984
    [74] M.V.R.K.Murty, "The use of a single plane parallel plate s a lateral shearing interferometer with a visible gas laser source", Appl.Opt, 3(3) :53 1-534, 1964
    [75] G.W.R.Leibbrandt, G.Harbers, and P.J.Kunst, "Wave-front analysis with high accuracy by use of a double grating lateral shearing intreferometer", Appl.Opt., 35 (31) :6151-6161, 1996
    [76] G.Harbers, P.J.Kunst, and G.W.R.Leibbrandt, "Analysis of lateral shearing interferogram", Appl.Opt., 35 (31) :6162-6172, 1996
    [77] D.S.Brown, "Radial shear interferometry", J.Sci.Instrum., 39:71-72, 1962
    [78] P.HariHaran, and D.Sen, "Radial shearing interferometer", J.Sci.Instrum., 38(11) :71-72, 1961
    [79] P.HariHaran, and D.Sen, "Interferometric measurements of the aberrations of microscope objectives", Opt.Acta., 9:159-175, 1962
    [80] M.V.R.K.Murty, "A compact radial shearing interferometer based on the law of refraction", Appl. Opt., 1964, 3(7) :853-857.
    [81] W,H,Steel, "A radial-shear interferometer for use with a laser source", Opt.Acta., 17(10) :721-724, 1970
    [82] M.V.R.K.Murty, and R.P.Shukla, "Radial shearing interferometers using a laser source", Appl.Opt., 12(11) :2765-2767, 1973
    [83] S.C.Som, "Theory of a compact radial shearing laser interferometer", 17(2) : 107-113, 1970
    [84] O.Bryngdahl, "shearing interferometry with constant radial displacement", J.O.S.A., 61(2) : 169-172, 1971
    [85] Q.S.Ru, N.Ohyama, and T.Honda, "constant radial shearing interferometry with two spiral phase grating", OptComm., 70(6) :445-449, 1989
    [86] Q.S.Ru, N.Ohyama, and T.Honda, et al, "Constant radial shearing interferometry with circular grating", Appl.Opt., 28(15) :3350-3353, 1989
    [87] J.C.Fouere, and C.Roychoudhuri, "A holographic, radial and lateral shear interferometer", Opt.Comm., 12(1) :29-31, 1974
    [88] J.C.Fouere, and D.Malacara, "Holographic radial shear interferometer", Appl.Opt.,
    
    13(9) :2035-2039, 1974
    [89] R.P.Shukla, M.Moghbel, and P.Venkateswarlu, "Compact in-line laser radial shear interferometer", Appl.Opt, 31(21) :4125-4131,1992
    [90] D.R.Kohler, and V.L.Gamiz, "Interferogram reduction for radial-shear and local reference-holographic interferometer", Appl.Opt., 25(10) : 1650-1652,1986
    [91] D.Malacara, "Mathematical interpretation of radial shearing interferometer", Appl.Opt, 13(8) : 1781-1784, 1974
    [92] P.Hariharan, B.F.Oreb, and W.Z.Zhou, "measurement of aspheric surfaces using a microcomputer-controlled digital radial-shear interferometer", Opt.Acta., 31(9) : 989-999, 1984
    [93] P.Hariharan, B.F.Oreb, and W.Z.Zhou, "Digital radial shearing interferometry: testing mirrors with a central hole", OptActa., 33(3) :251-254, 1986
    [94] P.Hariharan, "Lateral and radial shearing interferometer a comparison", Appl.Opt, 27(17) :3594-3596, 1988
    [95] D.S.Bryngdahl, in progress in Optics. VOL. IV, E.Wolf,Ed., North-Holland, Amsterdam, Chap.Ⅱ.p49, 1965
    [96] C.R.Wolf, J.K.Lawson, and D.MAikens, "A database of wavefront measurements for laser system modeling, optical compnent development and fabrication processes qualification", SPIE., 2545:229-237, 1995
    [97] 阎吉祥,液晶空间光调制器在自适应光学中的应用,光学技术,(2) :3-4,1999
    [98] J.Amako, H.Miura, and T.Sonehara, "Wavefront control using liquid crystal devices", Appl. Opt., 32(23) :4323-4329, 1993
    [99] G.D.Love, S.R.Restaino, and G.C.Loos, et al, "Wavefront control using a 64x 64 pixel liquid crystal array", SPIE.. 2201:1068-1072, 1994
    [100] S.R. Restaino, E.L. Gates, and R.A. Carreras, et al., "On the use of electro-optical devices for O.P.L. compensation", SPIE., 2200:494-500, 1994
    [101] Rensheng Dou, and M.K.Giles. "Closed-loop adaptive-optics system with a liquid crystal television as aphase retarder", Opt. Lett., 20(14) : 1583-1585, 1995
    [102] Rensheng Dou, and M.K.Giles., "Phase measurement and compensation of a wave front using a twisted nematic liquid-crystal television", Appl.Opt., 35(19) :3647~3652, 1996
    [103] T.L.Kelly, and J.Munch. "Phase-aberration correction with dual liquid crystal spatial light modulators", Appl. Opt., 37(22) :5184-5189, 1998
    [104] M.H.Anderson, L.M.Caldwell, and C.R.Scheffler, et al.. "A fast liquid-crystal adaptive
    
    mirror for wavefront correction" , SPIE., 3760:39-46, 1999
    [105] S.R.Restaino, J.T.baker, and D.D.Dayton, et ai, "Experimental results from an adaptive optics system based on a dual frequency nematic device",SPIE., 3955:54-57, 2000
    [106] T. Shirai, T.H. Barnes, and T.G. Haskell. "Adaptive wave-front correction by means of all-optical feedback interferometry", Opt. Lett., 25(11) :773-775, 2000
    [107] S.Serati, "High-resolution wavefront control using LC phase shifters and passive-matrix addressing", SPIE., 4124:47-56, 2000
    [108] J.C.Chanteloup, B.Loiseaux, and J.P.Huignard, "Wavefront detection and correction for ultra-intense laser systems", SPIE., 3047:227-238, 1997
    [109] B.Wattellier, J.P.Zou, and C.Sauteret, et al, "Dynamic phase masks for focal spot optimization and shaping of cw and high-power laser", SPIE., 4124:42-46, 2000
    [110] S.S.Olivier, M.W.Kartz, and B.J.Bauman, et al, "High-resolution wavefront control using liquid crystal spatial light modulators", SPIE., 3760:47-51, 2000
    [111] C.A.Thompson, M.W.Kartz, and S.S.Olivier, et al, "Performance of a high resolution wavefront control system using a liquid crystal spatial light modulator", SPIE., 4124:170-177,2000
    [112] 金观昌,“相位测量技术的新进展及其应用”,物理,22(6) :374:378,1993
    [113] D. W.Robinson, "Automatic fringe analysis with a computer image-progressing system", Appl.Opt., 22(14) :2 169-2 176, 1983
    [114] G.T.Reid, "Automatic fringe pattern analysis: a review", Opt.Laser.Eng., 7(7) :37-68, 1986
    [115] T.Yatagai, "Automatic fringe analysis technique in Japan", Opt.Laser.Eng., 15(11) : 79-91, 1991
    [116] 陈进榜,宋德真,朱日宏等,“高精度、大口径平面波像差标准--移相式数字平面干涉 仪”,光学学报,15(4) :480-485,1 995
    [117] M.Takeda, I.Hideki, and K.Seiji, "Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry", J.Opt.Soc.Am., 72(1) : 156-160, 1982
    [118] W.W.Macy, "Two-dimensional fringe-pattern analysis", Appl.Opt., 22(23) :3898~ 3901, 1983
    [119] C.Roddier, F.Roddier, "Interferogram analysis using Fourier transform techniques", Appl.Opt., 26(9) : 1668-1673,1987
    [120] M.Kujawinska, and J.Wqjciak, "High accuracy Fourier transform fringe pattern analysis", Opt.Las.Eng., 14:325-339, 1991
    [121] J.S.Sirkis, Y.M.Chen, and H.Singh, et al, "Computerized optical fringe pattern analysis in
    
    photomechanics: a review", Opt.Eng., 31(2):304~314, 1992
    [122]J.Gu, and F. Chen, "Fast Fourier transform, iteration, and least-squares-fit demodulation image processing for analysis of single-carrier fringe pattern", J.Opt. Soc.Am., 12(10):2159~2164, 1995
    [123]J.B.Liu, and P.D.Ronney, "Modified Fourier transform method for interferogram fringe pattern analysis", Appl.Opt., 36(25):6231~6241,1997
    [124]T.Yatagai, S.Inaba, and H.Nakano, et al.,"Automatic flatness tester for very large scale integrated circuit wafers", Opt. Eng., 23(4):401~405, 1984
    [125]史红民,倪受庸,付雷等,“剪切干涉技术新进展”,激光杂志,20(4):6~7,1999
    [126]A.R.Barnes, L.C.Smith, "A combined phase, near and far field diagnostic for large aperture laser system", SPIE., 3492:564~672, 1999
    [127]D.H.Li, H.X.Chen, and Z.P. Chen, "Simple algorithms of wavefront reconstruction for cyclic radial shearing interferometer", Opt. Eng.,(录用)
    [128]李大海,陈波,景峰,陈祯陪等,“基于循环式径向剪切干涉法的波前重建算法研究”,强激光与粒子柬,14(2):223~227,2002
    [129]Briers, J.D."Interferometeric testing of optical systems and components:a review", Opt. and Laser Technol.,4(2):28~41, 1972
    [130]苏显渝,谭松新,向立群等,“基于傅里叶变换轮廓术方法的复杂物体三维面形测量”,光学学报,18(9):1228~1233,1998
    [131]A.Fern(?)ndez,G.H.kaufmann, and A.F. Doval, "Comparison of carder removal methods in the analysis of TV holography fringe by the Fourier transform method", Opt. Eng.,37(11):2899~2904, 1998
    [132]由志福,钟约先,袁朝龙等,“投影栅相位法三维形体检测精确解相方法的研究”,光学学报,19(1):41~44.1999
    [133]陈文静,苏显渝.谭松新,“傅里叶变换轮廓术中频谱泄漏的讨论”,光学学报,20(10):1429~1434,2000
    [134]R.W.Gerchberg, "Super-resolution through error energy reduction", Opt. Acta., 21(9):709~720, 1974
    [135]J.T. Hunt, J.A.Glaze. and W.W. Simmoms, et al, "Suppression of self-focusing through lowpass spatial filtering and relay imaging", AppI.Opt., 17(13):2053~2057, 1978
    [136]高志山.陈进榜,何勇等,“波面功率谱密度中频波段的干涉测试研究”,中国激光.27(4):327~331.2000
    [137]P.Hariharan, "Interferometric measurements of small-scale irregularities: sources errors",
    
    Opt. Eng., 36(8):2330~2334, 1997
    [138]许乔,顾元元,柴林等,“大口径干涉仪系统传递函数校准”,强激光与粒子束,13(3):321~324,2001
    [139]P.Z.Takacs, M.X.O.Li, and K.Furenlid, "A step-height standard for surface profile calibration", SPIE.,1242:65~74, 1993
    [140]M.Takeda,"Spatial carrier heterodyne techniques for precision interferometry and profilometry: an overview", SPIE., 1121:73~89, 1989
    [141]D.R.Burton, and M.J.Lalor, "Managing some of the problems of Fourier fringe analysis",SPIE.,1163:149~160
    [142]杨虎,陈文静,陆成强等,“抽样对傅立叶变换轮廓术的影响”,光学学报,19(7):929~934 1999
    [143]J.Schmit,and K.Creath,"Window function influence on phase error in phase-shifting algorithms", Appl.Opt.,35(28):5642~6545, 1996
    [144]R.J.Green, J.G.Walker, and D.W. Robinson, "Investigation of the Fourier-transform method of fringe pattern analysis", Opt. Laser Eng., 8229-44(1988).
    [145]李大海,陈波,陈怀新,陈祯陪等,“径向剪切干涉波前重建算法和不同倍数下重建精度的研究”,中国激光,29(8),2002
    [146]向世明,倪国强,“光电子成像器件原理”,国防工业出版社,P123,1999
    [147]C.Gorecki, and B.Trolard, "Optoelectronic implementation of adaptive image preprocessing using hybrid modulations of Epson liquid crystal television: applications to Smoothing and edge enhancement", Opt. Eng., 37(3):924~930,1998
    [148]W.E.Ross, D.Psalits and R.H.Anderson, "Two-dimensional magneto-optic spatial light modulator for signal processing", Opt. Eng., 222485~490, 1983
    [149]T.C.Poon, R.Judary, and T. Hara, "Spatial light modulator-research, development, and application: introduction to the feature issue ", Appl.Opt., 37(32):7471
    [150]J.A.Davis, T, Day, and R.A.Lilly, et al., "Multichannel optical correlator/convolver untilizing the magneto-optics spatial light modulator", Appl.Opt., 26:2479~2483, 1987
    [151]J.Knopp, M.V. Morelli, and S.E.Monroe, et al., "Pixel-level complex control of an Epson LCTV SLM", SPIE., 2752:144~152, 1996
    [152]竺子民,冯辉,阮玉,“氦氖激光下彩色液晶电视的透射率研究”,中国激光,A24(5):441~446,1997
    [153]T.S.Taylor, D.A.Gregory, and P.S.Erbach, et al,"Turbulence simulation and optical process-ing through turbulent media", SPIE., 3073:404~415, 1997
    
    
    [154] M.K.Giles, A.Seward, and M.A.Vorontsov, et al., "Setting up a liquid crystal phase screen to simulate atmospheric turbulence", SPIE., 4124:84-97,2000
    [155] Kanghua Lu, and B.E.A.Saleh. "Theory and design of the liquid crystal TV as an optical spatial phase modulator", Opt Eng., 29(3) :240-246,1990
    [156] L.G.Neto, D.Rogerge, and Y.Sheng. "Full-range, continuous, complex modulation by the use of two coupled-mode liquid-crystal televisions", Appl. Opt., 35(23) :4567-4576,1996
    [157] C.Soutar, S.E.Monroe, and Jr.Gregory, et al.. "Complex characterization of the Epson liquid crystal television", Optical pattern recognition IV, SPIE, 1959:269-277,1993
    [158] J.N.Duffey, B.K.Jones, and J.A.Loudin, etal.. Optical characterization of the Infocus TVT-6000?LCTV using custom drive electronics. SPIE., 2490:432-440,1995
    [159] Huaixin Chen, Zhan Sui, and Zhenpei Chen, et al.. "Optical modulation characteristics of liquid crystal television(LCTV) and its application in optics information processing", Chinese J. Lasers(中国激光), A27(8) :741-745(in Chinese), 2000
    [160] J.C.Kirsch, D.A.Gregory, and M.W.Thie, et al.. "Modulation characteristics of the Epson liquid crystal television", Opt. Eng., 31(5) :963-970,1992
    [161] Rensheng Dou, and M.K.Giles. "Closed-loop adaptive-optics system with a liquid crystal television as a phase retarder", Opt. Lett., 20(14) : 1583-1585,1995
    [162] T.L.Kelly, and J.Munch. "Phase-aberration correction with dual liquid-crystal spatial light modulators", Appl. Opt., 37(22) :5184-5189,1998
    [163] Rensheng Dou, and M.K.Giles. "Phase measurement and compensation of a wave front using a twisted nematic liquid-crystal television", Appl. Opt., 35(19) :3647~3652,1996
    [164] J.C.Chanteloup, H.Baldis, and A.Migus, "Nearly diffraction-limited laser focal spot obtained by use of an optically addressed light valve in an adaptive-optics loop", Opt-Lett., 23(6) :475-477, 1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700