新型光调制和光复用技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了满足不断增长的信息传输量需求,需要采用40Gbit/s甚至100Gbit/s的高速数字光传输系统。随着单信道传输速率的提升,系统的色散、非线性效应等问题对信号的影响也更加严重。采用新型的光调制和光复用技术可以有效地抑制这些传输损伤的影响,成为高速光传输系统的关键技术之一。由于商用化的光放大器主要是在C波段,有限的传输通道使得人们对于频谱效率的要求越来越高,于是,多进制调制和全光OFDM技术开始进入人们的视野。本文针对40Gb/s高速光传输系统中的新型IRZ调制技术、IRZ-DQPSK的幅度相位调制技术以及100Gb/s高速光传输系统的全光OFDM技术进行研究。首先研究了四种产生IRZ信号的调制原理,提出了一种占空比可调且相位连续的IRZ调制新方法,仿真分析了各方法产生的IRZ信号的色散和非线性性能;然后研究了采用提出的IRZ调制方案产生IRZ-DQPSK信号的调制、解调原理,仿真分析了色散、非线性对IRZ-DQPSK幅度支路和相位支路的传输性能影响,结果表明调整占空比可以平衡幅度支路和相位支路性能。接着仿真分析了单信道40Gbit/s长距离传输(>1000km LEAF)时,自相位调制(SPM)对ASK-DQPSK与IRZ-DQPSK两种信号的影响,结果表明IRZ-DQPSK具有更好的抗SPM性能;最后研究了全光OFDM的调制、解调原理,并仿真实现了两路NRZ的20Gb/s背靠背系统以及四路DQPSK的100Gb/s全光OFDM系统。
40Gb/s and even 100Gb/s high-speed digital optical transmission systems are the ideal choices to satisfy the requirement of increasing information transmission quantity. However, with the increase of transmission rate in a single channel, the quality of the signal would be more affected by dispersion, non-linear and so on. Novel modulation and multiplexing techniques are key technologies which could mitigate the transmission impairments in optical transmission system. As the gain bandwidth of commercial optical amplifiers is primarily in C-band, the requirement of high spectrum efficiency is increasing in the limited transmission channel. As a result, multilevel modulation and all-optical OFDM techniques are coming into view. This paper studies on two novel modulation formats named as IRZ, IRZ-DQPSK and the principle of all-optical OFDM transmission technique. Firstly, four kinds of schemes to modulate IRZ signal are studied and a novel way to generate IRZ modulation format is introduced. The dispersion and non-linear tolerance of them are compared. Secondly, with the IRZ scheme we proposed, the modulation and demodulation principles of IRZ-DQPSK are presented. The performance of 40Gb/s IRZ–DQPSK transmission against fiber nonlinearities and residual dispersion are simulated. Results indicate that to balance the performance of amplitude tributary and phase tributary, the duty cycle of IRZ-DQPSK must be adjusted properly. Furthermore, IRZ-DQPSK and ASK-DQPSK in a 40Gb/s single channel long distance (over 1000km LEAF) transmission link is compared by simulation. Results show that IRZ-DQPSK offers much better performance against SPM. Finally, the principle of multiplexing/demultiplexing in all-optical OFDM technique is studied and a 20Gb/s all-optical OFDM back to back system using NRZ modulation and a 100Gb/s all-optical OFDM transmission system using DQPSK modulation are demonstrated successfully.
引文
[1] Kahn, J.M., Ho, K.P. Ultimate spectral efficiency limits in DWDM systems. Proceedings of OptoElectronics and Communications Conference. Yokohama, Japan. July, 2002.
    [2]顾畹仪. WDM超长距离光传输技术.第一版.北京邮电大学出版社, 2006. ISBN 7-5635-1170-9.
    [3] Jian, Zhao. Li, Huo. Chun-Kit, Chan. et al. Analytical Investigation of Optimization, Performance Bound, and Chromatic Dispersion Tolerance of 4-Amplitude-Shifted-Keying Format. Proceedings of Optical Fiber Communication Conference (OFC), 2006, JThB15.
    [4] R. A. Griffin and A. C. Carter. Optical differential quadrature phase-shift key (oDQPSK) for optical transmission. Optical Fiber Communication Conf. 2002, 367-368.
    [5] Ohm, M. Optical 8-DPSK and receiver with direct detection and multilevel electrical signals. IEEE/LEOS Workshop on Advanced Modulation Formats. 2004, 45-46
    [6] Jian, Z., C. Lian-Kuan and C. Chun-Kit. A Novel Re-modulation Scheme to Achieve Colorless High-Speed WDM-PON with Enhanced Tolerance to Chromatic Dispersion and Re-modulation Misalignment. OFC/NFOEC 2007.
    [7] Hongwei Chen, Minghua Chen, Shizhong Xie. et al. High spectral efficiency orthogonal modulation in all optical label switching network. CLEO/QELS 2006.
    [8] Winzer, P.J. and R.J. Essiambre, Advanced Optical Modulation Formats. IEEE invited paper . 2006, 94(5), 952-985.
    [9] Coelho, L.D., N. Hanik and E.D. Schmidt. Exact Numerical Evaluation of Optical Receivers Using Advanced Modulation Formats. Transparent Optical Networks, International Conference on. 2006.
    [10] Oriol Bertran-Pardo. Jérémie Renaudier. Gabriel Charlet. et al. PDM-QPSK: on the system benefits arising from temporally interleaving polarization tributaries at 100Gb/s. Optics Express, 2009. 17(22), 19902-19907.
    [11] Rakesh Sambaraju. Torger Tokleet. Jesper Bevensee Jensen. et al. 16-level differential phase shift keying (D16PSK) in direct detection optical communication systems. Optics Express, 2006. 14(22), 10239-10244.
    [12] Sethumadhavan, C., L. Xiang and R.C. Andrew. Improving the Filtering Tolerance of 42.7-Gb/s Partial-DPSK by Optimized Power Imbalance. in Optical Fiber Communication Conference. Optical Society of America. 2009.
    [13] Miyazaki, T. and F. Kubota. 2-bit per symbol modulation/demodulation by DPSK over inverse-RZ optical pulses. in Lasers and Electro-Optics (CLEO).2004.
    [14] Torger, T., et al. 32.1 Gbit/s InverseRZ-ASK-DQPSK Modulation with Low Implementation Penalty. in Lasers and Electro-Optics Society. LEOS, 19th Annual Meeting of the IEEE. 2006.
    [15] Weber, H.G., et al. Single channel 1.28 Tbit/s and 2.56 Tbit/s DQPSK transmission. Electronics Letters. 2006, 42(3), 67-68.
    [16] Gnauck, A.H. Charlet,G.. Tran, P. et al. 25.6-Tb/s WDM Transmission of Polarization-Multiplexed RZ-DQPSK Signals. Journal of Lightwave Technology. 2008, 26(1), 79-84.
    [17] Xiang Zhou. Jianjun Yu. Dayou Qian. et al. High-Spectral-Efficiency 114-Gb/s Transmission Using PolMux-RZ-8PSK Modulation Format and Single-Ended Digital Coherent Detection Technique. Journal of Lightwave Technology. 2009, 27(3), 146-152.
    [18] Cai, J.X.. Foursa, D. G.. Liu, L. et al. RZ-DPSK Field Trial Over 13100 km of Installed Non-Slope-Matched Submarine Fibers. Journal of Lightwave Technology, 2005, 23(1), 95.
    [19] Mollenhauer, L.F. et al. Demonstration of 109×10G dense WDM over more than 18,000 km using novel, periodic-group-delay-complemented dispersion compensation and dispersion managed solitons. ECOC Th4.3.4. 2003.
    [20] Gabriel, C. Renaudier, J. Mardoyan, H. et al. Transmission of 16.4Tbit/s Capacity over 2,550km Using PDM QPSK Modulation Format and Coherent Receiver. OFC/NFOEC 2008.
    [21]缪亦珍.光时分复用系统中关键技术的研究.硕士论文,北京邮电大学,2004
    [22] Kazushige Yonenaga. Akihide Sano. Etsushi Yamazaki. et al. 100 Gbit/s All-Optical OFDM Transmission Using 4x25 Gbit/s Optical Duobinary Signals with Phase-Controlled Optical Sub-Carriers. OFC/NFOEC 2008.
    [23] Jr Cimini L. Analysis and Simulation of a Digital Mobile Channel Using Orthogonal Frequency Division Multiplexing. 1985, 33(7), 665-675.
    [24] Reimers U. Digital video broadcasting. 1998, 36(6): 104-110
    [25] Sander L J, Itsuro M, Noriyuki T, et al. 20-Gb/s OFDM Transmission over 4,160-km SSMF Enabled by RF-Pilot Tone Phase Noise Compensation.OFC/NFOEC. 2007, 15
    [26] Hiroaki S, Eiichi Y, Yuzo Y. Optical orthogonal frequency division multiplexing using frequency/time domain filtering for high spectral efficiency up to 1 bit/s/Hz. OFC 2002, D1
    [27] Sano A, Miyamoto Y. Ultra-high speed optical OFDM transmission technologies. 7th International Conference on Optical Internet. COIN 2008, 1-2.
    [28] Yamada E, Sano A, Masuda H, et al. 1 Tbit/s (111 Gbit/s/ch X 10 ch) no-guard-interval CO-OFDM transmission over 2100 km DSF. Electronics Letters. 2008, 44(24), 1417-1418.
    [29] Koichi, T., et al. Optical OFDM Demultiplexer Using Silica PLC Based Optical FFT Circuit. OFC/NFOEC 2009.
    [30] Chen Lin, Shao YuFeng, Wen ShuangChun. A novel scheme to generate dark-RZ pulse and study on its transmission performance. Optics Communications. 2007, 269(1), 241-246.
    [31] Masahiro Ogusu, Kazuhiko Ide, Shigeru Ohshima. Ultra-Dense WDM with over 100% Spectral Effciency Using Co-polarized 40-Gb/s Inverse-RZ Signals. IEICE TRANS. COMMUN. Jan. 2005, E88–B(1), 195-202.
    [32] Masahiro Ogusu, Kazuhiko Ide, Shigeru Ohshima. Comparison among pre-filtered signals of inverse-RZ, DPSK, and RZ-DPSK toward co-polarized 1.07- b/s/Hz DWDM. ECOC 2004, Paper We3.4.3, 420–421.
    [33]傅炜. 40Gbps光纤传输系统中的调制格式研究.硕士论文,西安电子科技大学, 2006.
    [34] Yu Jianjun, Xu Lei, Yeo Yong-Kee. A Novel Scheme for Generating Optical Dark Return-to-Zero Pulses and Its Application in a Label Switching Optical Network. IEEE Photonics Technology Letters, 2006, 18(14), 1524-1526.
    [35] Shao Yufeng, Chen Lin, Wen Shuangchun. Generation of dark RZ signals by using one delayed line Mach-Zehnder interferometer along with one phase modulator. Microwave and Optical Technology Letters, 2007, 49(4), 755-759.
    [36] Torger Tokle, Murat Serbay, Werner Rosenkranz, et al. 32.1 Gbit/s InverseRZ -ASK-DQPSK Modulation with Low Implementation Penalty. LEOS 2006. 490-491.
    [37] Lu Guo-Wei, Deng Ning, Chan Chun-Kit, et al. Use of downstream inverse-RZ signal for upstream data re-modulation in a WDM passive optical network. OFC,2005,OFI8
    [38]胡辽林.高速光通信中若干关键技术的研究.博士论文,西安电子科技大学,2004.
    [39] Yu Jianjun. Generation of Modified Duobinary RZ Signals by Using One Single Dual-Arm LiNbO Modulator. IEEE Photonics Technology Letters, 2003, 15(10), 1455-1457.
    [40] Peter J. Winzer , Alan H. Gnauck, Greg Raybon, et al. 40-Gb/s return-to-zero alternate-mark-inversion (RZ-AMI) transmission over 2000 km. IEEE Photonics Technology Letters, 2003, 15(5), 766-768
    [41] K. S. Cheng, Jan Conradi. Reduction of Pulse-to-Pulse Interaction Using Alternative RZ Formats in 40-Gb/s Systems. IEEE Photonics Technology Letters, 2002, 14(1), 98-100.
    [42] A.D. Ellis and C.W. Chow. Serial OTDM for 100Gbit-Ethernet applications. Electronics Letters, 2006, 42(8).
    [43] Shao Yufeng, Chen Lin, Wen Shuangchun et al. Novel optical orthogonally modulation scheme for superimposing DPSK signals on dark RZ signals. Optics Communications, 2008, 281, 3658–3667.
    [44] Cheng Xiao-fei , Wen Yang Jing, Wang Yixin. Orthogonal labelling scheme using inverted RZ as payload. Optics Communications, 2007, 272, 44–51.
    [45] Zhang Jinnan, Yuan Xueguang, Ren Xiaomin. et al. A Novel DWDM-PON Utilizing Downstream IRZ Signal for Upstream Data Re-modulation with High Extinction Ratio. Seventh Annual Communication Networks and Services Research Conference, 2009, 434-436.
    [46] Xu Jing, Zhang Yin, Chen Lian-Kuan, et al. A WDM-PON with 10-Gb/s Symmetric Bit-Rates and Multicast Overlay with Delay-based Multicast Control. NFOEC, 2009, NME5.
    [47] Cai Lei, Xiao Shilin, Liu Zhixin, et al. Cost-effective WDM-PON for Simultaneously Transmitting Unicast and Broadcast/multicast Data by superimposing IRZ signal onto NRZ signal. ECOC, 2008, 21-25.
    [48] Hoon Kim , René-Jean Essiambre. Transmission of 8×20 Gb/s DQPSK Signals Over 310-km SMF With 0.8-b/s/Hz Spectral Efficiency. IEEE Photonics Technology Letters, 2003, 15(5), 769-771.
    [49] D.van den Borne, S.L.Jansen, E.Gottwald, et al. DQPSK modulation for robust optical transmission. OFC/NFOEC, 2008, OMQ1.
    [50] Torger Tokle, Murat Serbay, Jesper Bevensee Jensen,et al. Advanced Modulation Formats for Transmission Systems. OFC/NFOEC, 2008, OMI1.
    [51] Shigenori Hayax. Nobuhiko Kikuchi, Keno Sekine, et al. Proposal of 8-state persymbol (binary ASK and QPSK) 30-Gbit/s optical modulation / demodulation scheme, ECOC 2003, Th2.6.4.
    [52] Torger Tokle, Murat Serbay, Jesper Bevensee Jensen, et al. Investigation of Multilevel Phase and Amplitude Modulation Formats in Combination With Polarization Multiplexing up to 240 Gb/s, IEEE Photonics Technology Letters, 2006, 18 (20) , 2090-2092.
    [53] Siu-Sun Pun, Chun-Kit Chan, Lian-Kuan Chen, Demonstration of a Novel Optical Transmitter for High-Speed Differential Phase-Shift-Keying/Inverse Return-to- Zero(DPSK/Inv-RZ) Orthogonally Modulated Signals, IEEE Photonics Technology Letters, 2005 ,17(12) , 2763-2765.
    [54] Govind P.Agrawal.非线性光纤光学原理及应用.贾东方,余震虹等译.电子工业出版社, 2002. ISBN 7-5053-8266-7.
    [55]文爱军,刘娇娇,李晓军.高速光传输系统中八进制差分相位幅度键控性能分析.中国激光, 2009, 36(3) , 614-619.
    [56] Jean Armstrong. OFDM for Optical Communications. Journal of Lightwave Technology, 2009, 27(3), 189-204.
    [57]佟学检,罗涛. OFDM移动通信技术原理与应用.人民邮电出版社, 2003. ISBN 7-115-11185-5.
    [58] M. Fujiwara, J. Kani, H. Suzuki, et al. Flattened optical multicarrier generation of 12.5GHz spaced 256 channels based on sinusoidal amplitude and phase hybrid modulation. Electronics Letters, 2001, 37(15), 967-968.
    [59] Tadhg Healy, Fatima C. Garcia Gunning, Andrew D. Ellis. Multi-wavelength source using low drive-voltage amplitude modulators for optical communications. Optics Express, 2007, 15(6), 2981-2986.
    [60] Ma Jianxin, Yu Chongxiu, Zhou Zhen, Yu Jianjun. Optical mm-wave generation by using external modulator based on optical carrier suppression. Optics Communications 2006, 268, 51–57.
    [61]孙大伟.基于马赫-曾德尔干涉仪的全光纤梳状滤波器的研究.光子技术, 2005, 3, 134-137.
    [62] Kazushige Yonenaga, Fumikazu Inuzuka, Shuto Yamamoto, et al. Bit-Rate-Flexible All-Optical OFDM Transceiver Using Variable Multi-Carrier Source and DQPSK/DPSK Mixed Multiplexing. OFC/NFOEC, 2009, OWM1.
    [63] Chang Qingjiang, Ye Tong, Gao Junming, et al. Generation of 60-GHz Optical Millimeter-Wave and 20-GHz Channel-Spaced Optical Multicarrier Using Two Cascaded 10-GHz Modulators. AOE, 2008, SaJ1.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700