ADS质子直线加速器束流位置和相位测量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着核能在军事、生产和生活中的广泛应用,如何安全利用核能以及处理核废料成为各国科学家们研究的热点。加速器驱动次临界洁净核能系统(ADS:Accelerator Driven Sub-critical System,),因其核能产生过程的安全性以及可以嬗变核废料的特点,被认为是最具前景的解决能源和核废料安全处理问题的措施之一。强流质子直线加速器(LINAC:Linear Accelerator)是ADS的关键组成部分,其束流诊断方法是整个系统的关键科学技术之一。本课题即是针对LINAC的束流测量需求,对高精度束流位置和相位测量进行的研究。
     质子直线加速器的BPM探测器输出4路电极检测信号,用于束流位置和相位测量;另外加速器还输出一路MO信号作为束流相位测量的参考。电极检测信号是162.5MHz的周期窄脉冲信号,幅度为0.01~1V,经过电缆衰减后对应本系统的输入幅度范围为-44-4dBm;MO参考信号是恒定幅度的162.5MHz正弦波信号。ADS束测指标要求为:在-38~-4dBm输入范围内,位置和相位测量精度分别为0.2mm和±0.5°。为了减小加速器射频(RF:Radio Frequency)场对电子学的影响,本课题设计了基于二次谐波信号的测量系统,同时设计了基频信号测量系统用于系统性能对比测试。
     传统的束测方法基于全模拟电路实现,由于噪声和非线性的影响,很难实现高精度测量;随着数字模拟转换技术和数字信号处理技术的发展,全数字化成为束测技术的发展方向,但主流的数字IQ解调方案数字信号处理非常复杂;本课题采用新型射频信号正交欠采样技术,同时简化模拟电路设计和数字信号处理复杂度。本课题在单系统同时实现束流位置和相位的测量,简化束测系统结构,提高了系统的集成度。由于单电极信号的相位存在束流位置依赖性,为了避免此问题,本系统通过四路电极信号的和信号进行束流相位的测量。在实验室环境下,对二次谐波系统和基频系统进行了电子学联合测试,测试结果表明系统的指标好于应用需求。
     本论文第一章介绍了加速器束流测量的概念、分类和意义,以及ADS的概念、意义和目前国内外的研究进展,并引出了束流位置和相位测量的重要性。
     第二章主要对束流位置和相位测量技术进行探讨,包括其前端探测器、信号处理电子学等环节的讨论,通过对数比、幅度相位转换及差和比方法的比较,确定了本课题的电子学信号处理方法。接着回顾了加速器束流位置和相位测量的发展历史并给出了其发展方向;最后介绍了国际上典型的加速器束流测量系统,作为系统方案设计的参考。
     第三章详述了系统输入信号的特点以及ADS束流位置和相位测量指标需求;通过第二章的技术对比,本课题采用基于新型RF信号正交欠采样方法的全数字化技术,并针对输入信号特点进行了仿真分析,验证了该技术的可行性。在确定了基本测量技术后,分析了系统的设计难点,并给出了系统的总体设计方案。
     第四章和第五章介绍了具体的系统方案设计,硬件电路设计和实现。研究工作中进行了低噪声射频信号处理电路和高精度时钟系统的设计;探讨了ADC前端耦合电路对高速高精度模数转换性能的影响,并根据信号频率特点设计了优化的前端耦合匹配电路;考虑到信号完整性,对高速数据传输和PCB布局布线进行了仔细设计;同时对模数电路电源系统的隔离以及系统的散热设计进行了分析。第五章详细介绍了数字信号处理算法和数据传输接口逻辑的设计。
     第六章给出了关键电路模块和实验室电子学系统测试结果。测试结果表明:在12.5MHz更新率下,在设计指标要求的-44--4dBm的输入动态范围内,二次谐波系统的束流相位、位置以及流强的测量精度分别好于0.03。、5um和0.02%,基频系统对应的测量精度分别好于0.03。、3um和0.012%,好于应用需求。此外,系统的工作动态范围最大可以达到60dB(对应-60~0dBm输入信号动态范围),在此范围内二次谐波系统对应的精度分别好于0.14。、30um和0.1%,基频系统对应精度也分别好于0.15。、15um和0.06%。
     最后在第七章中对本论文工作进行了总结,并给出了下一步工作的展望。
In the application of the nuclear energy, the safety and nuclear waste problem become more and more important. The Accelerator Driven Sub-critical System (ADS) is capable of transmuting radioactive nuclear wastes and meanwhile producing energy in a clean and safe way, and thus it is now a very important worldwide research domain. As a key part of ADS, a high intensity proton LINAC is required to produce high power proton beams. To guarantee a high beam quality, good beam diagnostics is indispensable. This thesis studies a fully digital beam measurement method, and implements a prototype of high-resolution beam position and phase measurement (BPPM) electronics for the proton LINAC in China ADS.
     This BPPM electronics measures both beam position and phase with four induction signals from the BPM detectors and a MO signal (162.5MHz sine wave) as a phase reference. The induction signals are162.5MHz periodic narrow pulses, and the amplitude would vary from0.01V to1V, which corresponds to an input range of around-44~-4dBm (considering the attenuation of the cables, etc.). And the position and phase resolutions are required to be better than0.2mm and±0.5degree in the input amplitude range of-38~-4dBm. In order to minimize the interference from RF (Radio Frequency) system, we focus on the design based on the processing of the second harmonic frequency component_(325MHz) of the signal. Meanwhile a prototype based on the fundamental frequency component (162.5MHz) is also designed for comparison.
     Traditional beam position and phase measurement methods are based on analog signal manipulation. The system performance is easily deteriorated by the noise, non-linearity and mismatches of the analog circuits. With the development of A/D conversion and digital signal processing techniques, the modern technique is to digitize the signal at the front end, namely fully digital beam measurement. The mainstream digital method is the digital IQ demodulation, and it greatly reduces the complexity of the analog circuits; however, quite complex DSP (Digital Signal Processing) algorithms are required. This BPPM electronics is designed based on a new method--RF signal IQ undersampling (RFIQUS) technique, which simplifies both the analog circuits and the DSP algorithms. Both beam position and phase are implemented within one single system, which simplifies the system architecture and enhances the integrity.
     For an off-axis beam, the signal phases from individual electrodes would differ from those for a centered beam by a few degrees, while the phase of a summed signal (from all the BPM electrodes) remains the same within the computation error (0.1-0.2degree). Simulation of the signals with DSP algorithms for beam phase measurement is also studied in this thesis. So this system measures the beam phase working with the summed signal.After hardware implementation, we conducted a series of tests in the laboratory and the test results indicate that the performance of the two systems (processing the second harmonic and the fundamental frequency components of the signal) is better than the application requirements.
     In chapter1, we first introduce the basic concepts of the beam measurement; and present the development of ADS; at last conclude the necessity of high performance beam position and phase measurement.
     In chapter2, the techniques of beam position and phase measurement are discussed, such as beam detectors and signal processing electronics. Through the comparison of Logarithmic ratio, Amplitude-to-Phase Conversion (AM/PM) and Δ/Σ, the final signal processing method is selected. Then we review the beam measurement methods. Several typical beam diagnostic systems of accelerators are presented, as a technique background for the design of this BPPM electronics.
     Chapter3details the characteristics of the input signals and the requirement on the beam position and phase measurement in the proton LINAC of ADS. Based on the discussion in chapter2, the BPPM systems employ a fully digital-beam measurement method based on the RFIQUS technique, and the feasibility of this technique is verified by simulations based on the Matlab platform. Based on this method, several design issues are analyzed, and the whole system structure is introduced.
     From chapter5to chapter6, we introduce the designs and implementations of the two electronics prototypes:one is based on the processing of the second harmonic frequency component, and the other is based on the processing of the fundamental frequency component. We present the design of the analog front-end circuits, and the high-speed high-resolution A/D Conversion circuits; to guarantee the signal integrity, PCB placing and routing are carefully considered; we also analyze the power supply and thermal dissipation issues. Chapter5details the DSP algorithms and data transfer interface logic design.
     To evaluate the system performance, a series of tests were conducted. The test results are presented in chapter6, which indicate that:over the input amplitude dynamic range of-44~-4dBm (larger than the required amplitude range), the measurement resolutions of beam phase(phase difference between the summed signal and MO signal), position and current of the first system (second harmonic frequency component processing) are better than0.03degree,5um and0.02%; and those of the second system (the fundamental frequency component processing) are better than0.03degree,3um and0.012%. These results are well beyond the application requirements. In addition, the dynamic range of the two system is as large as60dB (corresponding to-60-0dBm), and over this range the measurement resolutions are better than0.14degree,30um and0.1%for the first system, and0.15degree,15um and0.06%for the second system.
     In chapter7, we give a summary of the work and the outlook for the future work.
引文
[1]赵籍九,尹兆生,粒子加速器技术,高等教育出版社,2006
    [2]H. Koziol, beam diagnostics for accelerators, CERN,2005
    [3]H. Nifenecker, et al. Basics of accelerator driven subcritical reactors, Nuclear Instr uments and Methods in Physics Research A 463 (2001) 428-467
    [4]D. Bodansky, Nuclear Energy, AIP Press, Woodbury, New York,1996.
    [5]P. SATYAMURTHY, et al., DESIGN OF A MOLTEN HEAVY-METAL COOLANT AND TARGET FOR FAST-THERMAL ACCELERATOR DRIVEN SUB-CRITICAL SYSTEM (ADS), Printed by the IAEA in Austria,2003
    [6]Charles D. Bowman, ACCELERATOR-DRIVEN SYSTEMS FOR NUCLEAR WASTE TRANSMUTATION, Annu. Rev. Nucl. Part. Sci.,1998,48:505-56
    [7]S.S. KAPOOR, Accelerator-driven sub-critical reactor system (ADS) for nuclear energy generation, India:Journal of Physics,2002,59 (6):941-950.
    [8]S. Andriamonje et al., Experimental determination of the energy generated in nuclear cascades by a high energy beam, Phys. Lett. B348 (1995) 697-709.
    [9]S S Kapoor, invited talk in Proc. of 12th Indian Nuclear Soc. Ann. Conf. (INSAC-2001), CAT, Indore,10-12 October 2001
    [10]Y. Kadi and J.P. Revol, Design of an Accelerator-Driven System for the Destruction of Nuclear Waste, CERN,2001
    [11]S Andrimonge et al, Phys.Lett. B348,697 (1995)
    [12]H Daniel and Yu V Petrov, Nucl. Instr um. Methods Phys. Res.373,131 (1996)
    [13]S B Degwekar, S V Lawande and S S Kapoor, IAEA/TCM, Madrid, Spain September 1977 Ann. Nucl. Energy 26,123 (1999)
    [14]H. Arnould et al., Experimental verification of neutron phenomenology in lead and transmutation by adiabatic resonance crossing in accelerator driven systems, Phys. Lett. B458 (1999) 167-180
    [15]赵志祥,夏海鸿,加速器驱动次临界系统(ADS)与核能可持续发展,中国核电,2009,2(3):66-72.
    [1]Peter Forck, Piotr Kowina, Dmitry Liakin, Beam Position Monitors, CERN Accelerator School,2008
    [2]冷用斌,加速器束流诊断技术课件,2010
    [3]H. Koziol, beam diagnostics for accelerators, CERN,2005
    [4]Giuseppe Vismara, Signal Processing for Beam Position Monitors, Proceedings of BIW' 2000,2000
    [5]S.S. Kurennoy, BEAM POSITION-PHASE MONITORS FOR SNS LINAC,20th International Linear Accelerator Conference,2000
    [6]Bergoz Instrumentation, Fast Current Transformer User's Manual Rev.3.1
    [7]Bergoz Instrumentation, FCT flyer lowres, V 4.3.1
    [8]Peter O'Shea, phase measurement, CRC Press LLC,2000
    [9]YU Lu-Yang, YIN Chong-Xian, LIU De-Kang, Digital RF phase detector for LINAC in FEL accelerator, Nuclear Science and Techniques, Vol.16, No.2, April 2005, pp.76-81.
    [10]C.X. Yin, D.K. Liu, L.Y. Yu, Digital Phase Control System for SSRF LINAC, in Proceedings of ICALEPCS07, pp.717-719.
    [11]T. Hollis, R. Weir, The Theory of Digital Down Conversion, V1.2 0603, Hunt Engineering
    [12]吴远斌,李景文,“直接中频采样及数字相干检波的研究”,电子学报,1994,第10(22):105-107
    [13]S.P. Jachim, R.C. Webber, R.E. Shafer, AN RF BEAM POSITION MEASUREMENT MODULE FOR THE FERMILAB ENERGY DOUBLER, IEEE Transactions on Nuclear Science,1981, NS-28(3):2323-2325
    [14]G. Vismara, The new front-end narrow-band electronics for the LEP beam orbit measurement system, Proc. EPAC 94, London,1994
    [15]M. Wendt, BPM READ-OUT ELECTRONICS BASED ON THE BROA DBAND AM/PM NORMALISATION SCHEME, Proc. DIPAC 01,2001
    [16]C. R. Rose, J. D. Gilpatrick, and M. W. Stettler, THE LEDA BEAM-POSITION MEASUREMENT SYSTEM, Proc. PAC1997, pp.2093-2095
    [17]C.R. Rose and M.W. Stettler, DESCRIPTION AND OPERATION OF THE LEDA BEAM-POSITION/INTENSITY MEASUREMENT MODULE, Proc. PAC1997, pp. 2044-2046
    [18]P. Gu, Z. Geng, and G. Pei et al., RF phasing system for BEPCII linac, in Pro. APAC 2004, Gyeongju, Korea,2004, pp.288-290
    [19]Z. Geng, P. Gu, and M. Hou et al., Design and calibration of a phase and amplitude detector, in Proc. Particle Accelerator Conf., Knoxville, Tennessee,2005, pp.1-3
    [20]岳军会、马力、曹建设等,BEPCII横向束流反馈系统前端电子学,强激光与粒子束,2005,17(6):951-955
    [21]岳军会、马力、曹建设等,BEPC II横向束流反馈系统样机在BEPC上的实验,高能物理与核物理,2006,30(2):163-165
    [22]J. Sebek, et al. SSRL Beam Position Monitor Detection Electronics, Proc. PAC1995, pp. 2506-2508
    [23]J. F. Power, J. D. Gilpatrick, and M. W. Stettler, Design of A VXI Module for Beam Phase and Energy Measurements for LEDA, Proc. PAC1997, vol.2, pp.2041-2043
    [24]J. Power and M. Stettler, The Design and Initial Testing of a Beam Phase and Energy Measurement for Leda, proceeding of the 1998 Beam Instr umentation Workshop (BIW98) conference.
    [25]J. Power, J. O'Hara, et al., Beam position monitors for the SNS LINAC, Proc. PAC2001, vol. 2, pp.1375-1377
    [26]Harald Klingbeil, "A Fast DSP-Based Phase-Detector for Closed-Loop RF Control in Synchrotrons," IEEE Trans. Instr um. Meas., vol.54, pp.1209-1213, Jun.2005.
    [27]Lei Zhao, et al., The Design and Initial Testing of the Beam Phase and Energy Measurement System for DTL in the Proton Accelerator of CSNS, IEEE TNS,57(2):533-538
    [28]Analog Device Inc., AD9467 datasheet
    [29]Shaochun Tang, et al., A Beam Phase and Energy Measurement Instr ument Based on Direct RF Signal IQ Undersampling Technique, IEEE Trans. Instr um. Meas., Nov.2012,61: 2870-2878.
    [30]Harald Klingbeil, A Fast DSP-Based Phase-Detector for Closed-LoopRF Control in Synchrotrons, IEEE Trans. Instr um. Meas., VOL.54, NO.3, JUNE 2005, pp.1209-1213
    [31]YAN Han, et al., A beam position measurement system of fully digital signal processing at SSRF, Nuclear Science and Techniques 23:75-82,2012
    [32]Shigeki Sasaki, et al., Upgrade of BPM Electronics for the Spring8 Storage Ring, Proc. AIP Conference, vol.868, pp.463-472,2006
    [33]孙葆根、王筠华、卢平、何多慧等,NSRL二期工程中束流测量系统的改造,中国科学技术大学学报,第37卷第4-5期,2007,pp.364-370。
    [34]孙葆根、曹涌、李吉浩等,合肥光源束测系统的最新研究进展,中国科学技术大学学报,第37卷第4-5期,2007,pp.475-482。
    [35]J. Power, Simulation of a Direct Downconversion BPM Channel with I & Q Data Processing, at LANSCE, March,2007.
    [36]I. H. Yu, S. J. Park, D. T. Kim, et al., Prototype Digital Beam Position and Phase Monitor for the 100 MeV Proton LIN AC of PEFP, Proceedings of 2005 Particle Accelerator Conference, Knoxville, Tennessee, pp.1120-1122.
    [37]Sungju Park, Jangho Park, Inha Yu, et al., Developmental Status of Beam Position and Phase Monitor for PEFP Proton Linac, Eleventh Beam Instr umentation Workshop, AIP Conference Proceedings,2004, VoLume 732, pp.385-392.
    [38]Shaochun Tang, et al., A Beam Phase and Energy Measurement Instr ument Based on Direct RF Signal IQ Undersampling Technique, IEEE Trans. Instr um. Meas., Nov.2012,61: 2870-2878
    [39]J.F. O'Hara, J.D. Gilpatrick,, D.C. Bruhn, LANSCE prototype beam position and phase monitor (BPPM) mechanical design, Proceedings of Particle Accelerator Conference 2007, June 2007, New Mexico, USA, pp.4123-4125.
    [40]Sung-Ju Park, Jangho Park, Yong Woon Parc, Status of Beam Diagnostic Systems for the PEFP, Proceedings of Particle Accelerator Conference 2005, May 2005, Knoxville, Tennessee, pp.1090-1092.
    [41]J. Power, "Simulation of a Direct Downconversion BPM Channel with I & Q Data Processing," at LANSCE, March,2007.
    [42]J.D. Gilpatrick, T.R. Hodapp, et al. LEDA AND APT BEAM DIAGNOSTICS INSTR UMENTATION, Proc. PAC1997, vol.3, pp.2232-2234
    [43]C. R. Rose, et al., THE LEDA BEAM-POSITION MEASUREMENT SYSTEM, Proc. PAC1997,vol3:2093-2095
    [44]C. R. Rose, et al., DESCRIPTION AND OPERATION OF THE LEDA BEAM-POSITION/INTENSITY MEASUREMENT MODULE, Proc. PAC1997, vol2:2044-2046
    [45]R.B. Shurter, T. Cote, et al. ANALOG FRONT-END ELECTRONICS FOR BEAM POSITION MEASUREMENT ON THE BEAM HALO MEASUREMENT, Proc. PAC1997, vol.5, pp.1378-1380
    [46]J.Power and M. Stettler, The Design and Initial Testing of a Beam Phase and Energy Measurement for LEDA, AIP Conf. Proc.,451, pp.459-466,1998
    [47]S. Michizono, S. Anami, et al. Digital Fee dBack System for J-PARC Linac RF Source, Proc. LINAC 2004, JPAN:KEK PREPRINT,2004
    [48]P. A. Duperrex, U. Frei, et al. Latest Diagnostic Electronics Development for the PROSCAN Proton Accelerator, AIP Conf. Proc.732, pp.268-275,2004
    [1]Shaochun Tang, et al., A Beam Phase and Energy Measurement Instr ument Based on Direct RF Signal IQ Undersampling Technique, IEEE Trans. Instr um. Meas., Nov.2012,61: 2870-2878
    [2]ALAN V.OPPENHEIM著,刘树棠译,信号与系统,西安交通大学出版社,1998
    [3]S.S. Kurennoy, BEAM PHASE DETECTORS FOR SPALLATION NEUTRON SOURCE LINAC, Proc. EPAC 2000, PP.1765-1767
    [1]李辑熙,射频电路与芯片设计要点,高等教育出版社,2007
    [2]National Instruments, Common RF and Microwave Measurements, NI Develop Zone
    [3]M. Hunter, The basics of radio system design, How to Design RF Circuits (Ref. No. 2000/027), IEE Training Course 5 Page:10/1-10/7,2000.8
    [4]格列别尼科夫,射频与微波功率放大器设计,电子工业出版社,2006.4
    [5]Ailent Technologies, Using Circuit Simulators,2005.8
    [6]ADS2009快速入门中文教程,http://www.mweda.com
    [7]林冠谕,封装寄生效应对表面声波元件效能的影响研究,硕士学位论文,2002
    [8]四川压电与声光技术研究所陶瓷研究室,声表面波滤波器的匹配和使用,应用手册
    [9]C.T. Armijo, R.G. Meyer, A new wide-band Darlington amplifier, IEEE Journal of Solid-State Circuits, VoLume 24, Issue 4, Page:1105-1109,1998
    [10]OSILENT,803-RF325.3M-A datasheet
    [11]TST,TA0395A datasheet
    [12]Mini-Circuits, PSA4-5043 datasheet
    [13]Hittite, HMC580 datasheet
    [14]Hittite, HMC624LFLP4E datasheet
    [15]Mini-Circuits, SYPS-2-252+datasheet
    [16]Analog Devices Inc. AD9467 datasheet
    [17]Mini-Circuits, Application Note on Transformers(AN-20-002),2010
    [18]Mini-Circuits, TC1-1T+datasheet
    [19]Rob Reeder, Transformer-Coupled Front-End for Wideband A/D Converters,2005
    [20]Rob Reeder, Wideband A/D Converter Front-End Design Considerations,2006
    [21]Brad Brannon and Allen Barlow, Aperture Uncertainty and ADC System Performance,2000
    [22]Brad Brannon, Sampled Systems and the Effects of Clock Phase Noise and Jitter
    [23]CAST,锁相环常见问题解答, Analog Devices Inc.
    [24]Analog Devices Inc. AD9523-1 datasheet
    [25]Xilinx, Virtex-5 Family Overview,2009
    [26]Altera, MAX II Device Family Datasheet
    [27]STMicroelectronics, M25P128 datasheet
    [28]Texas Instr uments, LVDS Owner's Manual,2008
    [29]Japan Aviation Electronics Industry Ltd., FI-R Series datasheet
    [30]Japan Aviation Electronics Industry Ltd., JF04 Series datasheet
    [31]Xilinx, Virtex-5 FPGA User Guide,2010
    [32]Howard Johnson and Martin Graham,高速数字设计(High-Speed Digital Design),电子工业出版社,2007
    [1]Xilinx, Virtex-5 FPGA User Guide,2010
    [2]Volder, J., The CORDIC Trigonometric Computing Technique, IRE Trans. Electronic Computing, Vol. EC-8, Sept.1959, pp.330-334
    [3]Walther, J.S., A Unified Algorithm for Elementary Functions, proc. Spring Joint computer conf.,1971, pp.379-385
    [4]Xilinx, FPGAs for DSP 4 CORDIC 算法,2007
    [5]Xilinx, LogiCORE IP CORDIC v4.0 datasheet
    [6]S.S. Kurennoy, BEAM POSITION-PHASE MONITORS FOR SNS LINAC
    [7]John G. Proakis and Dimitris G. Manolakis,数字信号处理(Digital Signal Processing),电子工业出版社,2011
    [8]Xilinx, IP LogiCORE FIR Compiler v5.0 datasheet
    [9]National Instr uments, http://www.ni.com.
    [1]ROHDE & SCHWARZ Corporation, Signal Generator R&S SMA100A
    [2]Tektronix Corporation, DPO5000 Series Oscilloscopes User Manual
    [3]Tektronix Corporation, RSA3303B & RSA3308B 3 GHz & 8 GHz Real-Time Spectr um Analyzers User Manual
    [4]Mini-Circuits Corporation, Power Splitter/Combiner ZFSC-4-1W datasheet
    [5]J.W. Cooley and J. W. Tukey, An algorithm for the machine calculation of complex Fourier series, Math. Of Comput.,Vol.19, pp.297-301, April 1965
    [6]Joey Doernberg, Hae-Seung Lee, David A. Hodges, " Full-Speed Testing of A/D Converters", IEEE journal OF Solid-State Circuits, Vol. SC-19, No.6, December 1984

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700