TD-SCDMA分频器的研究与设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着3G的到来,通信系统及通信行业产生了很大变化,TD-SCDMA作为3G标准之一已经开始应用。手机终端中的射频芯片是TD发展的一项重要瓶颈。本文首先分析了射频芯片中重要模块收发信机的结构,通过对含中频收发信机与零中频的收发信机的比较,确定使用零中频收发信机结构,并对收发信机的主要参数进行了分析。
     分析了锁相环原理,以及基于锁相环的频率合成原理。通过负反馈上分频器结构变化,产生不同的分频方式。分别研究了固定整数频率合成器、含双模分频器的频率合成器,以及含小数分频的频率合成器,分析了鉴相器、VCO、分频器对频率合成器整体性能的影响,并利用Matlab对TD-SCDMA锁相单环频率合成器进行了系统仿真。
     分析了LC振荡器的主要性能参数和基本原理,并考虑了MOS管寄生参数对振荡器的影响。总结了VCO的设计方法,选择了互补型交叉耦合的LC振荡器结构,并对MOS管尺寸以及片外谐振网络的电容和电感进行了设计,通过Cadence公司的模拟电路仿真软件Spectre进行仿真验证。
     介绍了鉴相鉴频器的工作原理和主要性能指标,给出了常用的几种PFD结构,包括预充电式、普通边沿触发式、TSPC动态结构和差分型边沿触发PFD。重点讨论了SCL结构的反相器和锁存器的特点和设计方法,它的优点是噪声低、增益大和转换速率高,非常适合于射频集成电路。
     针对低功耗射频小数分频器结构进行重点分析,主要功耗和相位噪声来自于高频部分。分析分频器类型,综合考虑低功耗,功能设计等多方面因素,不再选取传统的数字逻辑结构双模分频器,而是改用更为先进的相位转换型双模分频器。分析相位转换器通过各路信号相位切换的方法将N/N+1双模切换移至较低工作频率,从而降低功耗。同时提出相位转换器在工作中会产生陷落毛刺的问题,如不能有效控制将影响电路功能。通过具体分析陷落毛刺产生的原因是由于各路信号相位失配所造成,两路切换信号没有找到合适的切换点。针对这种情况,提出了增加一个相位转换模块,由后一路信号上升沿驱动相位切换模块,在不增加太多设计和功耗的情况下较好地解决了该问题。通过对分频器相位噪声和功耗的分析,分频器相位噪声和功耗主要来自于第一级射频固定二分频器,确定该模块设计是降低功耗的关键。提出将注入锁定原理应用在固定二分频器上的可能性,将固定二分频器视为环形振荡器,通过合理设置该振荡器自由振荡频率,达到信号最大摆幅,通过信号振荡的方式降低功耗。采用CML结构电路设计模拟射频电路,分析CML电路低功耗,抗干扰特性,适合射频电路设计。设计射频固定二分频器,相位切换器,异步分频链,MASH型Delta-Sigma小数调制器,输出Buffer。分频器中部分模块工作在GHz以上,整个分频器可以实现5.056-5.750小数分频。
As the arrival of3G, communication system and communication industry produced very big change, TD-SCDMA3G has been used as one of the standard. The TD-RFchip is a bottleneck of TD-mobile. We firstly analyzes the RF chip module transceiver and receiver structure, with intermediate frequency transceiver and zero intermediate frequency transceiver comparison, determine the use of zero intermediate frequency transceiver and reciver structure, and the transceiver of the main parameters are analysed.
     The phase lock loop frequency synthesizer principle was analyzed. There are different divid with different type feedback divider. The integrator frequency synthesizer, dual-mode frequency synthesizer and fractional frequency synthesizer was analyzed separately. There are some discuss on performance influence with PFD, VCO and divider. The whole TD-SCDMA frequency synthesizer system performance was simulated by Matlab.
     The parameters and basic principle of LC oscillator were analyzed, and the influence of the MOS parasitical parameters to oscillator was considered. We summarize the VCO design approach, and the complementary cross coupled LC VCO is chosen, the MOS size and the resonance network out of the chip is designed. Then, the VCO circuit simulation was implemented by Spectre which is the analog circuit simulation tool of Cadence.
     The principle and specification of phase frequency detectors(PFD) was analyzed. The structure of PFD, such as precharge PFD, common edge trigger PFD, TSPC dynamic structure PFD and SCL structure PFD was introduced. The characteristic and design approach of SCL inverter and latch was emphases discussed. The advantage is low noise, high gain and slew rate, which is very suitable for RFIC.
     Aiming the low power RF decimal frequency divider structure are analyzed in detail, the main power consumption and phase noise from high frequency part. Analysis of frequency divider type, considering the low power consumption, the function design and other factors, no longer choose the traditional digital logic structure dual modulus divider, but switched to more advanced phase conversion type dual modulus divider. Phase converter through the signal phase switching method N/N+1switching to lower working frequency, thereby reducing power consumption. At the same time the forward phase converter at work will collapse the glitch issue. if not effectively control,The circuit will not work. Through the concrete analysis of collapse burr produced is due to signal the phase mismatch caused by the switching signal, the two did not find a suitable switching point. In view of this situation, use the Rising edge of second signal to the drive phase switching module, without adding too much design and the power consumption of the case to solve the problem better. The divider phase noise and power consumption analysis, frequency divider phase noise and power consumption are mainly from the first RF fixed two dividers, determines the module design is to reduce the power consumption of the key. The injection locking principle applied in the fixed two divider on the likelihood.The fixed two divider is looked as a ring oscillator, by reasonably setting the oscillator frequency of free oscillations, achieve maximum swing through the signal, signal oscillation mode to reduce power consumption. The structure of CML circuit is suitable for RF circuit design for low power and RF frequency. The design of RF fixed two frequency divider, phase switcher, asynchronous divider chain, MASH Delta-Sigma decimal modulator, the output Buffer. Divider module working in GHz above, the divider can be achieved5.056-5.750decimal frequency divider.
引文
[1]尤肖虎,曹淑敏,李建东.第三代移动通信系统发展现状与展望[J].电子学报,1997,25(7):79-81
    [2]胡捍英,杨峰义.第三代移动通信系统[M].北京:人民邮电出版,2001:5-35
    [3]Avner Efendovich, Afek Yachin, ete, "High Resolution,Multi—Frequency Digital Phase-Locked Loop", United States, US5218314,1993
    [4]Maeda T, Matsuno N, Hori S, et al. A Low-Power Dual-Band Triple-Mode WLAN CMOS Transceiver[J]. IEEE Journal of Solid-State Circuits,2006, 41(11):2481-2490.
    [5]Leeuwenburgh A J, Ter Laak J, Mulders A G, et al. A 1.9GHz fully integrated CMOS DECT transceiver[C]. IEEE ISSCC,2003:450-507
    [6]Tom A. D. Riley, Miles A. Copeland, Delta-Sigma Modulation in Fmction-N Frequency Synthesis[J], IEEE Journal of Solid-State Circuits,1993,28 (5): 896-902
    [7]J. Craninckx and M. Steyaert, A fully integrated CMOS DCS-1800 frequency synthesizer [C], in ISSCC Dig., pp.372-373,1998.
    [8]Sandner C, Derksen S, Draxelmayr D, et al. A WiMedia/MBOA-Compliant CMOS RF Transceiver for UWB[J]. IEEE Journal of Solid-State Circuits,2006, 41(12):2787-2794
    [9]Huang, Q., and Rogenmoser, R. Speed optimization of edge-triggered CMOS circuits for gigahertz single-phase clocks[J], IEEE J. Solid-State Circuits,1996, 31(3):456-465
    [10]Behzad Razavi, RF Microelectornics [M], Prentice-Hall,1998
    [11]Behzad Razavi,Design of Analog CMOS and Integrated Circuits[M], McGraw-Hill,2000
    [12]J. N. Soares and W. A. M. Van Noije, A 1.6-GHz dual modulus prescaler using the extended true-single-phase-clock CMOS circuit technique [J], IEEE J. Solid-State Circuits, vol.34, pp.97-102,Jan.1999.
    [13]Keliu Shu and Edgar Sanchez-Sinencio, A 16mW,2.23-2.45GHz fully integrated spl Sigma spl Delta PLL with novel prescaler and loop filter in 0.35sp1 mum CMOS[C], IEEE Radio Frequency Integrated Circuits Symposium, MO4C-3, pp.181-184,2002.
    [14]Hegazi E, Abidi A, A 17 mW Transmitter and Frequency Synthesizer for 900MHz GSM Fully Integrated in 0.35μm CMOS[J], IEEE Journal of Solid-State Circuits,2003,38(5).782-792
    [15]J.M.Yang, s.y.Kim, and B.T.Jeon, Fast switching frequency synthes rusing direct analog techniques for PLL[C], in Radar 97 (Conf.Pub1.No.449),1997, PP.386-390
    [16]XueyangGeng, F.EDai,5.0GHz Direct Digital Synthes RFIC Digital Modulations in 0.13um SIGe BiCMOS Teehnology[J], IEEE Journal of Solid-State Circuits,2010, Volume 45, Issues, PP.944-954
    [17]J.Lindeberg, J.SommareK and K.Halonen, A 1.5V direct digital synthesizer with tunable delta-sigma modulator in0.13um CMOS[J], IEEE Joumal of Solid-State Circuits,2005, Volume:40, Issue9, PP.1978-1982.
    [18]Hsuan-Jung Hsu, and Shi-YuHuang, A Low-Jitter ADPLL via a Supppressive Digital Interpolation-Based Loeking Seheme[J], IEEE Transactions on Very Large Scale Integration(VLSI)Systems,2011, Volume 19, Issue], PP.165-170.
    [19]Seon-Kyoo Lee, Young-Hun Seo, Yunjae Suh, A 1GHz ADPLL with a 1.25ps minimum-resolution sub-exponent TDC in0.18um CMOS[C], in 2010 IEEE International Solid-State Circuits Conference Digest of Technical (ISSCC), 2010, PP.482-482.
    [20]Robert Bogdan Staszewski, KhurramWaheedetal., SPur-Free All-Digital PLL in 65nm for Mobile Phones[C], IEEE International Solid-State Circuits Conference Digest of TechniealPaPers(ISSCC),2011.
    [21]J.Gibbs and R.Temple, Frequeney domain nyield sitsdatat phase-locked synthesizer[J], Eleetronies,1978,18(2):107-112.
    [22]U.L.Rohde, DigitalPLLFrequeneySynthesizers[M], NJ:Prentiee-Hall,1982.
    [23]Reinhardt, Pure reduetion techniques indirect digital synthesizers [C],1993 IEEE International Frequeney Control SymPosium,1993, PP.230-241.
    [24]Chun-Huat Heng, and Bang-Su PSong, A 1.8-GHz CMOS fraetional-N frequency synthesizer with randomized multi Phase VCO[J], IEEE Journalof Solid State Circuits,2003,38(6):848-855.
    [25]N.King, "Phase locked loop vable frequency generators" USPaten:420417, May,1980.
    [26]Miller and R.Couly, AmultiPlemodulatorfraetionaldivider[J], IEEE Transations on Instrment Measurements,1991,40(5):578-582.
    [27]Tom A.D., Miles A. Copel and Tad A.KWasewski, Delta-sigma modulation in fractional-frequeney synthesis[J], IEEE Journalof Solid State Circuits,1993, 28(5):553-559.
    [28]Perrott Michael H, Trott Mitchell D. A modeling approach or Δ-Σ fractional-N frequency synthesizers allowing straightforward noise analysis[J]. IEEE J Solid-State circuits,2002,37(8):1032-1035
    [29]Krishnapura Nagendra, Kinget Peter R. A 5.3-GHz programmable divider for HiperLAN in 0.25-μm CMOS[J]. IEEE J Solid-State Circuits,2000,35(7): 1019-1020
    [30]M.Perrott,and C.Sodle, A 27mw CMOS fractional-synthesizer using digital compensation for 2.5G FSK modulations[J]. IEEE J Solid-State Circuits,1997, 32(12):2048-2060
    [31]W.Rhee, Multi-bit delta-sigma modulation technique for fraetional-N frequeney synthesizers[D], LA:UCLA,2000.
    [32]Jae-Shin Lee, Min-Sun Keel and SukiKim, Charge Pump With Perfect current matching characteristics in PLL[J], Electronies Letter,2000, Volume36, PP.1907-1908.
    [33]Young-Shig Choi, and Dae-Hyun Han, Gain-Boosting Charge Pump for Current Matching in Phase-Loeked LooP[J], IEEE Journal of Solid-State Circuits, 2006,41(5):764-772
    [34]Juarez-Hernandez, E. Diaz-Sanchez, A, A Novel CMOS Charge-Pump Circuit with Positive Feedback for PLL Applications[C].The 8th IEEE International Conference,Sept,2001:349-352
    [35]P.Chaudhury,W.Mohr,and S.Onoe.The 3GPP Proposal for IMT-2000 [J].IEEE Communications Magazine,1999,37(1):72-81
    [36]罗佳明,一种用于无线局域网收发器的时钟锁相环频率合成器设计[D],硕士学位论文,2007.
    [37]R.Steele. Mobile Radio Communications[M].New Jersey:IEEE Press,1992:256
    [38]胡华春,石玉.数字锁相环原理与应用[M].上海:上海科学技术出版社,1990:67-89
    [39]沈连丰,电荷泵数字锁相环频率合成器的设计及性能分析[D],硕士学位论文,2009.
    [40]Pengfei Zhang, Lawrence Der,Dawei Guo, et al.A Single-Chip Dual-Band Direct-Conversion IEEE 802.11a WLAN Transceiver in 0.18um CMOS [J].IEEE Journal of Solid-State Circuits, Sep.2005,40(9):1932-1939
    [41]黄水龙,CMOSΔΣ分数频率合成器的若干关键技术研究[D].北京:清华大学博士论文,2010
    [42]O. NJ, Lee S G,1-GHz CMOS differential VCO with back gate transformer feedback, IEEE Microwave Wireless ComponentLetter,2005,15(11):733-735
    [43]Cheng. Y, Deen. M. J, Chen. C. H, MOSFET modeling for RF IC design[J], IEEE Transactions on Electronic Device,2005,52 (9):1286-1303
    [44]Jian-AnHou and Yeong-HerWang, A 5 GHz Differential Colpitts CMOS VCO Using the Bottom PMOS Cross-Coupled Current Source[J], IEEE Microwave and Wireless Components Letters,2009,19(6):401-403
    [45]Park B, Lee S, Choi S, et al, A 1.2-GHz fully integrated cascode CMOS LC VCO with Q-enhancement circuit[J], IEEE Microwave Wireless Component Letter,2008,18(2):235-243
    [46]H. L Lee et al., A Sigma-delta Fractional-N Frequency Synthesizer using a wideband integrated VCO and a fast AFC technique for SM/GPRS /WCDMA Applications [J], IEEE Journal of Solid-State Circuits,2004,39(7):1164-1169
    [47]Chiu C H, Liang KH, Chang H Y, et al., A low phase noise 26 GHz push-push VCO with a wide tuning range in 0.18um CMOS technology[C], IEEE Asia-Pacific Microwave Conference.2006:11-13
    [48]Arora. H, Klemmer. N, Moriz.J, Enhanced phase noise modeling of fractional-N frequency synthesizer[J], IEEE Transactions on Circuits and Systems-I:Regular Papers,2005,52(2):379-395
    [49]Hwang, M. S., Kim, J., and Jeong D. K. Reduction of pump current mismatch in charge-pump PLL[J], IET electronics letters,2009,45, PP:135-136.
    [50]W. M. C. Sansen, Analog design essentials[M]. Springer,2006
    [51]杨振宇.频率合成器相位噪声分析及全差分电荷泵设计[D].上海:复旦大学硕士学位论文,2007
    [52]LeiY, Koukab A, Declercq, Design and optimization of CMOS prescaler Research in Microelectronics and Electronics [J],2005,27(1):129-132
    [53]B. Razavi, Design of Analog CMOS Integrated Circuits [M]. New York: McGraw Hill,2000
    [54]J. Kim. Design of CMOS adaptive-supply serial links [D]. Ph.D. dissertation, Stanford Univ, Stanford, CA, Dec.2002
    [55]E. Alon, J. Kim et al., Replica compensated linear regulators for supply-regulated phase-locked loops [J], IEEE Journal of Solid-State Circuits, 2006,41(2):413-425.
    [56]T.-H. Lin, Y.-J. Lai, Time-based frequency band selection method for phase-locked loops [J], Electronic Letters,2005,41(11):1279-1281
    [57]陈虎,射频接收机分数分频频率合成器的研究与设计[D].上海:复旦大学硕士学位论文,2010
    [58]Adil Koukab, Yu Lei, Michel J.Declercq. A GSM-GPRS/UMTS FDD-TDD/ WLAN 802.11 a/b/g Multi-standard Carrier Generation System[J], IEEE Journal of Solid-State Circuits, July 2006,41(7):1513-1521
    [59]D.Guermandi, P.Tortori, and A. Gnudi, A 0.83 to 2.5GHz Continuously Tunable Quadrature VCO[J]. IEEE J.Solid-State Circuits,2005,40 (12):2620-2627.
    [60]孙天平,电荷泵锁相环的设计及其相位噪声优化[D].华中科技大学硕士学位论文,2007.
    [61]田颖,高速低噪声电荷泵锁相环设计[D].天津大学硕士学位论文,2007
    [62]李冰,黄宗浩,吴建辉.电荷泵锁相环电路设计及其性能[J].吉首大学学报,2010,31(2):64-68.
    [63]Van der Ziel. Noise in Solid State Devices and Circuits [M]. New York, Wiley 1986.
    [64]T.H.Lee, Hajimiri. Oscillator Phase Noise:a tutorial[J]. IEEE Journal of Solid-State Circuits,2000,35(3):326-336
    [65]Behzad Razavi. Design of Analog CMOS Integrated Circuits[M]. University of California, Los Angeles,1996
    [66]Maria del Hershenson, Hajimiri, et al. Design and optimization of LC oscillators[C]. Proc.ICCAD,1999:296-303
    [67]Ryan Lee Bunch and Sanyay Raman, Large-Signal Analysis of MOS Varactors in CMOS-Gm LC VCOs[J]. IEEE Journal of Solid-State Circuits,2003,38(8): 1325-1332
    [68]A.Karl, F.Behbahani and A.Abid, RF-CMOS Oscillators with Switched Tuning[C], Custom Integrated Circuits Conference,1998:555-558
    [69]A.Hajimiri, T H Lee. Design Issues in CMOS Differential LC Oscillators[J]. IEEE Journal of Solid-State Circuits,1999,34(5):717-724,
    [70]D.B.Leeson. A simple model of feedback oscillator noises spectrum[J]. Proceeding Letters IEEE,1966,54(2):329-330
    [71]C.A.Sharp,A 3-state phase detector can improve your next PLL design[J], EDN Magazine,1976,20(9):55-59
    [72]毕查德.拉扎维,模拟CMOS集成电路设计[M],西安:西安交通大学出版社,2002
    [73]J.A.R Ball, Simulation of acquisition in phase-locked loops incorporating phase-frequency detectors[C], IEEE International Symposisum on Circuits & Systems,1991:2613-2616
    [74]Mozhgan Mansuri,Desn Liu,and Chih-Kong Ken Yang, Fast Frequency Acquisition Phase-Frequency Detectors for Gsamples/s Phase-Locked Loops [J], IEEE Journal of Solid State Circuits,2002,37(10):1331-1334
    [75]H. Kondoh, H. Notani, T.Yoshimura, A 1.5-V 250-MHz to 3.0-V 622-MHz operation CMOS phase-locked loop with precharge type phase-detector [J], IEICE Trans. Electron,1995,78-C(4):381-388
    [76]H.O.Johansson, A Simple Precharged CMOS Phase Frequency Detector[J], IEEE Journal of Solid State Circuits,1998,33(2):295-299
    [77]Robert C, Chang and Lung-Chih Kuo, A Differential-type CMOS phase frequency detector[C], The Second IEEE Asia Pacific Conference on ASICs, 2000:61-64
    [78]Sang Jeon, Tae-Sik Cheung and Woo-Young Choi, Phase/frequency detector for high-speed PLL applications [J], Electronics Letters,1998,34(10):2120-2121
    [79]Kuo-Hsing Cheng, Tse-Hua Yao,Shu-Yu Jiang and Wei-Bin Yang. A Difference Detector PFD For Low Jitter PLL[C]. The 8th IEEE International Conference on Electronids, Circuits and System,2001:2-5
    [80]P. Gray, P. Hurst, S. Lewis, and R. Meyer. Analysis and Design of Analog Integrated Circuits [M], John Wiley Sons, New York,2001.
    [81]David J. Rennie, Design and Optimization of Source Coupled Logic in Multi-Gbit/s Clock and Data Recovery Circuits [D], University of Waterloo, Ontario, Canada,2003
    [82]A.B. Ajikuttira, Wei Liat Chan, Yong Lian, A 5.5-GHz prescaler in 0.18-um CMOS technology[C],2002 IEEE Asia-Pacific Conference on ASIC, 2002:69-72.
    [83]Pellerana.S, Levantino.S, Samori.C, Lacaita L L. A dual-band frequency synthesizer for 802.11a/b/g with fractional-spur averaging technique[C], ISSCC Dig. Tech. Papers,2005:104-106.
    [84]Chang, B., Park, J., and Kim, A 1.2GHz CMOS dual-modulus prescaler using new dynamic D-type flip-flops [J], IEEE J. Solid-State Circuits,1996,31 (5):749-752,.
    [85]C.M.Hung, A Floyed, N.Park and Kenneth K.O, Fully integrated 5.35-GHz CMOS VCOs and prescalers[J], IEEE Trans Microwave Theory and Tech, vol. MTT-49, no.l.pp.17-22, Jan.2001.
    [86]Klepser.B, SchoIz.M, Kucera.J.J. A 5.7GHz Hiperlan SiGe BiCMOS voltage-controlled oscillator and phase-locked loop frequency synthesizer[C]. In Pro. IEEE Radio Frequency Integrated Circuits Symp.,2001:61-64
    [87]J. Navarro and W. Van Noije, "E-TSPC:Extended True Single Phase Clock CMOS circuit technique," in VLSI:Integrated Syst. Silicon, IFIP Int, Conf. VLSI, R. Reis and L. Claesen, Eds., London, U.K., pp.165-176,1997.
    [88]Keliu Shu and Edgar Sanchez-Sinencio, A 5-GHz Prescaler Using Improved Phase Switching[J], IEEE J. Solid-State, pp.85-88,2002.
    [89]M. H. Anis, M. I. Elmasry, Self-timed MOS current mode logic for digital applications[C], IEEE Int Symp on Circuits and Systems,2002:113-116.
    [90]K.Shu, E. Sanchez-Sinencio and, J.Silva-Martinz, A monolithic 2.1-GHz frequency synthesizer with robust phase-switching prescaler and loop capacitance scaling[C], IEEE Proc.ISCAS'2012
    [91]H.R.Rategh and T.H.Lee, Superharmonic Injection Locked Oscillators as Low Power frequency Dividers[C], Symposium on VLSI Circuits Dig est, 1998:132-135.
    [92]P.Kinget,R.Melville,D.Long and V,Gopinathan, An injection-locking scheme for precision quadrature generation[J], IEEE J.Solid-State Circuits, vol.37, pp.845-851, July 2002.
    [93]T.C.Lee et al., A stabilization technique for phase-locked frequency syn-thesizers[J],IEEE J. Solid-State Circuit, voL 38, no.6,p.888-894, Jun.2002.
    [94]Maciej Jan Borkowski, et al., A practical ΔΣ modulator design method based on periodical behavior analysis[J], IEEE Transaction on Circuits and Systems-Ⅱ: Express Briefs, vol.52, no.10, Oct.2005.
    [95]朱敏元,常昌远,郭敏年.一种低功耗高线性度的环形VCO电路[J].电子器件,2006,30(3):815-818.
    [96]Sinisa Milicevic. A Multi-band Voltage-controlled Ring Oscillator [D]. A thesis presented to Carleton University for the degree of master,2005.
    [97]Phase Noise/Phase Jitter Performance of CDCM7005 at Various UMTS, CDMA-xx, and 802.16 Frequencies[C]. SCAA077, July.2005.
    [98]Jaehyouk Choi, Kyutae Lim, Joy Laskar. A Ring VCO with Wide and Linear Tuning Characteristics for a Cognitive Radio System [C]. IEEE Radio Frequency Integrated Circuits Symposium,2008:395-398.
    [99]李骅,衣晓峰,洪志良.一种相位开关型分频器电路的噪声分析.固体电子学研究与进展,2006,36(2):156-161.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700