加速器束流诊断中数字BPM系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
同步辐射光源为当今众多学科基础研究和高技术开发应用研究提供高品质高稳定性的同步光。同步辐射光源中,诊断各种束流参数和改善机器运行性能需要完备的束流测量系统。而束流位置测量系统是加速器诊断中的重要测量系统之一。束流位置测量的对象包括束流轨迹、第一圈位置、平衡轨道、逐圈束流位置以及束流准直。束流测量由信号束流位置探测器(Beam Position Monitor,BPM)完成。前端探测电极与后继信号处理系统两部分构成了信号束流位置探测器。
     上海光源(Shanghai Synchrotron Radiation facility,SSRF)是一台高性能的中能第三代同步辐射光源,是我国迄今为止最大的大科学装置和大科学平台,在科学界和工业界有着广泛的应用价值。
     本论文研究课题是“先进加速器全信息束流诊断技术研究”的一个子课题,课题的内容研究探测器信号处理系统的全数字化实现,课题的最终目标是完成数字化束流位置测量系统电子学(数字BPM系统)的样机,应用于上海光源/上海SINAP深紫外FEL装置中的BPM探头信号处理分析。
     BPM电子学从最初的全模拟信号处理,逐步向数字信号处理过渡。随着模数转换电路与数字信号处理方法的快速发展,近年来BPM电子学出现了全数字化处理的新趋势。本论文正以此为方向,讨论数字化BPM电子学系统所涉及到的各种技术以及设计和实现细节。
     第一章引言简要介绍束流位置测量的测量对象及性能评价,分析电子存储环束流位置探测器的纽扣性电极的输出信号特点。第二章介绍三种常用的束流位置信号处理方法:△/∑、AM-PM和Log-ratio。它们的共同点是必须对原始信号做归一化处理。差比和(△/∑)处理方法适合高精度闭轨测量,并且以信号幅度(能量)为处理对象,这在通信领域中有成熟的处理方法。本论文中使用差比和(△/∑)处理方法进行束流位置获取。
     第三章介绍上海光源对数字BPM系统的功能和性能上的要求。数字BPM电子学的研制分两步走,第一步研究难度相对较小的基于欠采样技术的数字BPM系统,第二步再发展到逐束团数字BPM系统上。为此电子学系统划分为三个模块:模拟信号调理模块、ADC模块与数字主板模块。为了工作的延续性,数字主板模块的性能上要兼容两种数字BPM系统。
     第四章中详细讨论研制第一阶段中三个模块硬件实现的技术路线与细节。模拟信号调理模块部分着重分析射频信号的500MHz中心频率窄带滤波与数字化控制的大动态增益电路实现方法;给出射频电路设计中的电路匹配方式以及级联考虑,以及S参数仿真结果;介绍高频射频电路的PCB板级设计的细节考虑。ADC模块部分重点讨论基于锁相环结构的采样时钟系统对ADC性能的影响;对两种数字BPM系统分别给出采样时钟设计原则;针对采样时钟的关键问题——相位噪声进行细致的分析;ADC模块部分中还讨论了大电流LDO电源的散热设计。数字主板的设计重点是高速数据的接收与缓存。该部分功能实现核心是Virtex4高性能FPGA。结合该FPGA的特点,给出了兼容逐束团数字BPM系统的ADC数据接收逻辑以及存储器接口逻辑的设计,并对存储器接口逻辑进行了完整的时序仿真。同时,对高速存储器接口的信号完整性进行研宄,分别从伪差分电平HSTL与SSTL的匹配选择,信号完整性的IBIS仿真与PCB电磁场仿真,以及地反弹噪声三个方面讨论设计的正确性。
     第五章介绍欠采样数字BPM系统的数字信号处理核心——数字下变频算法,以及它在FPGA中的实现。算法内容涉及高精度数字数控振荡器(NCO)、级联梳状抽取滤波器(CICDecimator)以及498阶FIR抽取滤波器。实际系统中将计算四路采样数据的IQ结果,八通道117.2799MHz数据被同时降采样处理,因此小面积的实现将是系统的关键。
     第六章给出已完成的数字BPM系统的测试结果。包括模拟信号调理模块的滤波性能与增益控制性能测试,高速存储器接口的正确性测试,ADC采样时钟分析测试,数字下变频功能测试以及数字BPM系统联调测试。目前测试结果显示,数字BPM系统对信号幅度测量rms噪声水平在-73dB,满足SSRF对束流位置测量的需求。
Synchrotron radiation facility is a high quality light source for the need of many scientific researches and technological innovations.Beam diagnosis system,which is used for diagnosing beam parameters and improving running status,is important to synchrotron radiation facility.And beam position diagnosis is a key part to beam diagnosis system.Its measurements cover trajetory, first turn,equilibrium,turn-by-turn,beam based alignment and orbit stability.Beam position diagnosis is performed by Beam Position Monitor(BPM),which consists of two parts:detecting sensor and signal processing system.
     Shanghai Synchrotron Radiation facility(SSRF) is a third-generation of synchrotron radiation light source and would be the invaluable tools for Chinese scientific research and industry community.
     This paper research is a subproject of "Research on advanced accelerator beam diagnoses techniques".It deals with fully digital implementation of position sensor signal processing.The goals is developing prototype of digital beam position monitor,which can be used on SSRF and SINAP.
     There are several generations of BPM,staring with analog signal processing.And digital signal processing took the place of analog processing gradually.In recent years,BPM development has a tendency of full digital implementation.The paper research discusses details of various techniques and implementations for digital beam position monitor.
     In first chapter the background of BPM was introduced,including kinds of measurement and the transform from beam position to voltage on detecting sensor.The second chapter introduced there most common processing methods for BPM processing:Δ/Σ,AM-PM and Log-ratio.TheΔ/Σis suitable for close-orbit measurement and deals with amplitude of signal.It can use the theories and techniques of communications.It is the method for BPM system of this paper.
     In the third chapter it was introduced that requirements of BPM system on SSRF.It is planed that two kinds of BPM will be developed.The first one is based on undersample technique which is well-developed in communications.It consists of three parts:analog signal conditioning module, ADC module and digital motherboard.The second one is a bunch by bunch BPM.It is more complicated with analog signal conditioning and A/D conversion.But the two kinds of BPM share a same kind of motherboard.So it needs well-planned when designing the motherboard.
     The hardware techniques used in undersampling BPM was discussed in the fourth chapter. About the analog signal conditioning module implementation mothed for narrow band pass filter of 500MHz center frequency and digitally controlled variable gain circuit were introduced.The RF circuit matching and cascading methods as well as PCB layout considerations were discussed and several S parameter simulation results were post.The ADC sampling clock was an important part of ADC module.The impact of sampling clock on ADC performance was discussed.The principle of sampling clock design for two kinds of BPM was given.The analysis of phase noise in PLL circuits was also included.Another consideration for ADC module was heat sinking design of LDOs.The motherboard was designed with improved data throughput.Some design thoughts were given about high bandwidth ADC data receiving in bunch by bunch BPM.DDRII SRAM and DDR SDRAM's interface with FPGA,including PCB layout design and logic design was discussed.How to keep the signal integrity was the main part of this section.Different kinds of simulation were done in design process,including electromagnetic simulation for PCB,IBIS simulation for HSTL signals.Ground bunch analysis was given for FPGA IO design.
     Digital down converter(DDC) is the key part to DSP of DBPM.The implementation of DDC in FPGA with area consideration was introduced in the fifth chapter.NCO,CIC decimator and 498 order FIR decimator was designed and implanted in FPGA.Modelsim simulation results were given.
     In the sixth chapter,the test report of debugged part of DBPM was given,including filter and gain control performance of analog signal conditioning module,ADC sampling clock phase noise analysis,DDRII SRAM and DDR SDRAM performance,DDC performance and whole system test.It is reckoned from the system test result that 1um turn-by-turn uncertainty could be achieved, which meets the SSRF demand.
引文
[1]加速器中束流诊断技术,合肥同步辐射国家实验室研究生课程讲义
    [2]I K.Yanagida,T.Asaka,et al,Installation of the SPring-8 LINAC BPM System,Proceedings of Linac'2002,2002
    [3]K.Yanagida,T.Asaka,et al,A BPM system for the Spring-8 Linac,Proceedings of Linac'2000,P191-192,2000
    [4]R.E.Shafer.,Beam Position Monitoring,AIP Conference Proceedings 212,Upton,New York,P26-58,1998
    [5]J.Bosser,Beam Instrumentation,CERN-PE-ED 001-92,1994.11
    [6]陈佳洱,加速器物理基础,原子能出版社,1993
    [1]F.Loyer,K.Scheidt,Electron beam position monitor:performances considerations,Proceedings of DIPAC' 93,P21,1993
    [2]加速器中束流诊断技术,合肥同步辐射国家实验室研究生课程讲义
    [3]Signal Processing for Beam Position Monitors,Proceedings of BIW'2000,2000
    [4]马力,加速器束流测量讲义,中科院高能物理研究所加速器中心
    [5]G.Aiello,M.R.Mills,Log-ratio technique for beam position monitor systems,BIW92,P301
    [6]R.E.Shafer,Log-ratio signal processing technique for beam position monitors,BIW92,P 120
    [7]K.Haga,T.Honda,et al.,A New Purification Method for Single Bunch Operation at the Photon Factory Storage Ring,Proceedings of 1999 IEEE Particle Accelerator Conference,New York,March 1999,P2310-2312,1999
    [8]J.A.Hinkson,K.B.Unser,Precision Analog Signal Processor for Beam Position Measurements in Electron Storage Rins,2nd European Workshop on beam Diagnostics and Instrumentation for Particle Accelerators,1995.5
    [9]T.Fujita,S.Sasaki,M.Shoji,T.Takasima,Commissioning and Status of New BPM Electronics for COD Measurement at the SPring-8 Storage Ring,PAC07,Albuquerque,New Mexico,USA,2007
    [1]阎映炳,上海光源束流位置测量数据埃及系统研制及初步应用研究,博士毕业论文,2009
    [2]冷用斌,BPM束流信号处理器技术规格说明书,2008
    [3]上海光源(SSRF)归家重大科学工程初步设计,上海建筑设计研究院有限公司,2004.12
    [4]SSRF储存环束流位置测量系统详细设计,上海光源内部技术报告,2005
    [1].格列别尼科夫,射频与微波功率放大器设计,电子工业出版社,2006.4
    [2].陈艳华,李朝晖,夏玮,ADS应用详解——射频电路设计与仿真人民邮电出版社,2008.9
    [3].http://www.agilent.com/find/eesof
    [4].Ailent Technologies,Using Circuit Simulators,2005.8
    [5].李辑熙,射频电路与芯片设计要点,高等教育出版社,2007
    [6].Maxim-IC,Impedance Matching and the Smith Chart:The Fundamentals,APPLICATION NOTE 742,2002.7
    [7].李智群,王志功,射频集成电路与系统,科学出版社,2008.8
    [8].National Instruments,Common RF and Microwave Measurements,NI Develop Zone
    [9].林冠谕,封装寄生效应对表面声波元件效能的影响研究,硕士学位论文,,2002
    [10].四川压电与声光技术研究所陶瓷研究室,声表面波滤波器的匹配和使用,应用手册
    [11].Tai-SAW Technology,Saw Filter-500MHz TA0506A Datasheet
    [12].VITELEFILTER,TFS500A Datasheet
    [13].Mini_Circuits,Gali5+Datasheet
    [14].Mini_Circuits,Gali52+Datasheet
    [15].C.T.Armijo,R.G.Meyer,A new wide-band Darlington amplifier,IEEE Journal of Solid-State Circuits,Volume 24,Issue 4,Page:1105-1109,1998
    [16].Microwaves101,Attenuators,Microwave Encyclopedia
    [17].Hettite,HMC427LP3 Datahseet
    [18].M.Hunter,The basics of radio system design,How to Design RF Circuits(Ref.No.2000/027),IEE Training Course 5 Page:10/1-10/7,2000.8
    [19].Howard Johnson,Martin Graham,High-Speed Digital Design:A Handbook of Black Magic,Addison Wesley/Pearson,2004.5
    [20].G.E.Ponchak,Donghoon Chen,Jong-Gwan Yook,Characterization of Plated Via Hole Fences for Isolation Between Stripline Circuits in LTCC Packages,Microwave Symposium Digest,1998 IEEE MTT-S International Volume 3,Page1831-1834,1998.7
    [21].Yuasa,Takeshi,Tamotsu Nishino,and Hideyuki Oh-hashi,Simple Design Formula for Parallel Plate Mode Suppression by Ground Via-Holes,Mitsubishi Electric Corp.,5-1-1Ofuna,Kamakura,Kanagawa,247-8501 Japan.
    [22].Linear Technology,LTC2208-14 14-Bit,130Msps ADC Datasheet
    [23].Rob Reeder,Transformer-Coupled Front-End for Wideband A/D Converters,ADI Application Notes,2005.8
    [24].张庆民,吴义宝,安琪,王砚方,用随机起伏信号(dither)方法改善ADC的SFDR指标,核电子学与探测技术,2001年第21卷第02期,2001
    [25].B.Brannon,,Aperture Uncertainty and ADC System Performance,Analog Devices Application Note AN-501,2000.
    [26].Ramon M.Cerda,Impact of ultralow phase noise oscillators on system performance,rfdesign.com,2006.7
    [27].J.A.Barnes et al.,Characterization of Frequncy Stability,IEEE Trans.Instrum.Meas.IM-20,105-120,1971.5
    [28].Maxim-IC,Clock(CLK) Jitter and Phase Noise Conversion,APPLICATION NOTE 3359
    [29].V.F.Kroupa,Jitter and phase noise in frequency dividers,Instrumentation and Measurement,IEEE Transactions on,Volume 50,Issue 5,Page:1241-1243,2001.10
    [30].Floyd M.Gardner,锁相环技术,人民邮电出版社,2007.11
    [31].Brad Brannon,Understand the effects of clock jitter and phase noise on sampled systems,Application Note-756
    [32].D.Armaroli,V.Liberali,C.Vacchi,Behavioural analysis of charge-pump PLUs,Circuits and Systems,1995.,Proceedings.,Proceedings of the 38th Midwest Symposium on,Volume 2,Page893-896,1995.8
    [33].白居宪,直接数字频率合成,西安交通大学出版社,2007.7
    [34].F.Kroupa,Phase and Amplitude Disturbances in Direct Digital Frequency Synthesizers,Ultrasonics,Ferroelectrics and Frequency Control,IEEE Transactions on,Volume46,Issue3,Page481-486,1999.5
    [35].Analog Device,AD9958 2-Channel,500 MSPS DDS Datasheet
    [36].Analog Device,AD9510 1.2 GHz Clock Distribution IC,PLL Core
    [37].来新泉,,专用集成电路设计实践,,西安电子科技大学出版社,2008.11
    [38].Bob Wolbert,Designing With Low-Dropout Voltage Regulators,Micrel Design Guide
    [39].Micrel,MIC29150/29300/29500/29750 High-Current Low-Dropout Regulators Datasheet
    [40].Bob Wolbert,Designing P.C.Board Heat Sinks,Micrel Application Hint 17
    [41].Xilinx,Virtex-4 User Guide,UG070,2007.10
    [42].Xilinx,Virtex-4 Datasheet:DC and Switching Characteristics,DS302,2007.10
    [43].EIA/JEDEC Standard,High Speed Transceiver Logic(HSTL) EIA/JESD8-6,1995.8
    [44].JESD8-9B,-ADDENDUM No.9B to JESD8-STUB SERIES TERMINATED LOGIC FOR 2.5 VOLTS(SSTL_2),2002.10
    [45].Actel,IBIS Models:Background and Usage,Application Note AC292
    [46].Actel,Simultaneous Switching Noise and Signal Integrity,Application Note AC263
    [47].Xilinx,Managing Ground Bounce in Large FPGAs,XAPP689,2003.9
    [48].Microm,Hardware Tips for Point-to-Point System Design,Technical Note TN46-14
    [49].Xilinx,DDR2 SDRAM Physical Layer Using Direct-Clocking Technique,XAPP701,2007.12
    [50].Xilinx,Synthesis and Simulation Design Guide
    [1]http://en.wikipedia.org/wiki/Superheterodyne_receiver
    [2]杨小牛,楼才义,徐建良,软件无线电原理与应用.电子工业出版社,2001
    [3]Xitinx,XtremeDSP for Virtex4 FPGA User Guide,Xilinx UG703,2007.10
    [4]白居宪,直接数字频率合成,西安交通大学出版社,2007.7
    [5]Xilixn,DDS v5.0 Product Specification,Xilinx DS246,2004.4
    [6]Arthur B.Williams;Fred J.Taylor,Electronic Filter Design Handbook,科学出版社,2008,9
    [7]塔特尔比,软件无线电技术与实现,电子工业出版社,2004.6
    [8]Eugene B.Hogenauer,An Economical Class of Digital Filters for Decimation and Interpolation,IEEE Transactions on Acoustics,Speech,and Signal Processing,Vol.ASSP-29,No.2,1981.8
    [9]胡广书,数字信号处理:理论、算法与实现,清华大学出版社,2003.8
    [10]Uwe Meyer-Baese,数字信号处理的FPGA实现,清华大学出版社,2003.1
    [11]J.H.McClellan,T.W.Parks,A personal history of the Parks-McClellan algorithm,Signal Processing Magazine,IEEE,Volume 22,Issue 2,Mar 2005 Page:82-86,2005
    [12]A.V.Oppenheim,R.W.Schafer:Discrete-Time Signal Processing,Presntice Hill,Englewood Cliffs,1992
    [13]Purdue University:ECE438,Short help on Parks-McClellan design of FIR Low Pass Filters using Matlab,Digital Signal Processing with Applications
    [1]Maria George,Peter Alfke,Linear Feedback Shift Registers in Virtex Devices,XAPP210 (v1.3),Xilinx,2006.4
    [2]Srinivasan,S.K.Islam,G.T.Hendrickson,A method for the estimation of aperture uncertainty in A-D converters,Proc.ISCAS,vol.3,pp.Ⅲ-125 Ⅲ-128,2002
    [3]R&S(?)SMA100A Signal Generator Specifications Version 03.00,Rohde & Schwarz GmbH &Co.KG,2008.5
    [4]VS-500 Voltage Controlled SAW Oscillator,Vectron International,2006.4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700