用户名: 密码: 验证码:
MR功能成像对慢性肾脏病肾脏损伤的临床相关研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
慢性肾脏病(chronic kidney disease, CKD)是以慢性肾小球和/或肾小管间质病变导致的进行性肾功能损伤为特征的疾病,其发病率高,肾脏纤维化和组织缺氧被认为是导致CKD进展的重要因素。目前所用的临床指标对早期CKD的识别,以及对肾功能和肾脏病理改变的检测缺乏敏感性和特异性。探索无创性的、敏感性及可重复性强的检查方法来评价肾损伤的程度,是当前临床工作者热切关注的课题。本研究应用3.0T MR对慢性肾脏病患者及健康志愿者的肾脏进行弥散加权成像(diffusion weightedimaging, DWI)、弥散张量成像(diffusion tensor imaging, DTI)和血氧水平依赖(blood oxygen level dependent, BOLD)成像,分别测量研究对象的肾脏皮质和髓质表观弥散系数(apparent diffusion coefficient, ADC)值、各向异性分数(fractional anisotropy, FA)值及R2*值,并比较CKD患者与健康志愿者肾脏各检测值的差异,同时与临床相关指标、肾脏病理组织学评分及免疫组织化学指标进行对照分析,探讨MR功能成像对CKD患者肾脏损伤程度临床应用的价值。
     第一部分MR弥散加权成像对慢性肾脏病肾组织纤维化的研究
     目的:应用3.0T MR弥散加权成像对慢性肾脏病患者的肾脏纤维化程度进行检测,评价其临床应用价值。
     方法:选取2012年5月至2013年6月间在河北医科大学第三医院肾内科就诊的40例CKD患者,其中男性25例,女性15例,年龄16-71岁,平均年龄41.6±17.1岁。选取30例健康志愿者作为对照组,其中男性20例,女性10例,年龄24-60岁,平均年龄38.3±14.1岁。所有CKD患者及健康志愿者均采用3.0T MR进行扫描。扫描序列包括MRI常规扫描及弥散加权成像。在ADC图上肾皮质和髓质均放置感兴趣区域(region ofinterest, ROI),测量双侧肾脏皮质及髓质的ADC值。在MR检查前后一周时间内,对CKD患者留取血尿样本,检测血肌酐(serum creatinine, SCr)和24小时尿蛋白(24-h-urinary protein,24-h-UPRO)。通过SCr值计算出估算的肾小球滤过率(estimated glomerular filtration rate, eGFR)。其中有25例患者在MR检查后不超过2周的时间内进行了肾组织活检。肾活检标本行常规苏木素-伊红染色(atoxvlin and eosin stain,HE)、糖元染色(Periodic Acid.Shift's Reaction,PAS)、Masson染色及过碘酸六胺银染色(periodic acid.silver metheramine,PASM)检查,观察CKD肾脏病理损伤程度,分别对肾小球、肾小管间质和肾小管周血管的纤维化硬化进行观察,并得出评分。免疫组织化学法检测肾组织中TGF-β1及α-SMA蛋白的表达,光镜下观察并进行图像采集,每例标本随机选取10个高倍视野,计算每个视野内阳色染色区域的积分光密度值,最后计算其均值用于统计学分析。CKD患者和健康对照组之间肾髓质和肾皮质的ADC值的差异性分别进行了两独立样本t检验。肾皮质ADC值和肾髓质ADC值之间的差异也采用两独立样本t检验比较。探讨ADC值和SCr/24-h-UPRO/eGFR之间的关系,通过bivariate相关分析计算相关系数,肾小球病变/肾小管病变组织病理学评分和免疫组织化学指标TGF-β1及α-SMA同肾皮质/肾髓质的ADC值也进行bivariate相关分析。
     结果:40例CKD患者中有35例图像可以进行分析。肾皮质和髓质的ADC值的组内相关系数(intraclass correlation coefficients, ICC)分别为0.79和0.82。CKD组肾皮质和髓质的ADC值与健康对照组相比均明显降低。CKD组显示肾皮质的ADC值和SCr/24-h-UPRO呈显著的负相关,而与eGFR呈显著正相关。肾髓质的ADC值和SCr之间也有显著的负相关性。发现肾髓质的ADC值与eGFR和24-h-UPRO之间没有显著的相关性。肾皮质ADC值与肾小球病变组织病理学评分呈显著负相关,r=-0.610,p=0.001。肾皮质ADC值与肾小管病变组织病理学评分呈显著负相关,r=-0.778,p=0.000。肾髓质ADC值与肾小球病变组织病理学评分呈显著负相关,r=-0.398,p=0.049。肾髓质ADC值与肾小管病变组织病理学评分呈显著负相关,r=-0.640,p=0.001。肾皮质ADC值与α-SMA的积分光密度值之间呈显著负相关,r=-0.441,p=0.027。肾髓质ADC值与α-SMA的积分光密度值之间无显著相关性,r=-0.354,p=0.083。肾皮质ADC值与TGF-β1积分光密度值之间无显著相关性,r=-0.362,p=0.075。肾髓质的ADC值与TGF-β1积分光密度值之间无显著相关性,r=-0.289,p=0.162。
     结论:3.0T MR弥散加权成像检测CKD患者肾脏的ADC值与eGFR、肾脏组织纤维化程度及α-SMA表达之间具有一定的相关性,可用于CKD患者肾脏纤维化程度的检查评估。第二部分MR弥散张量成像对慢性肾脏病肾组织病变的研究
     目的:应用3.0T MR弥散张量成像对慢性肾脏病患者的肾脏病变程度进行检测,评价其临床应用价值。
     方法:选取2012年5月至2013年6月间在河北医科大学第三医院肾内科就诊的40例CKD患者,其中男性25例,女性15例,年龄16-71岁,平均年龄41.6±17.1岁。64名健康志愿者作为对照组,其中男性39例,女性25例,年龄21-60岁,平均年龄38.5±13.3岁。所有CKD患者及健康志愿者均采用3.0T MR进行扫描。扫描序列包括MRI常规扫描及弥散张量成像。在FA图上分别测量双侧肾脏皮质及髓质的FA值。每个研究对象均选择最靠近肾门的冠状面FA图像进行感兴趣区的测量。分别在肾的上极、中部及下极肾皮质区放置3个ROI,采用的结果为双侧肾6个肾皮质上ROI的平均值。在MR检查前后一周时间内,对CKD患者留取血尿样本,检测血肌酐(SCr)和24小时尿蛋白(24-h-UPRO)。通过SCr值计算出估算的肾小球滤过率(eGFR)。其中有24例患者在MR检查后不超过2周的时间内进行了肾组织活检。肾活检标本行常规HE染色、PAS染色、Masson染色及PASM染色检查。观察CKD肾脏病理损伤程度,分别对肾小球、肾小管间质和肾小管周血管的纤维化硬化进行观察,并得出评分。免疫组织化学法检测肾组织中TGF-β1及α-SMA蛋白的表达,光镜下观察并进行图像采集,每例标本随机选取10个高倍视野,计算每个视野内阳色染色区域的积分光密度值,最后计算其均值用于统计学分析。将两位医师测得的肾皮质和肾髓质FA值用组内相关系数进行一致性分析。CKD患者和健康对照组之间肾髓质和肾皮质的FA值分别进行了比较,进行两独立样本t检验。肾皮质FA值和肾髓质FA值之间的差异也采用两独立样本t检验进行比较。通过bivariate相关分析探讨FA值和SCr/24-h-UPRO/eGFR之间的关系,肾小球、肾小管病理学评分、免疫组织化学TGF-β1、α-SMA的积分光密度值分别同肾皮质、肾髓质的FA值也进行bivariate相关性分析。
     结果:40例CKD患者中排除7例患者DTI图像伪影较重,共对33例患者图像进行了分析。肾皮质和髓质的FA值的组内相关系数分别为0.77和0.56。CKD组肾皮质和肾髓质FA值与健康对照组相比均具有显著性差异,CKD组肾皮质FA值明显低于对照组。CKD组肾髓质的FA值与对照组相比也明显降低。CKD组肾皮质FA值明显低于髓质FA值,t=-3.598,p=0.001。对照组肾皮质FA值也明显低于髓质FA值, t=-15.703,p=0.000。
     肾皮质的FA值和SCr呈显著的负相关,肾皮质的FA值与eGFR显著正相关。临床指标中肾髓质的FA值仅与eGFR呈显著正相关。无论是肾皮质还是肾髓质的FA值和24-h-UPRO之间均无显著的相关性。肾皮质FA值与组织病理学肾小球的评分呈显著负相关,r=-0.448,p=0.028。肾皮质FA值与组织病理学肾小管的评分呈显著负相关,r=-0.487,p=0.016。肾髓质的FA值与组织病理学肾小球评分呈显著负相关,r=-0.463,p=0.023。肾髓质的FA值与组织病理学肾小管评分呈显著性负相关,r=-0.430,p=0.036。肾皮质FA值与α-SMA的积分光密度值之间呈显著负相关,r=-0.636,p=0.001。肾髓质FA值与α-SMA的积分光密度值之间呈显著相关性,r=-0.432,p=0.035。肾皮质FA值与TGF-β1积分光密度值之间无显著相关性,r=-0.175,p=0.401。肾髓质的FA值与TGF-β1积分光密度值之间无显著相关性,r=-0.189,p=0.357。
     结论:3.0T MR弥散加权成像获得的FA值,可在一定程度上定量评价CKD患者肾功能及肾脏病理变化的程度。第三部分MR BOLD成像对慢性肾脏病肾组织氧合状态的研究
     目的:评价3.0T MR血氧水平依赖(BOLD)成像对慢性肾脏病患者肾组织氧合状态的探测能力及临床应用价值。
     方法:选取2012年5月至2013年6月间在河北医科大学第三医院肾内科就诊的40例CKD患者,其中男性25例,女性15例,年龄16-71岁,平均年龄41.6±17.1岁。65名健康志愿者作为对照组,其中男性39例,女性26例,平均年龄38.3±13.3岁,年龄范围21-60岁。所有CKD患者及健康志愿者均采用3.0T MR进行扫描。扫描序列包括MRI常规成像及BOLD成像。在T2*图上分别测量双侧肾脏皮质及髓质的T2*值,并计算得出R2*值。每个研究对象均选择最靠近肾门的冠状面BOLD图像进行感兴趣区的测量。分别得到肾皮质R2*值、肾髓质R2*值,并计算出肾髓质/肾皮质R2*比值。在MR检查前后一周时间内,对CKD患者留取血尿样本,检测血肌酐(SCr)和24小时尿蛋白(24-h-UPRO)。通过SCr值计算出估算的肾小球滤过率(eGFR)。其中有25例患者在MR检查后不超过2周的时间内进行了肾组织活检。肾活检标本行常规HE染色、PAS染色、Masson染色及PASM染色检查。观察CKD肾脏病理损伤程度,分别对肾小球、肾小管间质和肾小管周血管的纤维化硬化进行观察,并得出评分。免疫组织化学法检测肾组织中TGF-β1及α-SMA蛋白的表达,光镜下观察并进行图像采集,每例标本随机选取10个高倍视野,计算每个视野内阳色染色区域的积分光密度值,最后计算其均值用于统计学分析。将两位医师测得的肾皮质R2*值、肾髓质R2*值用组内相关系数进行一致性分析。采用两独立样本t检验分别比较CKD患者和健康对照组之间肾皮质R2*值、肾髓质R2*值及肾髓质/肾皮质R2*比值的差异。肾皮质R2*值和肾髓质R2*值之间的差异也采用两独立样本t检验比较。通过bivariate相关分析探讨肾皮质R2*值、肾髓质R2*值以及肾髓质/肾皮质R2*比值和SCr/24-h-UPRO/eGFR之间的相关关系,肾小球、肾小管病理学评分和免疫组织化学TGF-β1、α-SMA的积分光密度值分别同肾皮质R2*值、肾髓质R2*值及肾髓质/肾皮质R2*比值进行bivariate相关分析。
     结果:40例CKD患者中35例患者BOLD图像进行了分析。肾皮质和髓质的R2*值的组内相关系数分别为0.81和0.72。CKD组肾皮质R2*明显低于肾髓质R2*值,t=-7.576,p=0.000。对照组肾皮质R2*明显低于髓质R2*值,t=-13.467,p=0.000。CKD组肾髓质的R2*值与对照组肾髓质相比明显增高,CKD组肾髓质/肾皮质R2*比值与对照组相比明显增高,CKD组肾皮质R2*值与健康对照组无显著性差异。肾皮质R2*值、肾髓质的R2*值以及肾髓质/肾皮质R2*比值和各临床指标及病理组织学评分均无显著的相关性。肾皮质R2*值与组织病理学肾小管的评分无显著相关。肾髓质与组织病理学肾小球及肾小管病变的评分呈显著相关。肾髓质/肾皮质R2*比值与肾小球病变评分呈显著相关。肾皮质R2*值与仅与TGF-β1积分光密度值之间有显著相关性。肾髓质R2*值与α-SMA的积分光密度值及TGF-β1积分光密度值之间无显著相关性。肾髓质/肾皮质R2*比值与α-SMA的积分光密度值及TGF-β1积分光密度值之间无显著相关性。
     结论:3.0T MR BOLD成像能够在一定程度上定量评价CKD患者肾脏氧合变化的程度。
Chronic kidney disease (CKD) is a prevalence disease and characterizedby progressive loss of kidney function due to chronic glomerular and/ortubulointerstitial injury. Renal fibrosis and hypoxia is considered to beimportant factors leading to the development of CKD. Clinical indicatorscurrently used for early CKD lack of sensitivity and specificity for thedetection of changes in renal function and renal pathology. To explore anoninvasive, sensitive and repeatable inspection method to evaluate the degreeof renal damage, is the current clinical workers eager concern. Diffusionweighted imaging (DWI), diffusion tensor imaging (DTI), and bloodoxygenation level dependent (BOLD) MRI were used to evaluate CKD patientsin our study. Apparent diffusion coefficient (ADC) value, FA value, and R2*value were measured on both renal cortex and medulla in patients with CKDusing3.0T MR scanner. The difference between healthy volunteers and CKDpatients were analyzed according to renal cortex and medulla. The aim of thisstudy was to explore the clinical application value of functional MR imaging inpatients with CKD. The correlation between MR data and clinical indexes,renal histopathological scores and immunohistochemical markers wereanalyzed.
     Part1Assessment of renal fibrosis in chronic kidney disease using
     diffusion weighted magnetic resonance imaging
     Objective: To assess the performance of diffusion weighted imaging(DWI) for the assessment of renal fibrosis in chronic kidney disease (CKD),with histopathology as a reference standard.
     Methods: From May2013to June2012, forty patients (25male,15female, mean age41.6±17.1years, range16-71years) with a clinicaldiagnosis of CKD were recruited for participation in this study in nephrology department of the third hospital of Hebei medical university. Thirty healthyvolunteers (20male and10women; average age38.3±14.1years, range24-60years) were also recruited and served as controls. All subjects underwent bothstandard MRI and DW MRI. To measure ADC values of both kidneys, ROIswere placed in the medulla and cortex on the ADC map. For CKD patients,serum creatinine (SCr) and24-h-urinary protein(24-h-UPRO) were obtainedwithin one week before or after MR scan. eGFRs were calculated from SCrmeasurements for all subjects. Renal biopsy was performed in25patients withCKD within2weeks following the MRI scans. The atoxvlin and eosin (HE)stain, periodic acid shift's reaction (PAS) stain, Masson stain, and periodicacid-silver methenamine (PASM) stain were used for pathologic score of renalfibrosis. The sclerotic/fibrotic lesions of glomerulus and renal tubuleinterstitial were evaluated and scored. For the immunohistochemistry test ofTGF-β1and α-SMA, the images were obtained and analzed by the imageanalysis system under light microscope. Ten observation fields were selectedrandomly for each case. After scaled the image, the integrated optical densitywas calculated for each view. Finally, average of the integrated optical densitywas served as data for statistic. Mean medullary and cortical ADC valuesbetween CKD patients and healthy control subjects were compared using twoindependent samples t test, respectively. The difference between renal corticalADC and medullary ADC were analyzed using two independent sample t testfor healthy control subjects and CKD patients respectively. Bivariatecorrelation coefficients were used to investigate the relationship between ADCvalue and SCr/24-h-UPRO/eGFR. Bivariate correlation coefficients were usedto evaluate the relationship between ADC value and renalglomeruli/tubulo-interstial histopathological scores and immunohistochemicalmarkers for TGF-β1and α-SMA respectively.
     Results: Data from35out of40patients could be successfully analyzed.ICC of renal cortical ADC values and medullary ADC values were0.79and0.82respectively. Cortical and medullary ADC values in patients with CKDwere significantly decreased when compared to those from healthy controls. In CKD group, a significant negative correlation was found between corticalADC values and SCr/24-h-UPRO, and significant positive correlation wasfound between cortical ADC values and eGFR. There was also significantnegative correlation between medullary ADC values and SCr. No significantlycorrelation was found between medullary ADC values and eGFR/24-h-UPRO.There was a significant inverse correlation between cortical ADC andglomeruli lesions histopathologic score, with r=-0.610, p=0.001. There wasa significant inverse correlation between cortical ADC and tubulo-interstiallesions histopathologic score, with r=-0.778, p=0.000. Significant inversecorrelation was found between medullary ADC and glomeruli lesionshistopathologic score, with r=-0.398, p=0.049. Significant inversecorrelation was found between medullary ADC and tubulo-interstial lesionshistopathologic score, with r=-0.640, p=0.001. There was a significantinverse correlation between cortical ADC and theintegrated optical density ofα-SMA, with r=-0.441,p=0.027. No significant correlation was foundbetween medullary ADC and theintegrated optical density of α-SMA, with r=-0.354, p=0.083. No significant correlation was found between cortical ADCand theintegrated optical density of TGF-β1, with r=-0.362, p=0.075. Nosignificant correlation was found between medullary ADC and theintegratedoptical density of TGF-β1, with r=-0.289, p=0.162.
     Conclusion:3.0T MR diffusion weighted imaging in detection of renalADC in patients with CKD has certain correlation with eGFR and expressionofα-SMA. This can be used to assess the severity of renal fibrosis in patientswith CKD.
     Part2Assessment of renal lesions in patients with chronic kidney
     disease by diffusion tensor magnetic resonance imaging
     Objective: To evaluate the clinical value of3.0T diffusion tensor MRimaging in detecting renal lesions in patients with chronic kidney disease.
     Methods: From May2013to June2012, forty patients (25male,15female, mean age41.6±17.1years, range16-71years) with a clinicaldiagnosis of CKD were recruited for participation in this study in nephrology department of the third hospital of Hebei medical university. Sixty-fourhealthy volunteers (39male and25women; average age38.5±13.3years,range21-60years) were also recruited and served as controls. All of thesubjects underwent both standard MRI and diffusion tensor MRI. To measureFA values of both kidneys, ROIs were placed in the medulla and cortex on theADC map. The coronal slices closest to the renal hilum of the left and rightkidneys were selected for ROI analysis. ROIs were placed at the upper, middleand lower pole of each kidney in the medulla and cortex on the FA map. Foreach subject, mean cortical ADC values were obtained by averaging6corticalROIs obtained from both kidneys. Similarly, mean medullary ADC valueswere obtained by averaging6medullary ROIs obtained from both kidneys.For CKD patients, serum creatinine (SCr) and24-h-urinary protein(24-h-UPRO) were obtained within one week before or after MR scan. eGFRswere calculated from SCr measurements for all subjects.
     Renal biopsy was performed in25patients with CKD within2weeksfollowing the MRI scans. The HE stain, PAS stain, Masson stain, and PASMstain were used for pathologic score of renal fibrosis. The sclerotic/fibroticlesions of glomerulus and renal tubule interstitial were evaluated and scored.For the immunohistochemistry test of TGF-β1and α-SMA, the images wereobtained and analzed by the image analysis system under light microscope.Ten observation fields were selected randomly for each case. After scaled theimage, theintegrated optical density was calculated for each view. Finally,average of theintegrated optical density was served as data for statistic. Dataon intra-observer agreement was determined by intraclass correlationcoefficients (ICC). Mean medullary and cortical FA values between CKDpatients and healthy control subjects were compared using two independentsamples t test, respectively. The difference between renal cortical FA andmedullary FA were analyzed using two independent sample t test for healthycontrol subjects and CKD patients respectively. Bivariate correlationcoefficients were used to investigate the relationship between FA value andSCr/24-h-UPRO/eGFR. Bivariate correlation coefficients were used to evaluate the relationship between FA values and renal histopathological scoresand immunohistochemical markers for TGF-β1and α-SMA respectively.
     Results: Data from33out of40patients could be successfully analyzed.ICC of renal cortical FA values and medullary FA values were0.77and0.56respectively. Cortical and medullary FA values in patients with CKD weresignificantly decreased when compared to those from healthy controls. InCKD group, cortical FA was significantly lower than medullary FA, witht=-3.598,p=0.001. In control group, cortical FA was significantly lower thanmedullary FA, with t=-15.703,p=0.000. Significant negative correlation wasfound between cortical ADC values and SCr for CKD group. Significantpositive correlation was found between cortical FA values and eGFR. Therewas significant positive correlation between medullary FA values and eGFR.No significantly correlation was found between cortical/medullary ADCvalues and eGFR/24-h-UPRO. There was a significant inverse correlationbetween cortical FA and glomeruli lesions histopathologic score, with r=-0.448, p=0.028. There was a significant inverse correlation between corticalFA and tubulo-interstial lesions histopathologic score with r=-0.487, p=0.016.Significant inverse correlation was found between medullary FA andglomeruli lesions histopathologic score, with r=-0.463, p=0.023. Significantinverse correlation was found between medullaryFA and tubulo-interstiallesions histopathologic score, with r=-0.430, p=0.036.
     There was a significant inverse correlation between cortical FA and theintegrated optical density of α-SMA, with r=-0.636, p=0.001. There was asignificant inverse correlation between medullary FA and the integratedoptical density of α-SMA, with r=-0.432, p=0.035. No significantcorrelation was found between cortical FA and theintegrated optical density ofTGF-β1, with r=-0.175, p=0.401。No significant correlation was foundbetween medullary FA and the integrated optical density of TGF-β1, with r=-0.189, p=0.357.
     Conclusion: Renal ADC values of3.0T MR DTI could quantitivelyevaluate the renal pathology changes in patients with CKD.
     Part3Assessment of renal oxygenation in patients with chronic kidney
     disease by blood oxygenation level dependent MR imagingObjective: To evaluate the value of clinical application of3.0T blood oxygenlevel-dependent (BOLD)MR imaging in detecting renal oxygenation inpatients with chronic kidney disease.
     Methods: From May2013to June2012, forty patients (25male,15female, mean age41.6±17.1years, range16-71years) with a clinicaldiagnosis of CKD were recruited for participation in this study in nephrologydepartment of the third hospital of Hebei medical university. Sixty-fivehealthy volunteers (39male and26women; average age38.3±13.3years,range21-60years) were also recruited and served as controls. All of thesubjects underwent both standard MRI and BOLD MRI. To measure T2*values of both kidneys, ROIs were placed in the medulla and cortex on theT2*map. The coronal slices closest to the renal hilum of the left and rightkidneys were selected for ROI analysis. Then cortical R2*values, medullaryR2*values and medulla/cortex R2*ratio could be calculated. For CKDpatients, serum creatinine (SCr) and24-h-urinary protein (24-h-UPRO) wereobtained within one week before or after MR scan. eGFRs were calculatedfrom SCr measurements for all subjects. Renal biopsy was performed in25patients with CKD within2weeks following the MRI scans. The HE stain,PAS stain, Masson stain, and PASM stain were used for pathologic score ofrenal fibrosis. The sclerotic/fibrotic lesions of glomerulus and renal tubuleinterstitial were evaluated and scored. For the immunohistochemistry test ofTGF-β1and α-SMA, the images were obtained and analzed by the imageanalysis system under light microscope. Ten observation fields were selectedrandomly for each case. After scaled the image, the integrated optical densitywas calculated for each view. Finally, average of the integrated optical densitywas served as data for statistic. Data on intra-observer agreement wasdetermined by intraclass correlation coefficients (ICC). Mean cortical R2*values, medullary R2*values and medulla/cortex R2*ratio between CKDpatients and healthy control subjects were compared using two independent samples t test, respectively. The difference between renal cortical R2*andmedullary R2*were analyzed using two independent sample t test for healthycontrol subjects and CKD patients respectively. Bivariate correlationcoefficients were used to investigate the relationship between R2*value andSCr/24-h-UPRO/eGFR. Bivariate correlation coefficients were used toevaluate the relationship between cortical R2*values, medullary R2*values,medulla/cortex R2*ratio, and glomeruli lesions histopathologic score,tubulo-interstial lesions histopathologic score, the integrated optical density ofα-SMA, the integrated optical density of TGF-β1.
     Results: Data from35out of40patients could be successfully analyzed.ICC of renal cortical R2*values and medullary R2*values were0.81and0.72respectively. cortical R2*was significantly lower than medullary FA, with t=-7.576, p=0.000. In control group, cortical R2*was significantly lower thanmedullary FA, with t=-13.467, p=0.000. Medullary R2*values in patientswith CKD were significantly increased when compared to those from healthycontrols. Medulla/cortex R2*ratio in patients with CKD were significantlyincreased when compared to those from healthy controls. No significantlydifference of cortical R2*between CKD and controls. No significantlycorrelation was found between cortical R2*values, medullary R2*values,medulla/cortex R2*ratio, and SCr,24-h-UPRO, eGFR, glomeruli lesionshistopathologic score, tubulo-interstial lesions histopathologic score.Significant correlation was found between medullary R2*values andglomeruli lesions histopathologic score, tubulo-interstial lesionshistopathologic score. Significant correlation was found betweenmedulla/cortex R2*ratio and glomeruli lesions histopathologic score,tubulo-interstial lesions histopathologic score. There was a significantcorrelation between corticalR2*and the integrated optical density of TGF-β1.No significant correlation was found between medullary R2*and theintegrated optical density of α-SMA and TGF-β1. No significant correlationwas found between medulla/cortex R2*ratio and the integrated optical densityof α-SMA or TGF-β1.
     Conclusion:3.0T BOLD MR could quantitively evaluate theoxygenation changes in patients with CKD.
引文
1Shiiki H, Saito T, Nishitani Y, et al. Prognosis and risk factors foridiopathic membranous nephropathy with nephrotic syndrome in Japan.Kidney Int2004;65(4):1400-1407
    2Fleischmann D. MDCT of renal and mesenteric vessels. Eur Radiol2003;13Suppl5:M94-101
    3Zhang H, Prince MR. Renal MR angiography. Magn Reson ImagingClin N Am2004;12(3):487-503
    4Riccabona M, Ruppert-Kohlmayr A, Ring E, et al. Potential impact ofpediatric MR urography on the imaging algorithm in patients with afunctional single kidney. AJR Am J Roentgenol2004;183(3):795-800
    5Chandarana H, Lee VS. Renal functional MRI: Are we ready forclinical application? AJR Am J Roentgenol2009;192(6):1550-1557
    6Huang AJ, Lee VS, Rusinek H. MR imaging of renal function. RadiolClin North Am2003;41(5):1001-1017
    7Kim S, Naik M, Sigmund E, et al. Diffusion-weighted MR imaging ofthe kidneys and the urinary tract. Magn Reson Imaging Clin N Am2008;16(4):585-596
    8Thoeny HC, De Keyzer F, Oyen RH, et al. Diffusion-weighted MRimaging of kidneys in healthy volunteers and patients with parenchymaldiseases: initial experience. Radiology2005;235(3):911-917
    9Cheung JS, Fan SJ, Gao DS, et al. Diffusion tensor imaging of liverfibrosis in an experimental model. J Magn Reson Imaging2010;32(5):1141-1148
    10Tosun M, Inan N, Sarisoy HT, et al. Diagnostic performance ofconventional diffusion weighted imaging and diffusion tensor imagingfor the liver fibrosis and inflammation. Eur J Radiol2013;82(2):203-207
    11Namimoto T, Yamashita Y, Mitsuzaki K, et al. Measurement of theapparent diffusion coefficient in diffuse renal disease bydiffusion-weighted echo-planar MR imaging. J Magn Reson Imaging1999;9(6):832-837
    12Muller MF, Prasad PV, Bimmler D, et al. Functional imaging of thekidney by means of measurement of the apparent diffusion coefficient.Radiology1994;193(3):711-715
    13Thoeny HC, Zumstein D, Simon-Zoula S, et al. Functional evaluation oftransplanted kidneys with diffusion-weighted and BOLD MR imaging:initial experience. Radiology2006;241(3):812-821
    14Kim S, Jain M, Harris AB, et al. T1hyperintense renal lesions:characterization with diffusion-weighted MR imaging versuscontrast-enhanced MR imaging. Radiology2009;251(3):796-807
    15Sandrasegaran K, Sundaram CP, Ramaswamy R, et al. Usefulness ofdiffusion-weighted imaging in the evaluation of renal masses. AJR Am JRoentgenol2010;194(2):438-445
    16Wang H, Cheng L, Zhang X, et al. Renal cell carcinoma:diffusion-weighted MR imaging for subtype differentiation at3.0T.Radiology2010;257(1):135-143
    17Cui Y, Zhang XP, Sun YS, et al. Apparent diffusion coefficient: potentialimaging biomarker for prediction and early detection of response tochemotherapy in hepatic metastases. Radiology2008;248(3):894-900
    18Xu Y, Wang X, Jiang X. Relationship between the renal apparentdiffusion coefficient and glomerular filtration rate: preliminaryexperience. J Magn Reson Imaging2007;26(3):678-681
    19Togao O, Doi S, Kuro-o M, et al. Assessment of renal fibrosis withdiffusion-weighted MR imaging: study with murine model of unilateralureteral obstruction. Radiology2010;255(3):772-780
    20Carbone SF, Gaggioli E, Ricci V, et al. Diffusion-weighted magneticresonance imaging in the evaluation of renal function: a preliminarystudy. Radiol Med2007;112(8):1201-1210
    21Goyal A, Sharma R, Bhalla AS, et al. Diffusion-weighted MRI inassessment of renal dysfunction. Indian J Radiol Imaging2012;22(3):155-159
    22宋艳芳,张奇峰,张红,等. CKD-EPI方程与中国人校正简化MDRD方程在慢性肾脏病患者分期中的研究.中华肾脏病杂志2012;28(7):558-559
    23Neumann I, Kain R, Regele H, et al. Histopathologic and clinicalpredictors of early and late renal outcome in ANCA-associated vasculitis.Nephrol Dial Transplant2005;20(1):96-104
    24Landis JR, Koch GG. The measurement of observer agreement forcategorical data. Biometrics1977;33(1):159-174
    25Watanabe H, Kanematsu M, Goshima S, et al. Staging hepatic fibrosis:comparison of gadoxetate disodium-enhanced and diffusion-weightedMR imaging-preliminary observations. Radiology2011;259(1):142-150
    26Taouli B, Thakur RK, Mannelli L, et al. Renal lesions: characterizationwith diffusion-weighted imaging versus contrast-enhanced MR imaging.Radiology2009;251(2):398-407
    27Prasad PV, Priatna A. Functional imaging of the kidneys with fast MRItechniques. Eur J Radiol1999;29(2):133-148
    28Ries M, Basseau F, Tyndal B, et al. Renal diffusion and BOLD MRI inexperimental diabetic nephropathy. Blood oxygen level-dependent. JMagn Reson Imaging2003;17(1):104-113
    29Verswijvel G, Vandecaveye V, Gelin G, et al. Diffusion-weighted MRimaging in the evaluation of renal infection: preliminary results.JBR-BTR2002;85(2):100-103
    30Laissy JP, Idee JM, Fernandez P, et al. Magnetic resonance imaging inacute and chronic kidney diseases: present status. Nephron Clin Pract2006;103(2):c50-57
    31Squillaci E, Manenti G, Di Stefano F, et al. Diffusion-weighted MRimaging in the evaluation of renal tumours. J Exp Clin Cancer Res2004;23(1):39-45
    32Chow LC, Bammer R, Moseley ME, et al. Single breath-holddiffusion-weighted imaging of the abdomen. J Magn Reson Imaging2003;18(3):377-382
    33Foley RN, Parfrey PS, Sarnak MJ. Clinical epidemiology ofcardiovascular disease in chronic renal disease. Am J Kidney Dis1998;32(5Suppl3):S112-119
    34Damasio MB, Tagliafico A, Capaccio E, et al. Diffusion-weighted MRIsequences (DW-MRI) of the kidney: normal findings, influence ofhydration state and repeatability of results. Radiol Med2008;113(2):214-224
    35Cutajar M, Clayden JD, Clark CA, et al. Test-retest reliability andrepeatability of renal diffusion tensor MRI in healthy subjects. Eur JRadiol2011;80(3):e263-268
    36Le Bihan D, Breton E, Lallemand D, et al. MR imaging of intravoxelincoherent motions: application to diffusion and perfusion in neurologicdisorders. Radiology1986;161(2):401-407
    37Turner R, Le Bihan D, Maier J, et al. Echo-planar imaging of intravoxelincoherent motion. Radiology1990;177(2):407-414
    38Squillaci E, Manenti G, Cova M, et al. Correlation of diffusion-weightedMR imaging with cellularity of renal tumours. Anticancer Res2004;24(6):4175-4179
    39Blondin D, Lanzman RS, Mathys C, et al. Functional MRI oftransplanted kidneys using diffusion-weighted imaging. Rofo2009;181(12):1162-1167
    40Yoshikawa T, Kawamitsu H, Mitchell DG, et al. ADC measurement ofabdominal organs and lesions using parallel imaging technique. AJR AmJ Roentgenol2006;187(6):1521-1530
    41Kwee TC, Takahara T, Koh DM, et al. Comparison and reproducibility ofADC measurements in breathhold, respiratory triggered, andfree-breathing diffusion-weighted MR imaging of the liver. J MagnReson Imaging2008;28(5):1141-1148
    42Notohamiprodjo M, Dietrich O, Horger W, et al. Diffusion tensorimaging (DTI) of the kidney at3tesla-feasibility, protocol evaluationand comparison to1.5Tesla. Invest Radiol2010;45(5):245-254
    43Yamada I, Aung W, Himeno Y, et al. Diffusion coefficients in abdominalorgans and hepatic lesions: evaluation with intravoxel incoherent motionecho-planar MR imaging. Radiology1999;210(3):617-623
    44Inan N, Akhun N, Akansel G, et al. Conventional and diffusion-weightedMRI of extrahepatic hydatid cysts. Diagn Interv Radiol2010;16(2):168-174
    45El-Diasty TA, El-Ghar ME, Shokeir AA, et al. Magnetic resonanceimaging as a sole method for the morphological and functionalevaluation of live kidney donors. BJU Int2005;96(1):111-116
    46Buckley DL, Shurrab AE, Cheung CM, et al. Measurement of singlekidney function using dynamic contrast-enhanced MRI: comparison oftwo models in human subjects. J Magn Reson Imaging2006;24(5):1117-1123
    47Tumkur S, Vu A, Li L, et al. Evaluation of intrarenal oxygenation at3.0T using3-dimensional multiple gradient-recalled echo sequence. InvestRadiol2006;41(2):181-184
    48Xu X, Fang W, Ling H, et al. Diffusion-weighted MR imaging ofkidneys in patients with chronic kidney disease: initial study. Eur Radiol2010;20(4):978-983
    49Chin CL, Wehrli FW, Hwang SN, et al. Biexponential diffusionattenuation in the rat spinal cord: computer simulations based onanatomic images of axonal architecture. Magn Reson Med2002;47(3):455-460
    50Luciani A, Vignaud A, Cavet M, et al. Liver cirrhosis: intravoxelincoherent motion MR imaging--pilot study. Radiology2008;249(3):891-899
    51Sharp PA, Zamore PD. Molecular biology. RNA interference. Science2000;287(5462):2431-2433
    52Okada H, Kikuta T, Kobayashi T, et al. Connective tissue growth factorexpressed in tubular epithelium plays a pivotal role in renal fibrogenesis.J Am Soc Nephrol2005;16(1):133-143
    53Liu Y. Renal fibrosis: new insights into the pathogenesis andtherapeutics.Kidney Int2006;69(2):213-217
    54Wu CF, Chiang WC, Lai CF, et al. Transforming Growth Factor β-1Stimulates Profibrotic Epithelial Signaling to ActivatePericyteMyofibroblast Transition in Obstructive Kidney Fibrosis. Am JPathol2013;182(1):118-131
    1Shiiki H, Saito T, Nishitani Y, et al. Prognosis and risk factors foridiopathic membranous nephropathy with nephrotic syndrome in Japan.Kidney Int2004;65(4):1400-1407
    2Chandarana H, Lee VS. Renal functional MRI: Are we ready forclinical application? AJR Am J Roentgenol2009;192(6):1550-1557
    3Huang AJ, Lee VS, Rusinek H. MR imaging of renal function. RadiolClin North Am2003;41(5):1001-1017
    4Kim S, Naik M, Sigmund E, et al. Diffusion-weighted MR imaging ofthe kidneys and the urinary tract. Magn Reson Imaging Clin N Am2008;16(4):585-596
    5Thoeny HC, De Keyzer F, Oyen RH, et al. Diffusion-weighted MRimaging of kidneys in healthy volunteers and patients with parenchymaldiseases: initial experience. Radiology2005;235(3):911-917
    6Fleischmann D. MDCT of renal and mesenteric vessels. Eur Radiol2003;13Suppl5:M94-101
    7Zhang H, Prince MR. Renal MR angiography. Magn Reson ImagingClin N Am2004;12(3):487-503
    8Riccabona M, Ruppert-Kohlmayr A, Ring E, et al. Potential impact ofpediatric MR urography on the imaging algorithm in patients with afunctional single kidney. AJR Am J Roentgenol2004;183(3):795-800
    9Cheung JS, Fan SJ, Gao DS, et al. Diffusion tensor imaging of liverfibrosis in an experimental model. J Magn Reson Imaging2010;32(5):1141-1148
    10Tosun M, Inan N, Sarisoy HT, et al. Diagnostic performance ofconventional diffusion weighted imaging and diffusion tensor imagingfor the liver fibrosis and inflammation. Eur J Radiol2013;82(2):203-207
    11Ries M, Jones RA, Basseau F, et al. Diffusion tensor MRI of the humankidney. J Magn Reson Imaging2001;14(1):42-49
    12Wang H, Cheng L, Zhang X, et al. Renal cell carcinoma:diffusion-weighted MR imaging for subtype differentiation at3.0T.Radiology2010;257(1):135-143
    13Gurses B, Kilickesmez O, Tasdelen N, et al. Diffusion tensor imaging ofthe kidney at3Tesla MRI: normative values and repeatability ofmeasurements in healthy volunteers. Diagn Interv Radiol2011;17(4):317-322
    14Notohamiprodjo M, Dietrich O, Horger W, et al. Diffusion tensorimaging (DTI) of the kidney at3tesla-feasibility, protocol evaluationand comparison to1.5Tesla. Invest Radiol2010;45(5):245-254
    15宋艳芳,张奇峰,张红,等. CKD-EPI方程与中国人校正简化MDRD方程在慢性肾脏病患者分期中的研究.中华肾脏病杂志2012;28(7):558-559
    16Neumann I, Kain R, Regele H, et al. Histopathologic and clinicalpredictors of early and late renal outcome in ANCA-associated vasculitis.Nephrol Dial Transplant2005;20(1):96-104
    17Landis JR, Koch GG. The measurement of observer agreement forcategorical data. Biometrics1977;33(1):159-174
    18Fukuda Y, Ohashi I, Hanafusa K, et al. Anisotropic diffusion in kidney:apparent diffusion coefficient measurements for clinical use. J MagnReson Imaging2000;11(2):156-160
    19Gaudiano C, Clementi V, Busato F, et al. Diffusion tensor imaging andtractography of the kidneys: assessment of chronic parenchymal diseases.Eur Radiol2013;23(6):1678-1685
    20Pierpaoli C, Jezzard P, Basser PJ, et al. Diffusion tensor MR imaging ofthe human brain. Radiology1996;201(3):637-648
    21Kataoka M, Kido A, Yamamoto A, et al. Diffusion tensor imaging ofkidneys with respiratory triggering: optimization of parameters todemonstrate anisotropic structures on fraction anisotropy maps. J MagnReson Imaging2009;29(3):736-744
    22Notohamiprodjo M, Glaser C, Herrmann KA, et al. Diffusion tensorimaging of the kidney with parallel imaging: initial clinical experience.Invest Radiol2008;43(10):677-685
    23Mannelli L, Valentino M, Laffi G, et al. Functional MRI of the kidney. GItal Nefrol2010;27(6):599-608
    24Hueper K, Gutberlet M, Rodt T, et al. Diffusion tensor imaging andtractography for assessment of renal allograft dysfunction-initial results.Eur Radiol2011;21(11):2427-2433
    25Kido A, Kataoka M, Yamamoto A, et al. Diffusion tensor MRI of thekidney at3.0and1.5Tesla. Acta Radiol2010;51(9):1059-1063
    26Notohamiprodjo M, Reiser MF, Sourbron SP. Diffusion and perfusionof the kidney. Eur J Radiol2010;76(3):337-347
    27Inan N, Akhun N, Akansel G,et al. Conventional and diffusion weightedMRI of extrahepatic hydatid cysts. Diagn Interv Radiol2010;16(2):168-174
    28Gaudiano C, Clementi V, Busato F, et al. Renal diffusion tensor imaging:is it possible to define the tubular pathway? A case report. Magn ResonImaging2011;29(7):1030-1033
    29Alexopoulos E. Drug-induced acute interstitial nephritis. Ren Fail1998;20(6):809-819
    30Bohle A, Muller GA, Wehrmann M, et al. Pathogenesis of chronic renalfailure in the primary glomerulopathies, renal vasculopathies, andchronic interstitial nephritides. Kidney Int Suppl1996;54:S2-9
    31王玉,李晓玫,邹万忠,等.人类肾小球肾炎中肾小管及间质细胞表型转化的研究.中华肾脏病杂志2000;16(1):7-10
    32Lu L, Sedor JR, Gulani V, et al. Use of diffusion tensor MRI to identifyearly changes in diabetic nephropathy. Am J Nephrol2011;34(5):476-482
    33Hueper K, Hartung D, Gutberlet M, et al. Magnetic resonance diffusiontensor imaging for evaluation of histopathological changes in a rat modelof diabetic nephropathy. Invest Radiol2012;47(7):430-437
    34任韫卓,段惠军,史永红. p-Smad2/3、Smad7在大鼠实验性肾间质纤维化模型中的表达.基础医学与临床2006;26(8):871-876
    35Johnson RJ, Iida H, Alpers CE, et al. Expression of smooth muscle cellphenotype by rat mesangial cells in immune complex nephritis.Alpha-smooth muscle actin is a marker of mesangial cell proliferation. JClin Invest1991;87(3):847-858
    36Kitamura M, Suto T, Yokoo T, et al. Transforming growth factor-beta1is the predominant paracrine inhibitor of macrophage cytokine synthesisproduced by glomerular mesangial cells. J Immunol1996;156(8):2964-2971
    37Sharp PA, Zamore PD. Molecular biology. RNA interference. Science2000;287(5462):2431-2433
    1Tumkur S, Vu A, Li L, et al. Evaluation of intrarenal oxygenation at3.0Tusing3-dimensional multiple gradient-recalled echo sequence. InvestRadiol2006;41(2):181-184
    2Nangaku M. Chronic hypoxia and tubulointerstitial injury: a final commonpathway to end-stage renal failure. J Am Soc Nephrol2006;17(1):17-25
    3Prasad PV, Edelman RR, Epstein FH. Noninvasive evaluation ofintrarenal oxygenation with BOLD MRI. Circulation1996;94(12):3271-3275
    4Mannelli L, Valentino M, Laffi G, et al. Functional MRI of the kidney.GItal Nefrol2010;27(6):599-608
    5Sadowski EA, Djamali A, Wentland AL, et al. Blood oxygenlevel-dependent and perfusion magnetic resonance imaging: detectingdifferences in oxygen bioavailability and blood flow in transplantedkidneys. Magn Reson Imaging2010;28(1):56-64
    6Thelwall PE, Taylor R, Marshall SM. Non-invasive investigation ofkidney disease in type1diabetes by magnetic resonance imaging.Diabetologia2011;54(9):2421-2429
    7Wang ZJ, Kumar R, Banerjee S, et al. Blood oxygen level-dependent(BOLD) MRI of diabetic nephropathy: preliminary experience. J MagnReson Imaging2011;33(3):655-660
    8Yin WJ, Liu F, Li XM, et al. Noninvasive evaluation of renal oxygenationin diabetic nephropathy by BOLD-MRI. Eur J Radiol2011;81(7):1426-1431
    9Michaely HJ, Metzger L, Haneder S, et al. Renal BOLD-MRI does notreflect renal function in chronic kidney disease. Kidney Int2012;81(7):684-689
    10Xin-Long P, Jing-Xia X, Jian-Yu L, et al. A preliminary study ofblood-oxygen-level-dependent MRI in patients with chronic kidney disease.Magn Reson Imaging2012;30(3):330-335
    11Haque ME, Franklin T, Bokhary U, et al. Longitudinal changes in MRImarkers in a reversible UUO mouse model: Preliminary experience. JMagn Reson Imaging2013
    12Inoue T, Kozawa E, Okada H, et al. Noninvasive evaluation of kidneyhypoxia and fibrosis using magnetic resonance imaging. J Am Soc Nephrol2011;22(8):1429-1434
    13Eckardt KU, Bernhardt WM, Weidemann A, et al. Role of hypoxia in thepathogenesis of renal disease. Kidney Int Suppl2005(99):S46-51
    14宋艳芳,张奇峰,张红,等. CKD-EPI方程与中国人校正简化MDRD方程在慢性肾脏病患者分期中的研究.中华肾脏病杂志2012;28(7):558-559
    15Neumann I, Kain R, Regele H, et al. Histopathologic and clinicalpredictors of early and late renal outcome in ANCA-associated vasculitis.Nephrol Dial Transplant2005;20(1):96-104
    16Landis JR, Koch GG. The measurement of observer agreement forcategorical data. Biometrics1977;33(1):159-174
    17Pedersen M, Dissing TH, Morkenborg J, et al. Validation of quantitativeBOLD MRI measurements in kidney: application to unilateral ureteralobstruction. Kidney Int2005;67(6):2305-2312
    18Li LP, Ji L, Santos E, et al. Effect of nitric oxide synthase inhibition onintrarenal oxygenation as evaluated by blood oxygenation level-dependentmagnetic resonance imaging. Invest Radiol2009;44(2):67-73
    19Djamali A, Sadowski EA, Samaniego-Picota M, et al. Noninvasiveassessment of early kidney allograft dysfunction by blood oxygenlevel-dependent magnetic resonance imaging. Transplantation2006;82(5):621-628
    20Djamali A, Sadowski EA, Muehrer RJ, et al. BOLD-MRI assessment ofintrarenal oxygenation and oxidative stress in patients with chronic kidneyallograft dysfunction. Am J Physiol Renal Physiol2007;292(2):F513-522
    21Li LP, Halter S, Prasad PV. Blood oxygen level-dependent MR imagingof the kidneys. Magn Reson Imaging Clin N Am2008;16(4):613-625
    22Anderson RJ, Barry DW. Clinical and laboratory diagnosis of acute renalfailure. Best Pract Res Clin Anaesthesiol2004;18(1):1-20
    23Kowluru R, Bitensky MW, Kowluru A, et al. Reversible sodium pumpdefect and swelling in the diabetic rat erythrocyte: effects on filterabilityand implications for microangiopathy. Proc Natl Acad Sci U S A1989;86(9):3327-3331
    24Mimura I, Nangaku M. The suffocating kidney: tubulointerstitial hypoxiain end-stage renal disease. Nat Rev Nephrol2010;6(11):667-678
    25Palm F, Teerlink T, Hansell P. Nitric oxide and kidney oxygenation. CurrOpin Nephrol Hypertens2009;18(1):68-73
    26Ogawa S, Lee TM, Kay AR, et al. Brain magnetic resonance imaging withcontrast dependent on blood oxygenation. Proc Natl Acad Sci U S A1990;87(24):9868-9872
    27Yang D, Ye Q, Williams DS, et al. Normal and transplanted rat kidneys:diffusion MR imaging at7T. Radiology2004;231(3):702-709
    28Simon-Zoula SC, Hofmann L, Giger A, et al. Non-invasive monitoring ofrenal oxygenation using BOLD-MRI: a reproducibility study. NMRBiomed2006;19(1):84-89
    29Epstein FH, Veves A, Prasad PV. Effect of diabetes on renal medullaryoxygenation during water diuresis. Diabetes Care2002;25(3):575-578
    30Luciani A, Vignaud A, Cavet M, et al. Liver cirrhosis: intravoxelincoherent motion MR imaging--pilot study. Radiology2008;249(3):891-899
    31Gloviczki ML, Glockner J, Gomez SI, et al. Comparison of1.5and3TBOLD MR to study oxygenation of kidney cortex and medulla in humanrenovascular disease. Invest Radiol2009;44(9):566-571
    32Sorensen A, Holm D, Pedersen M, et al. Left-right difference in fetal liveroxygenation during hypoxia estimated by BOLD MRI in a fetal sheepmodel. Ultrasound Obstet Gynecol2011;38(6):665-672
    33Schachinger H, Klarhofer M, Linder L, et al. Angiotensin II decreases therenal MRI blood oxygenation level-dependent signal. Hypertension2006;47(6):1062-1066
    34Tumkur SM, Vu AT, Li LP, et al. Evaluation of intra-renal oxygenationduring water diuresis: a time-resolved study using BOLD MRI. Kidney Int2006;70(1):139-143
    35Li LP, Vu AT, Li BS, et al. Evaluation of intrarenal oxygenation by BOLDMRI at3.0T. J Magn Reson Imaging2004;20(5):901-904
    36Sadowski EA, Fain SB, Alford SK, et al. Assessment of acute renaltransplant rejection with blood oxygen level-dependent MR imaging:initial experience. Radiology2005;236(3):911-919
    37Hofmann L, Simon-Zoula S, Nowak A, et al. BOLD-MRI for theassessment of renal oxygenation in humans: acute effect of nephrotoxicxenobiotics. Kidney Int2006;70(1):144-150
    38Thoeny HC, Zumstein D, Simon-Zoula S, et al. Functional evaluation oftransplanted kidneys with diffusion-weighted and BOLD MR imaging:initial experience. Radiology2006;241(3):812-821
    39Ries M, Basseau F, Tyndal B, et al. Renal diffusion and BOLD MRI inexperimental diabetic nephropathy. Blood oxygen level-dependent. J MagnReson Imaging2003;17(1):104-113
    40Heyman SN, Khamaisi M, Rosen S, et al. Renal parenchymal hypoxia,hypoxia response and the progression of chronic kidney disease. Am JNephrol2008;28(6):998-1006
    41Padhani AR, Liu G, Koh DM, et al. Diffusion-weighted magneticresonance imaging as a cancer biomarker: consensus and recommendations.Neoplasia2009;11(2):102-125
    42dos Santos EA, Li LP, Ji L, et al. Early changes with diabetes in renalmedullary hemodynamics as evaluated by fiberoptic probes and BOLDmagnetic resonance imaging. Invest Radiol2007;42(3):157-162
    43Thoeny HC, Kessler TM, Simon-Zoula S, et al. Renal oxygenation changesduring acute unilateral ureteral obstruction: assessment with blood oxygenlevel-dependent mr imaging--initial experience. Radiology2008;247(3):754-761
    44Xiao WB, Wang QD, Xu JJ, et al. Evaluation of kidney oxygenbioavailability in acute renal failure by blood oxygen level dependentmagnetic resonance imaging. Zhejiang Da Xue Xue Bao Yi Xue Ban2010;39(2):157-162
    45Blom IE, van Dijk AJ, de Weger RA, et al. Identification of human ccn2(connective tissue growth factor) promoter polymorphisms. Mol Pathol2001;54(3):192-196
    46Nangaku M, Inagi R, Miyata T, et al. Hypoxia and hypoxia-induciblefactor in renal disease. Nephron Exp Nephrol2008;110(1):e1-7
    47Lindenmeyer MT, Kretzler M, Boucherot A, et al. Interstitial vascularrarefaction and reduced VEGF-A expression in human diabeticnephropathy. J Am Soc Nephrol2007;18(6):1765-1776
    48Sharp PA, Zamore PD. Molecular biology. RNA interference. Science2000;287(5462):2431-2433
    49任韫卓,段惠军,史永红. p-Smad2/3、Smad7在大鼠实验性肾间质纤维化模型中的表达.基础医学与临床2006;26(8):871-876
    50Johnson RJ, Iida H, Alpers CE, et al. Expression of smooth muscle cellphenotype by rat mesangial cells in immune complex nephritis.Alpha-smooth muscle actin is a marker of mesangial cell proliferation. JClin Invest1991;87(3):847-858
    51Kitamura M, Suto T, Yokoo T, et al. Transforming growth factor-beta1isthe predominant paracrine inhibitor of macrophage cytokine synthesisproduced by glomerular mesangial cells. J Immunol1996;156(8):2964-2971
    1Kapoor A, Mahajan G, Singh A, et al. Multispiral computed tomographicangiography of renal arteries of live potential renal donors: a review of
    118cases. Transplantation2004;77(10):1535-1539
    2Grenier N, Basseau F, Ries M, et al. Functional MRI of the kidney.Abdom Imaging2003;28(2):164-175
    3Vallee JP, Lazeyras F, Khan HG, et al. Absolute renal blood flowquantification by dynamic MRI and Gd-DTPA. Eur Radiol2000;10(8):1245-1252
    4Gloviczki ML, Glockner J, Gomez SI, et al. Comparison of1.5and3TBOLD MR to study oxygenation of kidney cortex and medulla in humanrenovascular disease. Invest Radiol2009;44(9):566-571
    5Prasad PV, Edelman RR, Epstein FH. Noninvasive evaluation ofintrarenal oxygenation with BOLD MRI. Circulation1996;94(12):3271-3275
    6Thoeny HC, Zumstein D, Simon-Zoula S, et al. Functional evaluation oftransplanted kidneys with diffusion-weighted and BOLD MR imaging:initial experience. Radiology2006;241(3):812-821
    7Djamali A, Sadowski EA, Muehrer RJ, et al. BOLD-MRI assessment ofintrarenal oxygenation and oxidative stress in patients with chronickidney allograft dysfunction. Am J Physiol Renal Physiol2007;292(2):F513-522
    8Kataoka M, Kido A, Yamamoto A, et al. Diffusion tensor imaging ofkidneys with respiratory triggering: optimization of parameters todemonstrate anisotropic structures on fraction anisotropy maps. J MagnReson Imaging2009;29(3):736-744
    9Roditi G, Maki JH, Oliveira G, et al. Renovascular imaging in the NSFEra. J Magn Reson Imaging2009;30(6):1323-1334
    10Thoeny HC, De Keyzer F, Oyen RH, et al. Diffusion-weighted MRimaging of kidneys in healthy volunteers and patients with parenchymaldiseases: initial experience. Radiology2005;235(3):911-917
    11Ries M, Basseau F, Tyndal B, et al. Renal diffusion and BOLD MRI inexperimental diabetic nephropathy. Blood oxygen level-dependent. JMagn Reson Imaging2003;17(1):104-113
    12Verswijvel G, Vandecaveye V, Gelin G, et al. Diffusion-weighted MRimaging in the evaluation of renal infection: preliminary results.JBR-BTR2002;85(2):100-103
    13Squillaci E, Manenti G, Cova M, et al. Correlation of diffusion-weightedMR imaging with cellularity of renal tumours. Anticancer Res2004;24(6):4175-4179
    14Kim S, Jain M, Harris AB, et al. T1hyperintense renal lesions:characterization with diffusion-weighted MR imaging versuscontrast-enhanced MR imaging. Radiology2009;251(3):796-807
    15Kiefer C, Schroth G, Gralla J, et al. A feasibility study on model-basedevaluation of kidney perfusion measured by means of FAIR preparedtrue-FISP arterial spin labeling (ASL) on a3-T MR scanner. Acad Radiol2009;16(1):79-87
    16Boss A, Martirosian P, Graf H, et al. High resolution MR perfusionimaging of the kidneys at3Tesla without administration of contrastmedia. Rofo2005;177(12):1625-1630
    17Boss A, Martirosian P, Schraml C, et al. Morphological,contrast-enhanced and spin labeling perfusion imaging for monitoring ofrelapse after RF ablation of renal cell carcinomas. Eur Radiol2006;16(6):1226-1236
    18Notohamiprodjo M, Glaser C, Herrmann KA, et al. Diffusion tensorimaging of the kidney with parallel imaging: initial clinical experience.Invest Radiol2008;43(10):677-685
    19Ries M, Jones RA, Basseau F, et al. Diffusion tensor MRI of the humankidney. J Magn Reson Imaging2001;14(1):42-49
    20Le Bihan D, Breton E, Lallemand D, et al. MR imaging of intravoxelincoherent motions: application to diffusion and perfusion in neurologicdisorders. Radiology1986;161(2):401-407
    21Laissy JP, Idee JM, Fernandez P, et al. Magnetic resonance imaging inacute and chronic kidney diseases: present status. Nephron Clin Pract2006;103(2):c50-57
    22Squillaci E, Manenti G, Di Stefano F, et al. Diffusion-weighted MRimaging in the evaluation of renal tumours. J Exp Clin Cancer Res2004;23(1):39-45
    23Chow LC, Bammer R, Moseley ME, et al. Single breath-holddiffusion-weighted imaging of the abdomen. J Magn Reson Imaging2003;18(3):377-382
    24Watanabe H, Kanematsu M, Goshima S, et al. Staging hepatic fibrosis:comparison of gadoxetate disodium-enhanced and diffusion-weightedMR imaging--preliminary observations. Radiology2011;259(1):142-150
    25Tosun M, Inan N, Sarisoy HT, et al. Diagnostic performance ofconventional diffusion weighted imaging and diffusion tensor imagingfor the liver fibrosis and inflammation. Eur J Radiol2013;82(2):203-207
    26Taouli B, Thakur RK, Mannelli L, et al. Renal lesions: characterizationwith diffusion-weighted imaging versus contrast-enhanced MR imaging.Radiology2009;251(2):398-407
    27Chandarana H, Lee VS. Renal functional MRI: Are we ready forclinical application? AJR Am J Roentgenol2009;192(6):1550-1557
    28Prasad PV, Priatna A. Functional imaging of the kidneys with fast MRItechniques. Eur J Radiol1999;29(2):133-148
    29El-Diasty TA, El-Ghar ME, Shokeir AA, et al. Magnetic resonanceimaging as a sole method for the morphological and functional evaluationof live kidney donors. BJU Int2005;96(1):111-116
    30Buckley DL, Shurrab AE, Cheung CM, et al. Measurement of singlekidney function using dynamic contrast-enhanced MRI: comparison oftwo models in human subjects. J Magn Reson Imaging2006;24(5):1117-1123
    31Tumkur S, Vu A, Li L, et al. Evaluation of intrarenal oxygenation at3.0T using3-dimensional multiple gradient-recalled echo sequence. InvestRadiol2006;41(2):181-184
    32Blondin D, Lanzman RS, Mathys C, et al. Functional MRI oftransplanted kidneys using diffusion-weighted imaging. Rofo2009;181(12):1162-1167
    33Yoshikawa T, Kawamitsu H, Mitchell DG, et al. ADC measurement ofabdominal organs and lesions using parallel imaging technique. AJR AmJ Roentgenol2006;187(6):1521-1530
    34Kwee TC, Takahara T, Koh DM, et al. Comparison and reproducibility ofADC measurements in breathhold, respiratory triggered, andfree-breathing diffusion-weighted MR imaging of the liver. J MagnReson Imaging2008;28(5):1141-1148
    35Notohamiprodjo M, Dietrich O, Horger W, et al. Diffusion tensorimaging (DTI) of the kidney at3tesla-feasibility, protocol evaluation andcomparison to1.5Tesla. Invest Radiol2010;45(5):245-254
    36Mori S, van Zijl PC. Fiber tracking: principles and strategies-atechnical review. NMR Biomed2002;15(7-8):468-480
    37Pierpaoli C, Jezzard P, Basser PJ, et al. Diffusion tensor MR imaging ofthe human brain. Radiology1996;201(3):637-648
    38Fukuda Y, Ohashi I, Hanafusa K, et al. Anisotropic diffusion in kidney:apparent diffusion coefficient measurements for clinical use. J MagnReson Imaging2000;11(2):156-160
    39Gaudiano C, Clementi V, Busato F, et al. Diffusion tensor imaging andtractography of the kidneys: assessment of chronic parenchymal diseases.Eur Radiol2013;23(6):1678-1685
    40Mannelli L, Valentino M, Laffi G, et al. Functional MRI of the kidney. GItal Nefrol2010;27(6):599-608
    41Hueper K, Gutberlet M, Rodt T, et al. Diffusion tensor imaging andtractography for assessment of renal allograft dysfunction-initial results.Eur Radiol2011;21(11):2427-2433
    42Kido A, Kataoka M, Yamamoto A, et al. Diffusion tensor MRI of thekidney at3.0and1.5Tesla. Acta Radiol2010;51(9):1059-1063
    43Notohamiprodjo M, Reiser MF, Sourbron SP. Diffusion and perfusionof the kidney. Eur J Radiol2010;76(3):337-347
    44Ogawa S, Lee TM, Kay AR, et al. Brain magnetic resonance imagingwith contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A1990;87(24):9868-9872
    45Yang D, Ye Q, Williams DS, et al. Normal and transplanted rat kidneys:diffusion MR imaging at7T. Radiology2004;231(3):702-709
    46Simon-Zoula SC, Hofmann L, Giger A, et al. Non-invasive monitoring ofrenal oxygenation using BOLD-MRI: a reproducibility study. NMRBiomed2006;19(1):84-89
    47Epstein FH, Veves A, Prasad PV. Effect of diabetes on renal medullaryoxygenation during water diuresis. Diabetes Care2002;25(3):575-578
    48Luciani A, Vignaud A, Cavet M, et al. Liver cirrhosis: intravoxelincoherent motion MR imaging--pilot study. Radiology2008;249(3):891-899
    49Yin WJ, Liu F, Li XM, et al. Noninvasive evaluation of renaloxygenation in diabetic nephropathy by BOLD-MRI. Eur J Radiol2011;81(7):1426-1431
    50Michaely HJ, Metzger L, Haneder S, et al. Renal BOLD-MRI does notreflect renal function in chronic kidney disease. Kidney Int2012;81(7):684-689
    51Xin-Long P, Jing-Xia X, Jian-Yu L, et al. A preliminary study ofblood-oxygen-level-dependent MRI in patients with chronic kidneydisease. Magn Reson Imaging2012;30(3):330-335
    52Sorensen A, Holm D, Pedersen M, et al. Left-right difference in fetalliver oxygenation during hypoxia estimated by BOLD MRI in a fetalsheep model. Ultrasound Obstet Gynecol2011;38(6):665-672
    53Pedersen M, Dissing TH, Morkenborg J, et al. Validation of quantitativeBOLD MRI measurements in kidney: application to unilateral ureteralobstruction. Kidney Int2005;67(6):2305-2312
    54Li LP, Ji L, Santos E, et al. Effect of nitric oxide synthase inhibition onintrarenal oxygenation as evaluated by blood oxygenationlevel-dependent magnetic resonance imaging. Invest Radiol2009;44(2):67-73
    55Schachinger H, Klarhofer M, Linder L, et al. Angiotensin II decreases therenal MRI blood oxygenation level-dependent signal. Hypertension2006;47(6):1062-1066
    56Tumkur SM, Vu AT, Li LP, et al. Evaluation of intra-renal oxygenationduring water diuresis: a time-resolved study using BOLD MRI. KidneyInt2006;70(1):139-143
    57Li LP, Vu AT, Li BS, et al. Evaluation of intrarenal oxygenation byBOLD MRI at3.0T. J Magn Reson Imaging2004;20(5):901-904
    58Sadowski EA, Fain SB, Alford SK, et al. Assessment of acute renaltransplant rejection with blood oxygen level-dependent MR imaging:initial experience. Radiology2005;236(3):911-919
    59Djamali A, Sadowski EA, Samaniego-Picota M, et al. Noninvasiveassessment of early kidney allograft dysfunction by blood oxygenlevel-dependent magnetic resonance imaging. Transplantation2006;82(5):621-628
    60Sadowski EA, Djamali A, Wentland AL, et al. Blood oxygenlevel-dependent and perfusion magnetic resonance imaging: detectingdifferences in oxygen bioavailability and blood flow in transplantedkidneys. Magn Reson Imaging2010;28(1):56-64
    61Thelwall PE, Taylor R, Marshall SM. Non-invasive investigation ofkidney disease in type1diabetes by magnetic resonance imaging.Diabetologia2011;54(9):2421-2429
    62Wang ZJ, Kumar R, Banerjee S, et al. Blood oxygen level-dependent(BOLD) MRI of diabetic nephropathy: preliminary experience. J MagnReson Imaging2011;33(3):655-660
    63Haque ME, Franklin T, Bokhary U, et al. Longitudinal changes in MRImarkers in a reversible UUO mouse model: Preliminary experience. JMagn Reson Imaging2013
    64Inoue T, Kozawa E, Okada H, et al. Noninvasive evaluation of kidneyhypoxia and fibrosis using magnetic resonance imaging. J Am SocNephrol2011;22(8):1429-1434
    65Eckardt KU, Bernhardt WM, Weidemann A, et al. Role of hypoxia in thepathogenesis of renal disease. Kidney Int Suppl2005(99):S46-51
    66Li LP, Halter S, Prasad PV. Blood oxygen level-dependent MRimaging of the kidneys. Magn Reson Imaging Clin N Am2008;16(4):613-625
    67Heyman SN, Khamaisi M, Rosen S, et al. Renal parenchymal hypoxia,hypoxia response and the progression of chronic kidney disease. Am JNephrol2008;28(6):998-1006
    68Anderson RJ, Barry DW. Clinical and laboratory diagnosis of acuterenal failure. Best Pract Res Clin Anaesthesiol2004;18(1):1-20
    69Martirosian P, Klose U, Mader I, et al. FAIR true-FISP perfusionimaging of the kidneys. Magn Reson Med2004;51(2):353-361
    70Fenchel M, Martirosian P, Langanke J, et al. Perfusion MR imaging withFAIR true FISP spin labeling in patients with and without renal arterystenosis: initial experience. Radiology2006;238(3):1013-1021
    71Sourbron SP, Michaely HJ, Reiser MF, et al. MRI-measurement ofperfusion and glomerular filtration in the human kidney with a separablecompartment model. Invest Radiol2008;43(1):40-48
    72Bokacheva L, Rusinek H, Zhang JL, et al. Estimates of glomerularfiltration rate from MR renography and tracer kinetic models. J MagnReson Imaging2009;29(2):371-382
    73Mendichovszky I, Pedersen M, Frokiaer J, et al. How accurate is dynamiccontrast-enhanced MRI in the assessment of renal glomerular filtrationrate? A critical appraisal. J Magn Reson Imaging2008;27(4):925-931
    74Michaely HJ, Schoenberg SO, Oesingmann N, et al. Renal arterystenosis:functional assessment with dynamic MR perfusionmeasurements feasibility study. Radiology2006;238(2):586-596
    75Kim HS, Park JW, Bai DS, et al. Diffusion tensor imaging findings inneurologically asymptomatic patients with end stage renal disease.NeuroRehabilitation2011;29(1):111-116
    76Lu L, Sedor JR, Gulani V, et al. Use of diffusion tensor MRI to identifyearly changes in diabetic nephropathy. Am J Nephrol2011;34(5):476-482
    77Girometti R, Esposito G, Bagatto D, et al. Is water diffusion isotropic inthe cirrhotic liver? a study with diffusion-weighted imaging at3.0Tesla.Acad Radiol2012;19(1):55-61
    78Hueper K, Hartung D, Gutberlet M, et al. Magnetic resonance diffusiontensor imaging for evaluation of histopathological changes in a rat modelof diabetic nephropathy. Invest Radiol2012;47(7):430-437
    79Attenberger UI, Sourbron SP, Schoenberg SO, et al. Comprehensive MRevaluation of renal disease: added clinical value of quantified renalperfusion values over single MR angiography. J Magn Reson Imaging2010;31(1):125-133
    80Michaely HJ, Schoenberg SO, Ittrich C, et al. Renal disease: value offunctional magnetic resonance imaging with flow and perfusionmeasurements. Invest Radiol2004;39(11):698-705
    81Xu X, Fang W, Ling H, et al. Diffusion-weighted MR imaging of kidneysin patients with chronic kidney disease: initial study. Eur Radiol2010;20(4):978-983
    82Gaudiano C, Clementi V, Busato F, et al. Renal diffusion tensor imaging:is it possible to define the tubular pathway? A case report. Magn ResonImaging2011;29(7):1030-1033
    83Padhani AR, Liu G, Koh DM, et al. Diffusion-weighted magneticresonance imaging as a cancer biomarker: consensus andrecommendations. Neoplasia2009;11(2):102-125
    84Epstein FH, Prasad P. Effects of furosemide on medullary oxygenationin younger and older subjects. Kidney Int2000;57(5):2080-2083
    85Yildirim E, Kirbas I, Teksam M, et al. Diffusion-weighted MR imagingof kidneys in renal artery stenosis. Eur J Radiol2008;65(1):148-153
    86Yildirim E, Gullu H, Caliskan M, et al. The effect of hypertension on theapparent diffusion coefficient values of kidneys. Diagn Interv Radiol2008;14(1):9-13
    87Textor SC, Glockner JF, Lerman LO, et al. The use of magneticresonance to evaluate tissue oxygenation in renal artery stenosis. J AmSoc Nephrol2008;19(4):780-788
    88Rognant N, Guebre-Egziabher F, Bacchetta J, et al. Evolution of renaloxygen content measured by BOLD MRI downstream a chronic renalartery stenosis. Nephrol Dial Transplant2011;26(4):1205-1210
    89Gloviczki ML, Glockner JF, Lerman LO, et al. Preserved oxygenationdespite reduced blood flow in poststenotic kidneys in humanatherosclerotic renal artery stenosis. Hypertension2010;55(4):961-966
    90Lanzman RS, Wittsack HJ, Martirosian P, et al. Quantification of renalallograft perfusion using arterial spin labeling MRI: initial results. EurRadiol2010;20(6):1485-1491
    91Wentland AL, Sadowski EA, Djamali A, et al. Quantitative MR measuresof intrarenal perfusion in the assessment of transplanted kidneys: initialexperience. Acad Radiol2009;16(9):1077-1085
    92Cohen HT, McGovern FJ. Renal-cell carcinoma. N Engl J Med2005;353(23):2477-2490
    93Scialpi M, Di Maggio A, Midiri M, et al. Small renal masses: assessmentof lesion characterization and vascularity on dynamic contrast-enhancedMR imaging with fat suppression. AJR Am J Roentgenol2000;175(3):751-757
    94Rosen MA, Schnall MD. Dynamic contrast-enhanced magneticresonance imaging for assessing tumor vascularity and vascular effects oftargeted therapies in renal cell carcinoma. Clin Cancer Res2007;13(2Pt2):770s-776s
    95Flaherty KT, Rosen MA, Heitjan DF, et al. Pilot study of DCE-MRI topredict progression-free survival with sorafenib therapy in renal cellcarcinoma. Cancer Biol Ther2008;7(4):496-501
    96Hahn OM, Yang C, Medved M, et al. Dynamic contrast-enhancedmagnetic resonance imaging pharmacodynamic biomarker study ofsorafenib in metastatic renal carcinoma. J Clin Oncol2008;26(28):4572-4578
    97Cui Y, Zhang XP, Sun YS, et al. Apparent diffusion coefficient: potentialimaging biomarker for prediction and early detection of response tochemotherapy in hepatic metastases. Radiology2008;248(3):894-900
    98Sharma U, Danishad KK, Seenu V, et al. Longitudinal study of theassessment by MRI and diffusion-weighted imaging of tumor response inpatients with locally advanced breast cancer undergoing neoadjuvantchemotherapy. NMR Biomed2009;22(1):104-113
    99De Bazelaire C, Rofsky NM, Duhamel G, et al. Arterial spin labelingblood flow magnetic resonance imaging for the characterization ofmetastatic renal cell carcinoma(1). Acad Radiol2005;12(3):347-357

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700