用户名: 密码: 验证码:
烟气致癌成分人体代谢标记物分离分析新技术应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
卷烟烟气中含有上千种物质,其中六十多种是致癌物质,可能诱发肺癌、膀胱癌、胰腺癌、肝癌和喉癌等癌症。目前中国烟民人数已超过3亿,占全世界吸烟总人数的三分之一,中国每天约有3000人死于与吸烟相关的疾病。其中肺癌的死亡率居各种恶性肿瘤的首位,发病率呈明显上升趋势,且吸烟是诱发肺癌的重要原因。烟气中烟草特有亚硝胺和多环芳烃与肺癌发生有显著的相关性。研究烟气有害成分4-甲基亚硝胺-1-(3-毗啶)-1-丁酮(NNK)和苯并[a]芘(BaP)在人体内代谢标记物,能够更加直接判断卷烟烟气对人体的危害性。NNK和BaP在人体内代谢标记物4-甲基亚硝胺-1-(3-吡啶)-1-丁醇(NNAL)和3-羟基-苯并芘(3-OHBaP)的含量均为pg/mL数量级,因此对分析检测工作提出很高的挑战。
     为了实现高灵敏度的分析目标,本文开展烟气致癌成分人体代谢标记物分离分析新技术的应用研究。在充分调研文献的基础上,主要进行了以下几部分的研究工作:
     1.尿液中NNAL分子印迹固相萃取分析新技术研究
     选择分子印迹柱(MIP)净化和富集尿液中NNAL,并与Waters Oasis HLB柱和Waters Oasis MCX柱对比。MIP柱的选择性最好,净化后基质干扰最小,离子信号抑制率为38%。选择高分离能力的超高效液相色谱柱(UPLC),提高目标物NNAL与干扰基体组分的分离度;以同位素13C6-NNAL为内标,建立准确检测尿样中生物标记物NNAL的超高效液相色谱串联质谱(UPLC-MS/MS)分析方法。NNAL在5-1200pg/mL范围内具有良好的线性关系,相关系数(r2)为0.9953。方法的加标回收率为88.5%-93.7%。批内精密度为3.6%-7.4%,批间精密度为5.4%-9.7%,方法的检出限为0.4pg/mL。
     2.尿液中游离和糖苷结合态NNAL的五氟苯基柱(PFP)同时分离和分析新技术研究
     建立了LC-MS/MS法同时检测吸烟者尿液中NNAL及其N、O-糖苷化合物(NNAL-N-Gluc和NNAL-O-Gluc)的分析方法。比较Agilent UPLC XDB-C18柱(50mm×4.6mm i.d.,1.8μm)、Agilent Eclipse Plus-C18柱(100mm×4.6mm i.d.,3.5μm)和Phenomenex Kinetex PFP柱(100mmx4.6mm i.d.,2.6μm)对NNAL、 NNAL-N-Gluc和NNAL-O-Gluc的分离效果,三种物质在6分钟的色谱运行时间内即在PFP柱上实现基线分离。通过对比常用的C18柱、HLB柱及混合型阳离子交换柱MCX,优选出适合同时净化三种代谢物的商品化固相萃取小柱MCX。该分析方法样品前处理步骤简单、快速,不需要酶解或碱消解步骤,大大提高了方法的准确度和分析效率。NNAL.NNAL-N-Gluc和NNAL-O-Gluc的检出限分别为1.5、15和20pg/mL。
     3.头发中NNAL分散液液微萃取富集的分离分析新技术研究
     建立了基于LC-MS/MS法检测头发中NNAL的分析方法。将两步固相萃取和反相分散液液微萃取结合用于前处理,极大提高了对样品的净化和富集作用。实验优化了反相超声辅助分散液液微萃取的参数:以80μL1.0%甲酸水溶液为萃取剂,超声时间4.0min。在优化的实验条件下,NNAL富集倍数为20。方法的加标回收率为87.3%-107.7%,批内精密度为4.1%-8.5%,批间精密度为6.9%-11.3%,检出限为0.08pg/mg。最后,将该方法应用于分析吸烟者头发中NNAL,NNAL含量为0.27-0.67pg/mg。
     4.尿液中3-OHBaP丹磺酰氯衍生化分析新技术研究
     建立了分析尿液中超痕量3-OHBaP准确灵敏的分析方法。以β-葡萄糖苷酸酶/芳基硫酸酯酶酶解尿样中3-OHBaP葡萄糖醛酸和芳基硫酸结合物为游离态3-OHBaP。用固相萃取净化和富集3-OHBaP,再以丹磺酰氯衍生,最后以LC-MS/MS电喷雾离子化正离子模式检测3-OHBaP丹磺酰氯衍生物(3-OHBaP-Dansyl)。通过将3-OHBaP与丹磺酰氯衍生增加目标物的电喷雾离子化效率和在碰撞池中产生碎片离子的效率,从而显著提高目标物在LC-MS/MS上的检测灵敏度。在优化的质谱条件下以LC-MS/MS检测相同浓度3-OHBaP-Dansyl和3-OHBaP,3-OHBaP-Dansyl的峰高是3-OHBaP的30倍。该方法的线性范围为0.25-40.0pg/mL,相关系数(r2)为0.9924。加标回收率为87.7%-108.2%,批内精密度为4.6%-9.6%,批间精密度为7.2%-11.3%,方法的检出限为0.1pg/mL。
     5.研究中国人体内对烟气致癌物NNK的解毒能力
     通过问卷和自愿取样方式,获得75份24小时尿液样品(包括男性主动吸烟者、女性主动吸烟者,烤烟型卷烟抽吸者和混合型卷烟抽吸者),分别测定各尿液样品中游离NNAL、总NNAL、尼古丁、可天宁和肌酐含量。在分析和统计样品检测数据的基础上,建立中式卷烟消费者尿液中可天宁和NNAL的相关关系(r=0.66,p<0.0001)。尿液中可天宁和总NNAL浓度均随着吸烟剂量增大而增大。以尿液中NNAL-Glucs与游离NNAL浓度比值反映人体对NNK代谢解毒能力,比较文献报道的黑人和白人体内NNAL-Glucs和NNAL浓度比值,结果发现对于男性,白种人和黑种人解毒能力较强。对于女性,黄种人与白种人解毒能力均比黑种人高。
Cigarette smoke contains more than sixty chemical carcinogens that cause cancers of various types. Cigarette smoking is widely regarded as the leading cause of lung cancer and is also causally associated with laryngeal, bladder, pancreatic cancer and other preventable diseases. So far there are more than300million Chinese smokers, accounting for one-third of the total population of worldwide smokers. Almost3000Chinese people die from tobacco-related diseases each day. In particular, lung cancer is the leading incident cancer and cigarette smoking causes about90%of lung cancer cases. The tobacco-specific nitrosamines and polycyclic aromatic hydrocarbons are regarded as the major aetiological factors in lung cancer. Analysis of the metabolites of carcinogenic4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and benzo[a]pyrene (BaP) in humans can be useful in toxicology and epidemiologic study of cancer risk evaluation in relation to exposure to the carcinogens in tobacco and tobacco smoke. Urinary biomarkers concentrations of NNK and BaP are usually in the pg/mL range, so it presents a considerable challenge for the analysis.
     In this study, some new technology in separation and analysis was applied for the study of ultra-trace metabolism biomarkers of tobacco smoke carcinogens in human. The main work of this thesis is summarized as follows:
     1. Study on a MISPE method for the analysis of urinary NNAL
     An effective analytical method based on molecularly imprinted solid-phase extraction (MISPE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) was established for the determination of NNAL in human urine. The extraction performances of NNAL on three different polymeric SPE sorbents HLB, MCX and NNAL-MIP were evaluated. The MISPE sorbent was found to give the highest extraction recovery and the lowest ion suppression ratio for NNAL compared with the MCX and HLB sorbent The Chromatographic separation was achieved on a reversed-phase Agilent UPLC XDB-C18analytical column of50mm×4.6mm with1.8μm particle size. Combined with the use of isotope internal standard13C6-NNAL, this method achieves good accuracy and precision. Good linearity relationship was obtained in the range of5-1200pg/mL with a correlation coefficient of0.9953. The accuracy ranged from88.5%to93.7%. The intra-and inter-day relative standard deviations varied from3.6%to7.4%and from5.4%to9.7%, respectively. The limit of detection (LOD) was0.4pg/mL.
     2. Study on a PFP chromatographic column separation technology for the simultaneous determination of NNAL and its N-and O-glucuronides in human urine
     A direct measurement method for simultaneous determination of urinary NNAL, NNAL-N-Gluc and NNAL-O-Gluc by LC-MS/MS in a single run was developed for the first time. Three different types of HPLC columns including Agilent UPLC XDB-C18column (50mm×4.6mm i.d.,1.8μm), Agilent Eclipse Plus-C18column (100mm×4.6mm i.d.,3.5μm) and Phenomenex Kinetex PFP column (100mm×4.6mm i.d.,2.6μm) were evaluated for the separation of NNAL, NNAL-N-Gluc and NNAL-O-Gluc. Chromatographic separation was achieved on the PFP column within6min run time. The extraction performances of the analytes on three different SPE sorbents including C18, HLB and MCX were evaluated. The analytes were analyzed by LC-MS/MS operated in electrospray positive ionization mode with multiple reaction monitoring data acquisition. Compared with the previously reported studies, the proposed method was more accurate and more rapid without the need for time-consuming and laborious enzymatic or base hydrolysis steps. The LODs were1.5,15and20pg/mL for NNAL, NNAL-N-Gluc and NNAL-O-Gluc, respectively.
     3. Study on the dispersive liquid-liquid microextraction technology for the enrichment and analysis of NNAL in human hair
     In this section, two-step SPE combined with reverse-phase ultrasound-assisted dispersive liquid-liquid microextraction (USA-DLLME) as a sample preparation technique was proposed for the sensitive determination of NNAL in human hair samples. The samples were digested with NaOH solution, extracted using C18SPE and molecularly imprinted SPE procedure followed by USA-DLLME procedure for further purification and enrichment before LC-MS/MS analysis. The parameters which affect the extract efficiency were optimized. Under the optimized conditions, an enrichment factor of20was obtained. Accuracies ranged between87.3%and107.7%. Intra-and inter-day relative standard deviations varied from4.1%to8.5%and from6.9%to11.3%, respectively. The LOD was0.08pg/mg. Finally, the developed method was applied for the analysis of NNAL in smokers' hair. The level of NNAL was between0.27and0.67pg/mg.
     4. Study on the dansyl chloride derivatization technology for the quantification of urinary3-hydroxybenzo[a]pyrene
     In this work, a sensitive and selective LC-MS/MS method for the determination of urinary3-OHBaP was developed. Following enzymatic hydrolysis of the glucuronide and sulfate conjugates, the metabolite was enriched and cleaned up by SPE and then derivatized with dansyl chloride. The derivatization of3-OHBaP introducing a dansyl group into the molecule greatly enhanced the detection sensitivity by improving both the efficiency of electrospray ionization in the positive ion mode and collision-induced dissociation in the collision cell. Injecting the same concentration of3-OHBaP-Dansyl and3-OHBaP, an increase in the response (peak height) of approximate30-fold over the underivatized3-OHBaP was observed. Good linear relationship was obtained over the concentration range of0.25-40.0pg/mL with a correlation coefficient (r2) of0.9924. Accuracy ranged from87.7%to108.2%. Intra-and inter-day relative standard deviations varied from4.6%to9.6%and7.2%to11.3%, respectively. The LOD was0.1pg/mL. The proposed analytical method was successfully applied to analyze3-OHBaP in human urine from smokers and nonsmokers for biomonitoring the exposure to carcinogenic PAHs.
     5. Study on the metabolites of a tobacco-specific lung carcinogen in the urine of Chinese smokers
     The study subjects consisted of75smokers including50men and15women smoking cured cigarettes and10men smoking blended cigarettes. Concentrations of urinary metabolites including free NNAL, total NNAL and cotinine were analyzed and expressed as milligram creatinine to normalize for urinary concentration. Urinary cotinine levels correlated with total NNAL levels (r=0.66, p<0.000). Urinary cotinine and total NNAL measurements increased steadily with increased smoking cigarettes per day. Furthermore, the differences in the exposure and metabolism of NNK in Chinese smokers were compared with those in the blacks and the whites reported in the literature. The NNAL glucuronidation ratio was greater in Chinese women than that in black women, whereas there was no significant difference in the NNAL-Glucs:NNAL ratio between Chinese women and white women. Conversely, in men, the mean ratio of NNAL-Glucs:NNAL in the yellows was lower than that in both the whites and the blacks.
引文
[1]Christiani D C. Utilization of biomarker data for clinical and environmental intervention [J]. Environ. Health Perspect,1996,104(5):921-925.
    [2]Beger R D, Colatsky T. Metabolomics data and the biomarker qualification process [J]. Metabolomics,2012,8(1):2-7.
    [3]Zhang A H, Sun H, Yan G L, et al. Metabolomics in diagnosis and biomarker discovery of colorectal cancer [J]. Cancer Lett.,2014,345:17-20.
    [4]Hecht S S. Tobacco carcinogens, their biomarkers and tobacco-induced cancer [J]. Nat. Rev. Cancer,2003,3:733-744.
    [5]Patelarou E, Giourgouli G, Lykeridou A, et al. Association between biomarker-quantified antioxidant status during pregnancy and infancy and allergic disease during early childhood: A systematic review [J]. Nutr. Rev.,2011,69(11):627-641.
    [6]Marchiset-Ferlay N, Savanovitch C, Sauvant-Rochat M P. What is the best biomarker to assess arsenic exposure via drinking water? [J]. Environ. Int.,2012,39(1):150-171.
    [7]Bonet B, Corcoll N, Tlili A, et al. Antioxidant enzyme activities in biofilms as biomarker of Zn pollution in a natural system:An active bio-monitoring study [J]. Ecotox. Environ. Safe.,2014, 103:82-90.
    [8]Perfetti T A, Rodgman A. The complexity of tobacco and tobacco smoke [M]. CORESTA Congress, Edinburgh, Scotland,2010.
    [9]Baker R R, Pereira J R da Silva, Smith G. The effect of tobacco ingredients on smoke chemistry. Part Ⅰ:Flavourings and additives [J]. Food Chem. Toxicol.,2004,42:3-37.
    [10]Lee K H, Byeon S H. The biological monitoring of urinary 1-hydroxypyrene by PAH exposure among smokers [J]. Int. J. Environ. Res.,2010,4(3):439-442.
    [11]Protano C, Guidotti M, Manini P, et al. Benzene exposure in childhood:Role of living environments and assessment of available tools [J]. Environ. Int.,2010,36(7):779-787.
    [12]Yuan J M, Butler L M; Stepanov I, et al. Urinary tobacco smoke-constituent biomarkers for assessing risk of lung cancer [J]. Cancer Res.,2014,74(2):401-411.
    [13]Hatsukami D K, Benowitz N L, Rennard S I, et al. Biomarkers to assess the utility of potential reduced exposure tobacco products [J]. Nicotine Tob. Res.,2006,8(4):600-622.
    [14]Hecht S S. Biochemistry, biology, and carcinogenicity of tobacco-specific N-nitrosamines [J]. Chem. Res. Toxicol.,1998,11(6):559-603.
    [15]Naufal Z S, Marano K M, Kathman S J, et al. Differential exposure biomarker levels among cigarette smokers and smokeless tobacco consumers in the National Health and Nutrition Examination Survey 1999-2008 [J]. Biomarkers,2011,16(3):222-234.
    [16]Hecht S S, Yuan J M, Hatsukami D. Applying tobacco carcinogen and toxicant biomarkers in product regulation and cancer prevention [J]. Chem. Res. Toxicol.,2010,23(6):1001-1008.
    [17]Scherer G, Engl J, Urban M, et al. Relationship between machine-derived smoke yields and biomarkers in cigarette smokers in Germany [J]. Regul. Toxicol. Pharmacol.,2007,47(2): 171-183.
    [18]Hecht S S.Cigarette smoking and lung cancer:chemical mechanisms and approaches to prevention [J]. Lancet Oncol.,2002,3(8):461-469.
    [19]王珍,章丽娜,陈菲菲,等.吸烟者尿中致癌物质及其代谢产物的研究进展[J].卫生研究,2008,37(6):757-759.
    [20]Hecht S S, Carmella S G, Villalta P W, et al. Analysis of phenanthrene and benzo[a]pyrene tetraol enantiomers in human urine:relevance to the bay region diol epoxide hypothesis of benzo[a]pyrene carcinogenesis and to biomarker studies [J]. Chem. Res. Toxicol.,2010, 23(5):900-908.
    [21]Wang M, Cheng G, Balbo S, et al. Clear differences in levels of a formaldehyde-DNA adduct in leukocytes of smokers and nonsmokers [J]. Cancer Res.,2009,69(18):7170-7174.
    [22]Searles Nielsen S, Dills R L, Glass M, et al. Accuracy of prenatal smoking data from Washington State birth certificates in a population-based sample with cotinine measurements [J]. Ann. Epidemiol,2014,24:236-239.
    [23]Cope G, Nayyar P, Holder R, et al. A simple near-patient test for nicotine and its metabolites in urine to assess smoking habit [J]. Clin. Chim. Acta,1996,256(2):135-149.
    [24]Dobrinas M, Choong E, Noetzli M, et al. Quantification of nicotine, cotinine, trans-3'-hydroxycotinine and varenicline in human plasma by a sensitive and specific UPLC-tandem mass-spectrometry procedure for a clinical study on smoking cessation [J]. J. Chromatogr. B, 2011,879(30):3574-3582.
    [25]Chiadmi F, Schlatter J. Simultaneous determination of cotinine and trans-3-hydroxycotinine in urine by automated solid-phase extraction using gas chromatography-mass spectrometry [J]. Biomed. Chromatogr.,2014,28:453-458.
    [26]Baidoo E E K, Clench M R, Smith R F, et al. Determination of nicotine and its metabolites in urine by solid-phase extraction and sample stacking capillary electrophoresis-mass spectrometry [J]. J. Chromatogr. B,2003,796(2):303-313.
    [27]Dhar P. Measuring tobacco smoke exposure:quantifying nicotine/cotinine concentration in biological samples by colorimetry, chromatography and immunoassay methods [J]. J. Pharm. Biomed. Anal,2004,35(1):155-168.
    [28]Hecht S S, Carmella S G, Stepanov I, et al. Metabolism of the tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone to its biomarker total nnal in smokeless tobacco users [J]. Cancer Epidemiol. Biomarkers Prev.,2008,17(3):732-735.
    [29]Radwan G, Hecht S S, Carmella S G, et al. Tobacco-specific nitrosamine exposures in smokers and nonsmokers exposed to cigarette or waterpipe tobacco smoke [J]. Nicotine Tob. Res.,2013,15:130-138.
    [30]Derby K S, Cuthrell K, Caberto C, et al. Exposure to the carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) in smokers from 3 populations with different risks of lung cancer [J]. Int. J. Cancer,2009,125(10):2418-2424.
    [31]Lubin J H, Caporaso N, Hatsukami D K, et al. The association of a tobacco-specific biomarker and cigarette consumption and its dependence on host characteristics [J]. Cancer Epidemiol. Biomarkers Prev.,2007,16(9):1852-1857.
    [32]Fan R, Ramage R, Wang D, et al. Determination of ten monohydroxylated polycyclic aromatic hydrocarbons by liquid-liquid extraction and liquid chromatography/tandem mass spectrometry [J]. Talanta,2012,93:383-391.
    [33]Buratti M, Pellegrino O, Brambilla G, et al. Urinary excretion of 1-hydroxypyrene as a biomarker of exposure to polycyclic aromatic hydrocarbons from different sources [J]. Biomarkers,2000,5(5):368-381.
    [34]Barbeau D, Marques M, Maitre A.3-hydroxybenzo[a]pyrene as a new biomarker of exposure to carcinogenic polycyclic aromatic hydrocarbons [J]. Toxicol. Lett.,2011,205(S):S72.
    [35]Barbeau D, Maitre A, Marques M. Highly sensitive routine method for urinary 3-hydroxybenzo[a]pyrene quantitation using liquid chromatography-fluorescence detection and automated off-line solid phase extraction [J]. Analyst,2011,136:1183-1191.
    [36]Chien Y-C, Yeh C-T. Excretion kinetics of urinary 3-hydroxybenzo[a]pyrene following dietary exposure to benzo[a]pyrene in humans [J]. Arch. Toxicol.,2012,86:45-53.
    [37]Zhong Y, Carmella S G, Hochalter J B, et al. Analysis of r-7,t-8,9,c-10-tetrahydroxy-7,8,9,10-tetrahydrobenzo[a]pyrene in human urine:A biomarker for directly assessing carcinogenic polycyclic aromatic hydrocarbon exposure plus metabolic activation [J]. Chem. Res. Toxicol.,2011,24:73-80.
    [38]Hecht S S, Carmella S G, Villalta P W, et al. Analysis of phenanthrene and benzo[a]pyrene tetraol enantiomers in human urine:Relevance to the bay region diol epoxide hypothesis of benzo[a]pyrene carcinogenesis and to biomarker studies [J]. Chem. Res. Toxicol.,2010, 23(5):900-908.
    [39]Fustinoni S, Buratti M, Campo L, et al. Urinary t, t-muconic acid, S-phenylmercapturic acid and benzene as biomarkers of low benzene exposure [J]. Chem. Biol. Interact.,2005,153: 253-256.
    [40]Scherer G, Urban M, Hagedorn H W, et al. Determination of two mercapturic acids related to crotonaldehyde in human urine:influence of smoking [J]. Hum. Exp. Toxicol.,2007,26(1): 37-47.
    [41]Turesky R J, Yuan J M, Wang R, et al. Tobacco smoking and urinary levels of 2-amino-9H-pyrido[2,3-b]indole in men of Shanghai, China [J]. Cancer Epidemiol. Biomarkers Prev.,2007,16(8):1554-1560.
    [42]Jacob P, Havel C, Lee D H, et al. Subpicogram per milliliter determination of the tobacco-specific carcinogen metabolite 4-(meihylnitrosamino)-1-(3-pyridyl)-1-butanol in human urine using liquid chromatography tandem mass spectrometry [J]. Anal. Chem., 2008,80:8115-8121.
    [43]Pan J W, Song Q, Shi H H, et al. Development, validation and transfer of a hydrophilic interaction liquid chromatography/tandem mass spectrometric method for the analysis of the tobacco-specific nitrosamine metabolite NNAL in human plasma at low picogram per milliliter concentrations [J]. Rapid Commun. Mass Spectrom.,2004,18:2549-2557.
    [44]Hou H, Zhang X, Tian Y, et al. Development of a method for the determination of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol in urine of nonsmokers and smokers using liquid chromatography/tandem mass spectrometry [J]. J. Pharm. Biomed. Anal.,2012,63: 17-22.
    [45]Kawadiasa D, Scherera G, Urban M, et al. Simultaneous determination of four tobacco-specific N-nitrosamines (TSNA) in human urine [J]. J. Chromatogr. B,2009,877: 1185-1192.
    [46]Li C C, Wen D W, Zhang J X, et al. Study of the metabolism on tobacco-specific N-nitrosamines in the rabbit by solid-phase extraction and liquid chromatography-tandem mass spectrometry [J]. Anal. Bioanal. Chem.,2006,386(7-8):1985-1993.
    [47]Zimmerman C L, Wu Z, Upadhyaya P, et al. Stereoselective metabolism and tissue retention in rats of the individual enantiomers of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), metabolites of the tobacco-specific nitrosamine,4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) [J]. Carcinogenesis,2004,25:1237-1242.
    [48]Carmella S G, Han S M, Fristad A, et al. Analysis of total 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) in human urine [J]. Cancer Epidemiol. Biomarkers Prev., 2003,12:1257-1261.
    [49]Hu C W, Hsu Y W, Chen J L, et al. Direct analysis of tobacco-specific nitrosamine NNK and its metabolite NNAL in human urine by LC-MS/MS:evidence of linkage to methylated DNA lesions [J]. Arch. Toxicol.,2014,88(2):291-299.
    [50]Yang Y, Yu C, Zhou M, et al. Metabolic study of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone to the enantiomers of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol in vitro in human bronchial epithelial cells using chiral capillary electrophoresis [J]. J. Chromatogr. A,2011,1218:6505-6510.
    [51]Ribeiro C, Ribeiro A R, Maia A S, et al. New trends in sample preparation techniques for environmental analysis [J]. Crit. Rev. Anal. Chem.,2014,44:142-185.
    [52]Lee H L, Wang C, Lin S, et al. Liquid chromatography/tandem mass spectrometric method for the simultaneous determination of tobacco-specific nitrosamine NNK and its five metabolites [J]. Talanta,2007,73:76-80.
    [53]Wu W, Ashley D L, Watson C H. Simultaneous determination of five tobacco-specific nitrosamines in mainstream cigarette smoke by isotope dilution liquid chromatography/electrospray ionization tandem mass spectrometry [J]. Anal. Chem.,2003, 75:4827-4832.
    [54]Waters公司北京实验室Waters Oasis-(TM) HLB固相提取小柱的环境分析应用[J].环境化学,1998,17(6):606-607.
    [55]Waters公司北京实验室.利用Oasis-(TM)MCX产品提取自来水中的强碱性季铵盐除草剂(paraquat and diquat) [J]环境化学,2000,19(4):385-386.
    [56]Byrd G D, Ogden M W. Liquid chromatographic/tandem mass spectrometric method for the determination of the tobacco-specific nitrosamine metabolite NNAL in smokers' urine [J]. J. Mass Spectrom.,2003,38:98-107.
    [57]Wang J J, Frazer D G, Stone S, et al. Urinary benzo[a]pyrene and its metabolites as molecular biomarkers of asphalt fume exposure characterized by microflow LC coupled to hybrid quadrupole time-of-flight mass spectrometry [J]. Anal. Chem.,2003,75:5953-5960.
    [58]Beltran A, Borrull F, Cormack P A G, et al. Molecularly-imprinted polymers:useful sorbents for selective extractions [J]. Trac-Trends Anal. Chem.,2010,29(11):1363-1375.
    [59]Fan J P, Zhang L, Zhang X H, et al. Molecularly imprinted polymers for selective extraction of synephrine from Aurantii Fructus Immaturus [J]. Anal. Bioanal. Chem.,2012,402: 1337-1346.
    [60]Ambrosini S, Shinde S, De Lorenzi E, et al. Glucuronide directed molecularly imprinted solid-phase extraction:isolation of testosterone glucuronide from its parent drug in urine [J]. Analyst,2012,137:249-254.
    [61]Xia Y, McGuffey J E, Bhattacharyya S, et al. Analysis of the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol in urine by extraction on a molecularly imprinted polymer column and liquid chromatography/atmospheric pressure ionization tandem mass spectrometry [J]. Anal. Chem.,2005,77:7639-7645.
    [62]Zhang Z Y, Yang M J, Pawliszyn J. Solid-phase microextraction:A solvent-free alternative for sample preparation [J]. Anal. Chem.,1994,66 (17):844-854.
    [63]Kataoka H, Inoue R, Yagi K, et al. Determination of nicotine, cotinine, and related alkaloids in human urine and saliva by automated in-tube solid-phase microextraction coupled with liquid chromatography-mass spectrometry [J]. J. Pharm. Biomed. Anal.,2009,49:108-114.
    [64]Witter A E, Klinger D M, Fan X, et al. Quantitative determination of nicotine and cotinine in urine and sputum using a combined SPME-GC/MS method [J]. J. Chem. Educ.,2002,79: 1257-1260.
    [65]Jeannot M A, Cantwell F F. Solvent microextraction into a single drop [J]. Anal. Chem.,1996, 68(13):2236-2240.
    [66]Kardani F, Daneshfar A, Sahrai R. Determination of nicotine, anabasine, and cotinine in urine and saliva samples using single-drop microextraction [J]. J. Chromatogr. B,2010,878: 2857-2862.
    [67]Spietelun A, Marcinkowski L, de la Guardia M, et al. Green aspects, developments and perspectives of liquid phase microextraction techniques [J]. Talanta,2014,119:34-45.
    [68]Jeannot M A, Przyjazny A, Kokosa J M. Single drop microextraction-Development, applications and future trends [J]. J. Chromatogr. A,2010,1217(16):2326-2336.
    [69]Gonzalez-Curbelo M A, Hernandez-Borges J, Borges-Miquel T M, et al. Determination of organophosphorus pesticides and metabolites in cereal-based baby foods and wheat flour by means of ultrasound-assisted extraction and hollow-fiber liquid-phase microextraction prior to gas chromatography with nitrogen phosphorus detection [J]. J. Chromatogr. A,2013, 1313:166-174.
    [70]Chen B, Huang Y, He M, et al. Hollow fiber liquid-liquid-liquid microextraction combined with high performance liquid chromatography-ultraviolet detection for the determination of various environmental estrogens in environmental and biological samples [J]. J. Chromatogr. A,2013,1305:17-26.
    [71]Yang Y, Chen J, Shi Y P. Determination of aconitine, hypaconitine and mesaconitine in urine using hollow fiber liquid-phase microextraction combined with high-performance liquid chromatography [J]. J. Chromatogr. B,2010,878:2811-2816.
    [72]Rezaee M, Assadi Y, Hosseinia M-R M, et al. Determination of organic compounds in water using dispersive liquid-liquid microextraction [J]. J. Chromatogr. A,2006,1116:1-9.
    [73]Li P, Zhu X, Hong S, et al. Ultrasound-assisted extraction followed by dispersive liquid-liquid microextraction before gas chromatography-mass spectrometry for the simultaneous determination of flavouring compounds in tobacco additives [J]. Anal. Methods,2012,4:995-1000.
    [74]Yang C, Ding W. Determination of synthetic polycyclic musks in aqueous samples by ultrasound-assisted dispersive liquid-liquid microextraction and gas chromatography-mass spectrometry [J]. Anal. Bioanal. Chem.,2012,402:1723-1730.
    [75]Ma J P, Lu W H, Chen L X. Recent advances in dispersive liquid-liquid microextraction for organic compounds analysis in environmental water:A review [J]. Curr. Anal. Chem.,2012, 8(1):78-90.
    [76]Hashemi P, Raeisi F, Ghiasvand A R, et al. Reversed-phase dispersive liquid-liquid microextraction with central composite design optimization for preconcentration and HPLC determination of oleuropein [J]. Talanta,2010,80:1926-1931.
    [77]Wen Y Y, Li J H, Zhang W W, et al. Dispersive liquid-liquid microextraction coupled with capillary electrophoresis for simultaneous determination of sulfonamides with the aid of experimental design [J]. Electrophoresis,2011,32(16):2131-2138.
    [78]Samadi S, Sereshti H, Assadi Y. Ultra-preconcentration and determination of thirteen organophosphorus pesticides in water samples using solid-phase extraction followed by dispersive liquid-liquid microextraction and gas chromatography with flame photometric detection [J]. J. Chromatogr. A,2012,1219:61-65.
    [79]Liu B, Yan H, Qiao F, et al. Determination of clenbuterol in porcine tissues using solid-phase extraction combined with ultrasound-assisted dispersive liquid-liquid microextraction and HPLC-UV detection [J]. J. Chromatogr. B,2011,879:90-94.
    [80]邵又雅,张文彬,王荣荣,等.热能分析仪的研制[J].环境科学,1985,6(6):83-87.
    [81]Hecht S S, Carmella S G, Murphy S E, et al. A tobacco-specific lung carcinogen in the urine of men exposed to cigarette smoke [J]. Engl. J. Med.,1993,329:1543-1546.
    [82]Singh S, Handa T, Narayanam M, et al. A critical review on the use of modern sophisticated hyphenated tools in the characterization of impurities and degradation products [J]. J. Pharm. Biomed. Anal,2012,69:148-173.
    [83]Ramalhosa M J, Paiga P, Morais S, et al. Analysis of polycyclic aromatic hydrocarbons in fish:Optimisation and validation of microwave-assisted extraction [J]. Food Chem., 2012,135(1):234-242.
    [84]Ghasemi E. Optimization of solvent bar microextraction combined with gas chromatography mass spectrometry for preconcentration and determination of tramadol in biological samples [J]. J. Chromatogr. A,2012,1251:48-53.
    [85]Mao X, Wan Y, Yan A, et al. Simultaneous determination of organophosphorus, organochlorine, pyrethriod and carbamate pesticides in Radix astragali by microwave-assisted extraction/dispersive-solid phase extraction coupled with GC-MS [J]. Talanta,2012,97:131-141.
    [86]Li Z, Romanoff L C, Trinidad D A, et al. Measurement of urinary monohydroxy polycyclic aromatic hydrocarbons using automated liquid-liquid extraction and gas chromatography/isotope dilution high-resolution mass spectrometry [J]. Anal. Chem.,2006, 78:5744-5751.
    [87][Anonymous]. QqQ and Q-TOF aim for LC-MS market [J]. Trac-Trends Anal. Chem.,2006, 25(4):271-278.
    [88]Shah K A, Halquist M S, Karnes H T. A modified method for the determination of tobacco specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol in human urine by solid phase extraction using a molecularly imprinted polymer and liquid chromatography tandem mass spectrometry [J]. J. Chromatogr. B,2009,877:1575-1582.
    [89]Schubert J, Kappenstein O, Luch A, et al. Analysis of primary aromatic amines in the mainstream waterpipe smoke using liquid chromatography-electrospray ionization tandem mass spectrometry [J]. J. Chromatogra. A,2011,1218:5628-5637.
    [90]Kocadagli T, Yilmaz C, Gokmen V. Determination of melatonin and its isomer in foods by liquid chromatography tandem mass spectrometry [J]. Food Chem.,2014,153:151-156.
    [91]King R, Bonfiglio R, Fernandez-Metzler C, et al. Mechanistic investigation of ionization suppression in electrospray ionization [J]. J. Am. Soc. Mass Spectrom.,2000,11(11): 942-950.
    [92]Remane D, Meyer M R, Wissenbach D K, et al. Ion suppression and enhancement effects of co-eluting analytes in multi-analyte approaches:systematic investigation using ultra-high-performance liquid chromatography/mass spectrometry with atmosphericpressure chemical ionization or electrospray ionization [J]. Rapid Commun. Mass Spectrom., 2010,24(21):3103-3108.
    [93]Dams R, Huestis M A, Lambert W E, et al. Matrix effect in bio-analysis of illicit drugs with LC-MS/MS:Influence of ionization type, sample preparation, and biofluid [J]. J. Am. Soc. Mass Spectrom.,2003,14(11):1290-1294.
    [94]Wang L Q, Zeng Z L, Su Y J, et al. Matrix effects in analysis of beta-agonists with LC-MS/MS:Influence of analyte concentration, sample source, and SPE type [J]. J. Agric. Food Chem.,2012,60(25):6359-6363.
    [95]Herath H M D R, Shaw P N, Cabot P, et al. Effect of ionization suppression by trace impurities in mobile phase water on the accuracy of quantification by high-performance liquid chromatography/mass spectrometry [J]. Rapid Commun. Mass Spectrom.,2010, 24(11):1502-1506.
    [96]Li X Q, Yang Z, Zhang Q H, et al. Evaluation of matrix effect in isotope dilution mass spectrometry based on quantitative analysis of chloramphenicol residues in milk powder [J]. Anal. Chim. Acta,2014,807:75-83.
    [97]Muller C, Schafer P, Stortzel M, et al. Ion suppression effects in liquid chromatography-electrospray-ionisation transport-region collision induced dissociation mass spectrometry with different serum extraction methods for systematic toxicological analysis with mass spectra libraries [J]. J. Chromatogr. B,2002,773(1):47-52.
    [98]Pascoe R, Foley J P, Gusev A I. Reduction in matrix-related signal suppression effects in electrospray ionization mass spectrometry using on-line two-dimensional liquid chromatography [J]. Anal. Chem.,2001,73(24):6014-6023.
    [99]刘道杰,邓爱霞.新型高效液相色谱固定相研究进展[J].化学试剂,2004,26(1):10-14.
    [100]Churchwell M I, Twaddle N C, Meeker L R, et al. Improving LC-MS sensitivity through increases in chromatographic performance:Comparisons of UPLC-ES/MS/MS to HPLC-ES/MS/MS [J]. J. Chromatogr. B,2005,825(2):134-143.
    [101]Forni S, Fu X W, Palmer S E, et al. Rapid determination of C4-acylcarnitine and C5-acylcarnitine isomers in plasma and dried blood spots by UPLC-MS/MS as a second tier test following flow-injection MS/MS acylcarnitine profile analysis [J]. Mol. Genet. Metab.,2010,101(1):25-32.
    [102]Grebenstein N, Frank J. Rapid baseline-separation of all eight tocopherols and tocotrienols by reversed-phase liquid-chromatography with a solid-core pentafluorophenyl column and their sensitive quantification in plasma and liver [J]. J. Chromatogr. A,2012,1243:39-46.
    [103]Zhang L, Wang A, Wang X, et al. Simultaneous determination of Guanfu base G and its active metabolites by UPLC-MS/MS in rat plasma and its application to a pharmacokinetic study [J]. J. Chromatogr. B,2014,957:1-6.
    [104]于晓芳,张忠平.毛细管电泳在蛋白多肽药物分析中的应用[J].齐鲁药事,2011,30(7):410-411.
    [105]Somsen G W, Tak Y H, Torano J S, et al. Determination of oversulfated chondroitin sulfate and dermatan sulfate impurities in heparin by capillary electrophoresis [J]. J. Chromatogr. A, 2009,1216:4107-4112.
    [106]Zhu Z F, Lu J J, Liu S R. Protein separation by capillary gel electrophoresis:A review [J]. Anal. Chim. Acta,2012,709:21-31.
    [107]Lomsadze K, Vega E D, Salgado A, et al. Separation of enantiomers of norephedrine by capillary electrophoresis using cyclodextrins as chiral selectors:Comparative CE and NMR studies [J]. Electrophoresis,2012,33(11):1637-1647.
    [108]Swinney K, Bornhop D. A review of CE detection methodologies [J]. Crit. Rev. Anal. Chem.,2000,30(1):1-30.
    [109]Kempson I M, Lombi E. Hair analysis as a biomonitor for toxicology, disease and health status [J]. Chem. Soc. Rev.,2011,40:3915-3940.
    [110]Khariwala S S, Scheuermann T S, Berg C J, et al. Cotinine and tobacco-specific carcinogen exposure among nondaily smokers in a multiethnic sample [J]. Nicotine Tob. Res.,2014, 16(5):600-605.
    [111]Hecht S S. Human urinary carcinogen metabolites:biomarkers for investigating tobacco and cancer. Carcinogenesis,2002,23:907-922.
    [112]Hecht S S, Murphy S E, Carmella S G, et al. Effects of reduced cigarette smoking on the uptake of a tobacco-specific lung carcinogen [J]. J. Nat. Cancer Inst.,2004,96(2):107-115.
    [113]Hecht S S, Carmella S G, Chen M, et al. Quantitation of urinary metabolites of a tobacco-specific lung carcinogen after smoking cessation [J]. Cancer Res.,1999,59: 590-596.
    [114]Goniewicz M L, Eisner M D, Lazcano-Ponce E, et al. Comparison of urine cotinine and the tobacco-specifc nitrosamine metabolite 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) and their ratio to discriminate active from passive smoking [J]. Nicotine Tob. Res., 2011,13(3):202-208.
    [115]Parsons W D, Carmella S G, Akerkar S, et al. A metabolite of the tobacco-specific lung carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone in the urine of hospital workers exposed to environmental tobacco smoke [J]. Cancer Epidemiol. Biomarkers Prev., 1998,7(3):257-260.
    [116]Hecht S S, Ye M, Carmella S G, et al. Metabolites of a tobacco-specific lung carcinogen in the urine of elementary school-aged children [J]. Cancer Epidemiol. Biomarkers Prev.,2001, 10:1109-1116.
    [117]Lackmann G M, Salzberger U, Tollner U, et al. Metabolites of a tobacco-specific carcinogen in urine from newborns [J]. J. Nat. Cancer Inst.,1999,91:459-465.
    [118]Yuan J M, Koh W P, Murphy S E, et al. Urinary levels of tobacco-specific nitrosamine metabolites in relation to lung development in two prospective cohorts of cigarette smokers [J]. Cancer Res.,2009,69(7):2990-2995.
    [119]Benowitz N L, Dains K M, Hall S M, et al. Progressive commercial cigarette yield reduction: biochemical exposure and behavioral assessment [J]. Cancer Epidemiol. Biomarkers Prev., 2009,18(3):876-883.
    [120]Richie J P, Carmella S G, Muscat J E. Difference in the urinary metabolites of the tobacco-specific lung carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone in black and white smokers [J]. Cancer Epidemiol. Biomarkers Prev.,1997,6:783-790.
    [121]Muscat J E, Djordjevic M V, Colosimo S, et al. Racial differences in exposure and glucuronidation of the tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) [J]. Cancer,2005,103(7):1420-1426.
    [122]Onyemauwa F, Rappaport S M, Sobus J R, et al. Using liquid chromatography-tandem mass spectrometry to quantify monohydroxylated metabolites of polycyclic aromatic hydrocarbons in urine [J]. J. Chromatogr. B,2009,877:1117-1125.
    [123]Zhao G, Chen Y, Wang S, et al. Simultaneous determination of 11 monohydroxylated PAHs in human urine by stir bar sorptive extraction and liquid chromatography/tandem mass spectrometry [J]. Talanta,2013,116:822-826.
    [124]Campo L, Rossella F, Fustinoni S. Development of a gas chromatography/mass spectrometry method to quantify several urinary monohydroxy metabolites of polycyclic aromatic hydrocarbons in occupationally exposed subjects [J]. J. Chromatogr. B,2008,875: 531-540.
    [125]Xu X, Zhang J F, Zhang L, et al. Selective detection of monohydroxy metabolites of polycyclic aromatic hydrocarbons in urine using liquid chromatography/triple quadrupole tandem mass spectrometry [J]. Rapid Commun. Mass Spectrom.,2004,18:2299-2308.
    [126]Fan R F, Dong Y L, Zhang W B, et al. Fast simultaneous determination of urinary 1-hydroxypyrene and 3-hydroxybenzo[a]pyrene by liquid chromatography-tandem mass spectrometry [J]. J. Chromatogr. B,2006,836:92-97.
    [127]Bhat S H, Gelhaus S L, Mesaros C, et al. A new liquid chromatography/mass spectrometry method for 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) in urine [J]. Rapid Commun. Mass Spectrom.,2011,25:115-121.
    [128]Stepanov I, Feuer R, Jensen J, et al. Mass spectrometric quantitation of nicotine, cotinine, and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol in human toenails [J]. Cancer Epidemiol. Biomarkers Prev.,2006,15(12):2378-2383.
    [129]Leroyer A, Jeandel F, Maitre A, et al.1-Hydroxypyrene and 3-hydroxybenzo[a]pyrene as biomarkers of exposure to PAH in various environmental exposure situations [J]. Sci. Total Environ.,2010,408:1166-1173.
    [1]Lang H L, Wang S, Zhang Q D, et al. Simultaneous determination of NNK and its seven metabolites in rabbit blood by hydrophilic interaction liquid chromatography-tandem mass spectrometry [J]. Anal. Bioanal. Chem.,2013,405(6):2083-2089.
    [2]Stepanov I, Sebero E, Wang R W, et al. Tobacco-specific N-nitrosamine exposures and cancer risk in the Shanghai cohort study:Remarkable coherence with rat tumor sites [J]. Int. J. Cancer, 2014,134(10):2278-2283.
    [3]Hecht S S. Tobacco carcinogens, their biomarkers and tobacco-induced cancer [J]. Nat. Rev. Cancer,2003,3:733-744.
    [4]Carmella S G, Han S M, Villalta P W, et al. Analysis of total 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol in smokers'blood [J]. Cancer Epidemiol. Biomarkers Prev.,2005,14: 2669-2672.
    [5]Yuan J M, Butler L M, Stepanov I, et al. Urinary tobacco smoke-constituent biomarkers for assessing risk of lung cancer [J]. Cancer Res.,2014,74(2):401-411.
    [6]Carmella S G, Han S M, Fristad A, et al. Analysis of total 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) in human urine [J]. Cancer Epidemiol. Biomarkers Prev., 2003,12:1257-1261.
    [7]Jacob P, Havel C, Lee D H, et al. Subpicogram per milliliter determination of the tobacco-specific carcinogen metabolite 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol in human urine using liquid chromatography tandem mass spectrometry [J]. Anal. Chem.,2008, 80:8115-8121.
    [8]Lee H L, Wang C, Lin S, et al. Liquid chromatography/tandem mass spectrometric method for the simultaneous determination of tobacco-specific nitrosamine NNK and its five metabolites [J].Talanta,2007,73:76-80.
    [9]Byrd G D, Ogden M W. Liquid chromatographic/tandem mass spectrometric method for the determination of the tobacco-specific nitrosamine metabolite NNAL in smokers'urine [J]. J. Mass Spectrom.,2003,38:98-107.
    [10]Bhat S H, Gelhaus S L, Mesaros C, et al. A new liquid chromatography/mass spectrometry method for 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) in urine [J]. Rapid Commun. Mass Spectrom.,2011,25:115-121.
    [11]Hu C W, Hsu Y W, Chen J L, et al. Direct analysis of tobacco-specific nitrosamine NNK and its metabolite NNAL in human urine by LC-MS/MS:evidence of linkage to methylated DNA lesions [J]. Arch. Toxicol.,2014,88(2):291-299.
    [12]Zimmerman C L, Wu Z, Upadhyaya P, et al. Stereoselective metabolism and tissue retention in rats of the individual enantiomers of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), metabolites of the tobacco-specific nitrosamine,4-(methylnitrosamino)-1-(3-pyridyl)-l-butanone (NNK) [J]. Carcinogenesis,2004,25:1237-1242.
    [13]张同梅,赖百塘,段连山,等.吸烟肺癌患者尿中烟草特有亚硝胺4-(甲基亚硝胺)-1-(3-吡啶)-1-丁酮代谢产物的测定[J].中国肺癌杂志,2006,9(3):231-235.
    [14]Pan J W, Song Q, Shi H H, et al. Development, validation and transfer of a hydrophilic interaction liquid chromatography/tandem mass spectrometric method for the analysis of the tobacco-specific nitrosamine metabolite NNAL in human plasma at low picogram per milliliter concentrations [J]. Rapid Commun. Mass Spectrom.,2004,18:2549-2557.
    [15]Xia Y, McGuffey J E, Bhattacharyya S, et al. Analysis of the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol in urine by extraction on a molecularly imprinted polymer column and liquid chromatography/atmospheric pressure ionization tandem mass spectrometry [J]. Anal. Chem.,2005,77:7639-7645.
    [16]Shah K A, Halquist M S, Karnes H T. A modified method for the determination of tobacco specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol in human urine by solid phase extraction using a molecularly imprinted polymer and liquid chromatography tandem mass spectrometry [J]. J. Chromatogr. B,2009,877:1575-1582.
    [17]Kavvadiasa D, Scherera G, Urban M, et al. Simultaneous determination of four tobacco-specific N-nitrosamines (TSNA) in human urine [J]. J. Chromatogr. B,2009,877: 1185-1192.
    [18]Wang L, Yang C Q, Zhang Q D, et al. SPE-HPLC-MS/MS method for the trace analysis of tobacco-specific N-nitrosamines and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol in rabbit plasma using tetraazacalix[2]arene[2]triazine-modified silica as a sorbent [J]. J. Sep. Sci., 2014,36(16):2664-2671.
    [19]Hou H, Zhang X, Tian Y, et al. Development of a method for the determination of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol in urine of nonsmokers and smokers using liquid chromatography/tandem mass spectrometry [J].J. Pharm. Biomed. Anal.,2012,63: 17-22.
    [20]Waters公司北京实验室Waters Oasis-(TM) HLB固相提取小柱的环境分析应用[J].环境化学,1998,17(6):606-607.
    [21]Waters公司北京实验室.利用Oasis-(TM)MCX产品提取自来水中的强碱性季铵盐除草剂(paraquat and diquat) [J]环境化学,2000,19(4):385-386.
    [1]Hecht S S. Tobacco carcinogens, their biomarkers and tobacco-induced cancer [J]. Nat. Rev. Cancer,2003,3:733-744.
    [2]Pfeifer G P, Denissenko M F, Olivier M, et al. Tobacco smoke carcinogens, DNA damage and p53 mutations in smoking-associated cancers [J]. Oncogene,2002,21:7435-7451.
    [3]Yuan J M, Butler L M, Stepanov I, et al. Urinary tobacco smoke-constituent biomarkers for assessing risk of lung cancer [J]. Cancer Res.,2014,74(2):401-411.
    [4]Hecht S S. Human urinary carcinogen metabolites:biomarkers for investigating tobacco and cancer [J]. Carcinogenesis,2002,23(6):907-922.
    [5]Shah K A, Peoples M C, Halquist M S, et al. Microfluidic direct injection method for analysis of urinary 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) using molecularly imprinted polymers coupled on-line with LC-MS/MS [J]. J. Pharm. Biomed. Anal.,2011,54: 368-378.
    [6]Bhat S H, Gelhaus S L, Mesaros C, et al. A new liquid chromatography/mass spectrometry method for 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) in urine [J]. Rapid Commun. Mass Spectrom.,2011,25:115-121.
    [7]Derby K S, Cuthrell K, Caberto C, et al. Exposure to the carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) in smokers from 3 populations with different risks of lung cancer [J]. Int. J. Cancer,2009,125(10):2418-2424.
    [8]Carmella S G, Le K A, Upadhyaya P, et al. Analysis of N- and O-Glucuronides of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) in human urine [J]. Chem. Res. Toxicol.,2002,15:545-550.
    [9]Xia Y, McGuffey J E, Bhattacharyya S, et al. Analysis of the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol in urine by extraction on a molecularly imprinted polymer column and liquid chromatography/ atmospheric pressure ionization tandem mass spectrometry [J]. Anal. Chem.,2005,77:7639-7645.
    [10]Jacob P, Havel C, Lee D H, et al. Subpicogram per milliliter determination of the tobacco-specific carcinogen metabolite 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol in human urine using liquid chromatography tandem mass spectrometry [J]. Anal. Chem.,2008, 80:8115-8121.
    [11]Shah K A, Halquist M S, Karnes H T. A modified method for the determination of tobacco specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol in human urine by solid phase extraction using a molecularly imprinted polymer and liquid chromatography tandem mass spectrometry [J]. J. Chromatogr. B,2009,877:1575-1582.
    [12]Byrd G D, Ogden M W. Liquid chromatographic/tandem mass spectrometric method for the determination of the tobacco-specific nitrosamine metabolite NNAL in smokers'urine [J]. J. Mass Spectrom.,2003,38:98-107.
    [13]Xue Y J, Simmons N J, Liu J, et al. Separation of a BMS drug candidate and acyl glucuronide from seven glucuronide positional isomers in rat plasma via high-performance liquid chromatography with tandem mass spectrometric detection [J]. Rapid Commun. Mass Spectrom.,2006,20:1776-1786.
    [14]Kakimoto K, Toriba A, Ohno T, et al. Direct measurement of the glucuronide conjugate of 1-hydroxypyrene in human urine by using liquid chromatography with tandem mass spectrometry [J]. J. Chromatogr. B,2008,867:259-263.
    [15]Zimmerman C L, Wu Z, Upadhyaya P, et al. Stereoselective metabolism and tissue retention in rats of the individual enantiomers of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), metabolites of the tobacco-specific nitrosamine,4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) [J]. Carcinogenesis,2004,25:1237-1242.
    [16]Carmella S G, Han S M, Fristad A, et al. Analysis of total 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) in human urine [J]. Cancer Epidemiol. Biomarkers Prev.,2003,12: 1257-1261.
    [17]Hu C W, Hsu Y W, Chen J L, et al. Direct analysis of tobacco-specific nitrosamine NNK and its metabolite NNAL in human urine by LC-MS/MS:evidence of linkage to methylated DNA lesions [J]. Arch. Toxicol.,2014,88(2):291-299.
    [18]Havlikova L, Matysova L, Hajkova R, et al. Advantages of pentafluorophenylpropyl stationary phase over conventionial C18 stationary phase-Application to analysis of triamcinolone acetonide [J]. Talanta,2008,76:597-601.
    [19]Li C, Hill R W, Jones A D. Determination of betaine metabolites and dimethylsulfoniopropionate in coral tissues using liquid chromatography-time-of-flight mass spectrometry and stable isotope-labeled internal standards [J]. J. Chromatogr. B,2002, 878:1809-1816.
    [20]Yang S, Sadilek M, Lidstrom M E. Streamlined pentafluorophenylpropyl column liquid chromatography-tandem quadrupole mass spectrometry and global 13C-labeled internal standards improve performance for quantitative metabolomics in bacteria [J]. J. Chromatogr. A,2010,1217:7401-7410.
    [21]Bell D S, Jones A D. Solute attributes and molecular interactions contributing to "U-shape" retention on a fluorinated high-performance liquid chromatography stationary phase [J]. J. Chromatogr. A,2005,1073:99-109.
    [22]Pellati F, Benvenuti S. Fast high-performance liquid chromatography analysis of phenethylamine alkaloids in Citrus natural products on a pentafluorophenylpropyl stationary phase [J]. J. Chromatogr. A,2007,1165:58-66.
    [23]Marrington R, Johnston J, Knowles S, et al. Measurement of urinary metadrenaline and normetadrenaline by liquid chromatography tandem mass spectrometry for the diagnosis of phaeochromocytoma [J]. Ann. Clin. Biochem.,2010,47:467-475.
    [24]Ho C, Lee W-O, Wong Y-T. Determination of N-methyl-1,3-propanediamine in bovine muscle by liquid chromatography with triple quadrupole and ion trap tandem mass spectrometry detection [J]. J. Chromatogr. A,2012,1235:103-114.
    [25]Benskin J P, Ikonomou M G, Woudneh M B, et al. Rapid characterization of perfluoralkyl carboxylate, sulfonate, and sulfonamide isomers by high-performance liquid chromatography-tandem mass spectrometry [J]. J. Chromatogr. A,2012,1247:165-170.
    [26]Hui Y, Wong M, Zhao S S, et al. A simple and robust LC-MS/MS method for quantification of free 3-nitrotyrosine in human plasma from patients receiving on-pump CABG surgery [J]. Electrophoresis,2012,33:697-704.
    [27]Grebenstein N, Frank J. Rapid baseline-separation of all eight tocopherols and tocotrienols by reversed-phase liquid-chromatography with a solid-core pentafluorophenyl column and their sensitive quantification in plasma and liver [J]. J. Chromatogr. A,2012,1243:39-46.
    [28]Hou H, Zhang X, Tian Y, et al. Development of a method for the determination of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol in urine of nonsmokers and smokers using liquid chromatography/tandem mass spectrometry [J]. J. Pharm. Biomed. Anal.,2012,63: 17-22.
    [1]Appleton S, Olegario R M, Lipowicz P J. TSNA exposure from cigarette smoking:18 Years of urinary NNAL excretion data [J]. Regul. Toxicol. Pharmacol.,2014,68:269-274.
    [2]Yao L, Zheng S, Guan Y, et al. Development of a rapid method for the simultaneous separation and determination of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol and its N-and O-glucuronides in human urine by liquid chromatography-tandem mass spectrometry [J]. Anal. Chim. Acta,2013,788:61-67.
    [3]Shah K A, Halquist M S, Karnes H T. A modified method for the determination of tobacco specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol in human urine by solid phase extraction using a molecularly imprinted polymer and liquid chromatography tandem mass spectrometry [J]. J. Chromatogr. B,2009,877:1575-1582.
    [4]Carmella S G, Han S M, Villalta P W, et al. Analysis of total 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol in smokers'blood [J]. Cancer Epidemiol. Biomarkers Prev.,2005,14: 2669-2672.
    [5]Pan J W, Song Q, Shi H H, et al. Development, validation and transfer of a hydrophilic interaction liquid chromatography/tandem mass spectrometric method for the analysis of the tobacco-specific nitrosamine metabolite NNAL in human plasma at low picogram per milliliter concentrations [J]. Rapid Commun. Mass Spectrom.,2004,18:2549-2557.
    [6]Stepanov I, Hecht S S, Lindgren B, et al. Relationship of human toenail nicotine, cotinine, and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol to levels of these biomarkers in plasma and urine [J]. Cancer Epidemiol. Biomarkers Prev.,2007,16:1382-1386.
    [7]Jacob P, Havel C, Lee D H, et al. Subpicogram per milliliter determination of the tobacco-specific carcinogen metabolite 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol in human urine using liquid chromatography tandem mass spectrometry [J]. Anal. Chem.,2008, 80:8115-8121.
    [8]Kempson I M, Lombi E. Hair analysis as a biomonitor for toxicology, disease and health status [J]. Chem. Soc. Rev.,2011,40:3915-3940.
    [9]Srogi K. Hair analysis as method for determination of level of drugs and pharmaceutical in human body:review of Chromatographic Procedures [J]. Anal. Lett.,2006,39:231-258.
    [10]Pragst F, Balikova MA. State of the art in hair analysis for detection of drug and alcohol abuse [J]. Clin. Chim. Acta,2006,370:17-49.
    [11]Zimmerman C L, Wu Z, Upadhyaya P, et al. Stereoselective metabolism and tissue retention in rats of the individual enantiomers of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), metabolites of the tobacco-specific nitrosamine,4-(methylntrosamino)-1-(3-pyridyl)-1-butanone (NNK) [J]. Carcinogenesis,2004,25:1237-1242.
    [12]Carmella S G, Han S M, Fristad A, et al. Analysis of total 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) in human urine [J]. Cancer Epidemiol. Biomarkers Prev.,2003,12: 1257-1261.
    [13]Hu C W, Hsu Y W, Chen J L, et al. Direct analysis of tobacco-specific nitrosamine NNK and its metabolite NNAL in human urine by LC-MS/MS:evidence of linkage to methylated DNA lesions [J]. Arch. Toxicol.,2014,88(2):291-299.
    [14]Yang Y, Yu C, Zhou M, et al. Metabolic study of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone to the enantiomers of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol in vitro in human bronchial epithelial cells using chiral capillary electrophoresis [J]. J. Chromatogr. A,2011,1218:6505-6510.
    [15]Lee H L, Wang C, Lin S, et al. Liquid chromatography/tandem mass spectrometric method for the simultaneous determination of tobacco-specific nitrosamine NNK and its five metabolites [J]. Talanta,2007,73:76-80.
    [16]Byrd G D, Ogden M W. Liquid chromatographic/tandem mass spectrometric method for the determination of the tobacco-specific nitrosamine metabolite NNAL in smokers'urine [J]. J. Mass Spectrom.,2003,38:98-107.
    [17]Fan J P, Zhang L, Zhang X H, et al. Molecularly imprinted polymers for selective extraction of synephrine from Aurantii Fructus Immaturus [J]. Anal. Bioanal. Chem.,2012,402: 1337-1346.
    [18]Ambrosini S, Shinde S, De Lorenzi E, et al. Glucuronide directed molecularly imprinted solid-phase extraction:isolation of testosterone glucuronide from its parent drug in urine [J]. Analyst,2012,137:249-254.
    [19]Yan H, Qiao J, Wang H, et al. Molecularly imprinted solid-phase extraction combined with ultrasound-assisted dispersive liquid-liquid microextraction for the determination of four Sudan dyes in sausage samples [J]. Analyst,2011,136:2629-2634.
    [20]Yang J, Hu Y, Cai J B, et al. A new molecularly imprinted polymer for selective extraction of cotinine from urine samples by solid-phase extraction [J]. Anal. Bioanal. Chem.,2006,384: 761-768.
    [21]Xia Y, McGuffey J E, Bhattacharyya S, et al. Analysis of the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol in urine by extraction on a molecularly imprinted polymer column and liquid chromatography/ atmospheric pressure ionization tandem mass spectrometry [J]. Anal. Chem.,2005,77:7639-7645.
    [22]Cordero C, Zebelo S A, Gnavi G, et al. HS-SPME-GC×GC-qMS volatile metabolite profiling of Chrysolina herbacea frass and Mentha spp. leaves [J]. Anal. Bioanal. Chem.,2012,402: 1941-1952.
    [23]Da Fonseca P, Bonato P S. Chiral HPLC analysis of venlafaxine metabolites in rat liver microsomal preparations after LPME extraction and application to an in vitro biotransformation study [J]. Anal. Bioanal. Chem.,2010,396:817-824.
    [24]Gao W, Chen G, Chen Y, et al. Selective extraction of alkaloids in human urine by on-line single drop microextraction coupled with sweeping micellar electrokinetic chromatography [J]. J. Chromatogr. A,2011,1218:5712-5717.
    [25]Costas-Mora I, Romero V, Pena-Pereira F, et al. Quantum dot-based headspace single-drop microextraction technique for optical sensing of volatile species [J]. Anal. Chem.,2011,83: 2388-2393.
    [26]Ma X, Wang J, Wu Q, et al. Extraction of carbamate pesticides in fruit samples by graphene reinforced hollow fibre liquid microextraction followed by high performance liquid chromatographic detection [J]. Food Chem.,2014,157:119-124.
    [27]Simoes R A, Moraes de Oliveira A R, Bonato P S. Hollow fiber-based liquid-phase microextraction (HF-LPME) of isradipine and its main metabolite followed by chiral HPLC analysis:application to an in vitro biotransformation study [J]. Anal. Bioanal. Chem.,2011, 399:2435-2443.
    [28]Hashemi P, Raeisi F, Ghiasvand A R, et al. Reversed-phase dispersive liquid-liquid microextraction with central composite design optimization for preconcentration and HPLC determination of oleuropein [J]. Talanta,2010,80:1926-1931.
    [29]Ahmadi-Jouibari T, Fattahi N, Shamsipur M. Rapid extraction and determination of amphetamines in human urine samples using dispersive liquid-liquid microextraction and solidification of floating organic drop followed by high performance liquid chromatography [J]. J. Pharm. Biomed. Anal.,2014,94:145-151.
    [30]Li P, Zhu X, Hong S, et al. Ultrasound-assisted extraction followed by dispersive liquid-liquid microextraction before gas chromatography-mass spectrometry for the simultaneous determination of flavouring compounds in tobacco additives [J]. Anal. Methods,2012,4:995-1000.
    [31]Liao X, Liang B, Li Z, et al. A simple, rapid and sensitive ultraviolet-visible spectrophotometric technique for the determination of ultra-trace copper based on injection-ultrasound-assisted dispersive liquid-liquid microextraction [J]. Analyst,2011, 136:4580-4586.
    [32]Yang C Y, Ding W H. Determination of synthetic polycyclic musks in aqueous samples by ultrasound-assisted dispersive liquid-liquid microextraction and gas chromatography-mass spectrometry [J]. Anal. Bioanal. Chem.,2012,402:1723-1730.
    [33]Xia Y, Zhi X, Wang X, et al. Ultrasound-enhanced surfactant-assisted dispersive liquid-liquid microextraction and high-performance liquid chromatography for determination of ketoconazole and econazole nitrate in human blood [J]. Anal. Bioanal. Chem.,2012,402:1241-1247.
    [34]Montes R, Rodriguez I, Ramil M, et al. Solid-phase extraction followed by dispersive liquid-liquid microextraction for the sensitive determination of selected fungicides in wine [J]. J. Chromatogr. A,2009,1216:5459-5466.
    [35]Liu B, Yan H, Qiao F, et al. Determination of clenbuterol in porcine tissues using solid-phase extraction combined with ultrasound-assisted dispersive liquid-liquid microextraction and HPLC-UV detection [J]. J. Chromatogr. B,2011,879:90-94.
    [36]Liu X, Li J, Zha Z, et al. Solid-phase extraction combined with dispersive liquid-liquid microextraction for the determination for polybrominated diphenyl ethers in different environmental matrices [J]. J. Chromatogr. A,2009,1216:2220-2226.
    [37]Samadi S, Sereshti H, Assadi Y. Ultra-preconcentration and determination of thirteen organophosphorus pesticides in water samples using solid-phase extraction followed by dispersive liquid-liquid microextraction and gas chromatography with flame photometric detection [J]. J. Chromatogr. A,2012,1219:61-65.
    [38]Stepanov I, Feuer R, Jensen J, et al. Mass spectrometric quantitation of nicotine, cotinine, and 4-(methylnitrosamino)-1-(3-pyridyl)-l-butanol in human toenails [J]. Cancer Epidemiol. Biomarkers Prev.,2006,15(12):2378-2383.
    [39]Carmella S G, Le K A, Upadhyaya P, et al. Analysis of N-and O-Glucuronides of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) in human urine [J]. Chem. Res. Toxicol.,2002,15:545-550.
    [40]Wang W X, Yang T J, Li Z G, et al. A novel method of ultrasound-assisted dispersive liquid-liquid microextraction coupled to liquid chromatography-mass spectrometry for the determination of trace organoarsenic compounds in edible oil [J]. Anal. Chim. Acta,2011, 690:221-227.
    [41]Melwanki M B, Fuh M-R. Dispersive liquid-liquid microextraction combined with semi-automated in-syringe back extraction as a new approach for the sample preparation of ionizable organic compounds prior to liquid chromatography [J]. J. Chromatogr. A,2008, 1198:1-6.
    [42]Shah K A, Peoples M C, Halquist M S, et al. Microfluidic direct injection method for analysis of urinary 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) using molecularly imprinted polymers coupled on-line with LC-MS/MS [J]. J. Pharm. Biomed. Anal.,2011,54: 368-378.
    [1]Saito E, Tanaka N, Miyazaki A, et al. Concentration and particle size distribution of polycyclic aromatic hydrocarbons formed by thermal cooking [J]. Food Chem.,2014,153:285-291.
    [2]Purcaro G, Moret S, Conte L S. Overview on polycyclic aromatic hydrocarbons:Occurrence, legislation and innovative determination in foods [J]. Talanta,2013,105:292-305.
    [3]Grainger J, Huang W L, Patterson D G, et al. Reference range levels of polycyclic aromatic hydrocarbons in the US population by measurement of urinary monohydroxy metabolites [J]. Environ. Res.,2006,100:394-423.
    [4]Skaljac S, Petrovic L, Tasic T, et al. Influence of smoking in traditional and industrial conditions on polycyclic aromatic hydrocarbons content in dry fermented sausages (Petrovska klobasa) from Serbia [J]. Food Control,2014,40:12-18.
    [5]Barbeau D, Maitre A, Marques M. Highly sensitive routine method for urinary 3-hydroxybenzo[a]pyrene quantitation using liquid chromatography-fluorescence detection and automated off-line solid phase extraction [J]. Analyst,2011,136:1183-1191.
    [6]Onyemauwa F, Rappaport S M, Sobus J R, et al. Using liquid chromatography-tandem mass spectrometry to quantify monohydroxylated metabolites of polycyclic aromatic hydrocarbons in urine [J]. J. Chromatogr. B,2009,877:1117-1125.
    [7]Fan R, Ramage R, Wang D, et al. Determination of ten monohydroxylated polycyclic aromatic hydrocarbons by liquid-liquid extraction and liquid chromatography/tandem mass spectrometry [J]. Talanta,2012,93:383-391.
    [8]Chien Y-C, Yeh C-T. Excretion kinetics of urinary 3-hydroxybenzo[a]pyrene following dietary exposure to benzo[a]pyrene in humans [J]. Arch. Toxicol.,2012,86:45-53.
    [9]Fan R F, Dong Y L, Zhang W B, et al. Fast simultaneous determination of urinary 1-hydroxypyrene and 3-hydroxybenzo[a]pyrene by liquid chromatography-tandem mass spectrometry [J]. J. Chromatogr. B,2006,836:92-97.
    [10]Simon P, Lafontaine M, Delsaut P, et al. Trace determination of urinary 3-hydroxybenzol[a]pyrene by automated column-switching high-performance liquid chromatography [J]. J. Chromatogr. B,2000,748:337-348.
    [11]Leroyer A, Jeandel F, Maitre A, et al.1-Hydroxypyrene and 3-hydroxybenzo[a]pyrene as biomarkers of exposure to PAH in various environmental exposure situations [J]. Sci. Total Environ.,2010,408:1166-1173.
    [12]Campo L, Rossella F, Fustinoni S. Development of a gas chromatography/mass spectrometry method to quantify several urinary monohydroxy metabolites of polycyclic aromatic hydrocarbons in occupationally exposed subjects [J]. J. Chromatogr. B,2008,875:531-540.
    [13]Li Z, Romanoff L C, Trinidad D A, et al. Measurement of urinary monohydroxy polycyclic aromatic hydrocarbons using automated liquid-liquid extraction and gas chromatography/isotope dilution high-resolution mass spectrometry [J]. Anal. Chem.,2006, 78:5744-5751.
    [14]Xu X, Zhang J F, Zhang L, et al. Selective detection of monohydroxy metabolites of polycyclic aromatic hydrocarbons in urine using liquid chromatography/triple quadrupole tandem mass spectrometry [J]. Rapid Commun. Mass Spectrom.,2004,18:2299-2308.
    [15]Rey-Salgueiro L, Martinez-Carballo E, Garcia-Faicon M S, et al. Occurrence of polycyclic aromatic hydrocarbons and their hydroxylated metabolites in infant foods [J]. Food Chem., 2009,115:814-819.
    [16]Wang J J, Frazer D G, Law B, et al. Identification and quantification of urinary benzo[a]pyrene and its metabolites from asphalt fume exposed mice by microflow LC coupled to hybrid quadrupole time-of-flight mass spectrometry [J]. Analyst,2003,128: 864-870.
    [17]Romanoff L C, Li Z, Young K J, et al. Automated solid-phase extraction method for measuring urinary polycyclic aromatic hydrocarbon metabolites in human biomonitoring using isotope-dilution gas chromatography high-resolution mass spectrometry [J]. J. Chromatogr. B,2006,835:47-54.
    [18]Li Y H, Li A C, Shi H, et al. The use of chemical derivatization to enhance liquid chromatography/tandem mass spectrometric determination of 1-hydroxypyrene, a biomarker for polycyclic aromatic hydrocarbons in human urine [J]. Rapid Commun. Mass Spectrom., 2005,19:3331-3338.
    [19]Jacob P, Wilson M, Benowitz N L. Determination of phenolic metabolites of polycyclic aromatic hydrocarbons in human urine as their pentafluorobenzyl ether derivatives using liquid chromatography tandem mass spectrometry [J]. Anal. Chem.,2007,79:587-597.
    [20]Xu X, Roman J M, Issaq H J, et al. Quantitative measurement of endogenous estrogens and estrogen metabolites in human serum by liquid chromatography-tandem mass spectrometry [J]. Anal. Chem.,2007,79:7813-7821.
    [21]Chu S, Letcher R J. Halogenated phenolic compound determination in plasma and serum by solid phase extraction, dansylation derivatization and liquid chromatography-positive electrospray ionization-tandem quadrupole mass spectrometry [J]. J. Chromatogr. A,2013, 1320:111-117.
    [22]Li W K, Li Y H, Li A C, et al. Simultaneous determination of norethindrone ethinyl estradiol in human plasma by high performance liquid chromatography with tandem mass spectrometry-experiences on developing a highly selective method using derivatization reagent for enhancing sensitivity [J]. J. Chromatogr. B,2005,825:223-232.
    [23]Zhuang X, Zhong Y, Yuan M, et al. Pre-column derivatization combined with UHPLC-MS/MS for rapid and sensitive quantification of bakuchiol in rat plasma [J]. J. Pharm. Biomed. Anal.,2013,75:18-24.
    [24]Nirogi R, Komarneni P, Kandikere V, et al. A sensitive and selective quantification of catecholamine neurotransmitters in rat microdialysates by pre-column dansyl chloride derivatization using liquid chromatography-tandem mass spectrometry [J]. J. Chromatogr. B, 2013,913:41-47.
    [25]Salvador A, Moretton C, Piram A, et al. On-line solid-phase extraction with on-support derivatization for high-sensitivity liquid chromatography tandem mass spectrometry of estrogens in influent/effluent of wastewater treatment plants [J]. J. Chromatogr. A,2007, 1145:102-109.
    [26]Anari M R, Bakhtiar R, Zhu B, et al. Derivatization of ethinylestradiol with dansyl chloride to enhance electrospray ionization:Application in trace analysis of ethinylestradiol in rhesus monkey plasma [J]. Anal. Chem.,2002,74:4136-4144.
    [27]Yao L, Zheng S, Guan Y, et al. Development of a rapid method for the simultaneous separation and determination of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol and its N-and O-glucuronides in human urine by liquid chromatography-tandem mass spectrometry [J]. Anal. Chim. Acta,2013,788:61-67.
    [28]Sulej A M, Polkowska Z, Astel A, et al. Analytical procedures for the determination of fuel combustion products, anti-corrosive compounds, and de-icing compounds in airport runoff water samples [J]. Talanta,2013,117:158-167.
    [29]Lafontaine M, Champmartin C, Simon P, et al.3-Hydroxybenzo[a]pyrene in the urine of smokers and non-smokers [J]. Toxicol. Lett.,2006,162:181-185.
    [1]Perfetti T A, Rodgman A. The complexity of tobacco and tobacco smoke [M]. CORESTA Congress, Edinburgh, Scotland,2010.
    [2]Hecht S S. Human urinary carcinogen metabolites:biomarkers for investigating tobacco and cancer [J]. Carcinogenesis,2002,23(6):907-922.
    [3]Hatsukami D K, Lemmonds C, Zhang Y, et al. Evaluation of carcinogen exposure in people who used "reduced exposure" tobacco products [J]. J. Natl. Cancer Inst.,2004,96(11): 844-852.
    [4]Lubin J H, Caporaso N, Hatsukami D K, et al. The association of a tobacco-specific biomarker and cigarette consumption and its dependence on host characteristics [J]. Cancer Epidemiol. Biomarkers Prev.,2007,16:1852-1857.
    [5]Yuan J M, Butler L M; Stepanov I, et al. Urinary tobacco smoke-constituent biomarkers for assessing risk of lung cancer [J]. Cancer Res.,2014,74(2):401-411.
    [6]Khariwala S S, Scheuermann T S, Berg C J, et al. Cotinine and tobacco-specific carcinogen exposure among nondaily smokers in a multiethnic sample [J]. Nicotine Tob. Res.,2014,16(5): 600-605.
    [7]Rostron B. NNAL exposure by race and menthol cigarette use among U.S. smokers [J]. Nicotine Tob. Res.,2013,15(5):950-956.
    [8]Yao L, Zheng S, Guan Y, et al. Development of a rapid method for the simultaneous separation and determination of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol and its N-and O-glucuronides in human urine by liquid chromatography-tandem mass spectrometry [J]. Anal. Chim. Acta,2013,788:61-67.
    [9]Radwan G, Hecht S S, Carmella S G, et al. Tobacco-specific nitrosamine exposures in smokers and nonsmokers exposed to cigarette or waterpipe tobacco smoke [J]. Nicotine Tob. Res., 2013,15:130-138.
    [10]Hecht S S, Carmella S G, Murphy S E, et al. Similar exposure to a tobacco-specific carcinogen in smokeless tobacco users and cigarette smokers [J]. Cancer Epidemiol. Biomarkers Prev.,2007,16(8):1567-1572.
    [11]Parsons W D, Carmella S G, Akerkar S, et al. A metabolite of the tobacco-specific lung carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone in the urine of hospital workers exposed to environmental tobacco smoke [J]. Cancer Epidemiol. Biomarkers Prev.,1998, 7(3):257-260.
    [12]Hecht S S, Ye M, Carmella S G, et al. Metabolites of a tobacco-specific lung carcinogen in the urine of elementary school-aged children [J]. Cancer Epidemiol. Biomarkers Prev.,2001, 10:1109-1116.
    [13]Lackmann G M, Salzberger U, Tollner U, et al. Metabolites of a tobacco-specific carcinogen in urine from newborns [J]. J. Nat. Cancer Inst.,1999,91:459-465.
    [14]Yuan J M, Koh W P, Murphy S E, et al. Urinary levels of tobacco-specific nitrosamine metabolites in relation to lung development in two prospective cohorts of cigarette smokers [J]. Cancer Res.,2009,69(7):2990-2995.
    [15]Richie J P, Carmella S G, Muscat J E. Difference in the urinary metabolites of the tobacco-specific lung carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone in black and white smokers [J]. Cancer Epidemiol. Biomarkers Prev.,1997,6:783-790.
    [16]Muscat J E, Djordjevic M V, Colosimo S, et al. Racial differences in exposure and glucuronidation of the tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) [J]. Cancer,2005,103(7):1420-1426.
    [17]Haiman C A., Stram D O., Wilkens L R, et al. Ethnic and racial differences in the smoking-related risk of lung cancer [J]. N. Engl. J. Med.,2006,354,333-342.
    [18]Benowitz N L, Dains K M, Dempsey D,et al. Racial differences in the relationship between number of cigarettes smoke and nicotine and carcinogen exposure [J]. Nicotine Tob. Res., 2011,13(9):772-783.
    [19]周宛虹,王晔,余苓,等LC-MS/MS法快速高效检测尿液中尼古丁及其9种代谢物[J].化学学报,2011,69(7):803-809.
    [20]Goniewicz M L, Eisner M D, Lazcano-Ponce E, et al. Comparison of urine cotinine and the tobacco-specifc nitrosamine metabolite 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) and their ratio to discriminate active from passive smoking [J]. Nicotine Tob. Res., 2011,13(3):202-208.
    [21]Gebel T W. Unanswered questions in arsenic toxicology [J]. J. Environ. Pathol. Toxicol. Oncol.,2001,20:299-309.
    [22]Li D D, Zhou D M. Acclimation of wheat to low-level cadmium or zinc generates its resistance to cadmium toxicity [J]. Ecotox. Environ. Safe,2012,79:264-271.
    [23]Carmella S G, Akerkar S A, Richie J P, et al. Intraindividual and interindividual difference in metabolites of the tobacco-specific lung carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) in smokers' urine [J]. Cancer Epidemiol. Biomarkers Prev.,1995,4: 635-642.
    [24]Ezzati M, Henley S J, Lopez A D, et al. Role of smoking in global and regional cancer epidemiology:current patterns and data needs [J]. Int. J. Cancer,2005,116:963-971.
    [25]Siegel R, Naishadham D, Jemal A.. Cancer Statistics,2012 [J]. CA-Cancer J. Clin.,2012,62: 10-29.
    [26]Jemal A, Center M M, DeSantis C, et al. Global patterns of cancer incidence and mortality rates and trends [J]. Cancer Epidemiol. Biomarkers Prev.,2010,19:1893-1907.
    [27]Finckh C, Atalla A, Nagel G, et al. Expression and NNK reducing activities of carbonyl reductase and 11-beta-hydroxy steroid dehydrogenase type 1 in human lung [J]. Chem. Biol. Interact.,2001,130-132 (1-3):761-773.
    [28]Ren Q, Murphy S E, Zheng Z, et al. O-Glucuronidation of the lung carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) by human UDP-glucuronosyltransferases 2B7 and 1A9 [J]. Drug Metab. Dispos.,2000,28:1352-1360.
    [29]Anderson G D. Sex differences in drug metabolism:cytochrome P-450 and uridine diphosphate glucuronosyltransferase [J]. J. Gend. Specif. Med.,2002,5:25-33.
    [30]Kassie F, Uhl M, Rabot S, et al. Chemoprevention of 2-amino-3-methylimidazo [4,5-f]quinoline (IQ)-induced colonic and hepatic preneoplastic lesions in the F344 rat by cruciferous vegetables administered simultaneously with the carcinogen [J]. Carcinogenesis, 2003,24:255-261.
    [31]van der Logt E M, Roelofs H M, Nagengast F M, et al. Induction of rat hepatic and intestinal UDP-glucuronosyltransferases by naturally occurring dietary anticarcinogens [J]. Carcinogenesis,2003,24:1651-1656.
    [32]Le Bon A M, Vernevaut M F, Guenot L, et al. Effects of garlic powders with varying alliin contents on hepatic drug metabolizing enzymes in rats [J]. J. Agric Food Chem.,2003,51: 7617-23.
    [33]Hecht S S, Carmella S G, Kenney P M J, et al. Effects of cruciferous vegetable consumption on urinary metabolites of the tobacco-specific lung carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone in Singapore Chinese [J]. Cancer Epidemiol. Biomarkers Prev.,2004, 13:997-1004.
    [34]Jemal A, Bray F, Center M M, et al. Global Cancer Statistics [J]. CA-Cancer J. Clin.,2011, 61:69-90.
    [35]Samet J M, Avila-Tang E, Boffetta P, et al. Lung cancer in never smokers:Clinical epidemiology and environmental risk factors [J]. Clin. Cancer Res.,2009,15:5626-5645.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700