基于随机动力响应互相关函数分析的结构损伤识别方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结构的突发性损毁事件造成了巨大的生命和财产损失,结构的安全性问题引起了人们广泛的关注,并促进了结构健康监测领域研究的发展。基于动力测试的结构损伤识别方法是目前结构健康监测系统研究的热点和难点课题。利用结构在环境激励作用下的动力响应进行结构损伤识别是实际工程应用的切实需求。
     本文在结构随机振动动力响应互相关函数分析的基础上开展了结构损伤识别的方法研究,具体内容如下:
     (1)推导了理想白噪声环境激励下,结构位移、加速度及速度响应之间互相关函数的表达式,针对有限带宽白噪声激励,对该系列表达式进行了修正。建立了相邻测点动力响应互相关函数幅值向量,证明了幅值向量的固形原理,为基于结构动力响应互相关函数的结构损伤识别方法奠定了理论基础。
     (2)研究了基于结构动力响应互相关函数分析的损伤判定、定位及量化识别方法,讨论了该方法使用中的抗噪能力、采样时长及识别盲区等问题。通过数值模拟的连续梁损伤识别及八层钢框架模型损伤模拟试验分析,验证了环境激励下结构动力响应互相关函数用于结构损伤识别的可行性。
     (3)利用小波包对结构的动力响应信号进行分解,以各分解频带的“振动能量”构造损伤特征向量作为支持向量机的输入信息,从模式分类的角度进行结构损伤识别。通过框架模型的损伤模拟试验数据,对比分析了利用单个测点加速度响应作为支持向量机损伤特征输入,以及多测点数据融合情况下的识别结果,指出了直接以动力响应的小波包分解频带能量作为损伤特征的不足。
     (4)从解析表达式分析着手,指出了动力响应互相关函数比结构响应时程涵盖了更多的损伤信息,提出了将支持向量机与动力响应互相关函数结合的结构损伤识别方法,在ASCE-SHM benchmark模型Ⅱe阶段的算例分析中,分别从加速度响应、加速度响应间的互相关函数、互相关函数幅值向量提取结构的损伤特征建立支持向量机,对比了三者之间的识别效果,验证了从互相关函数提取的损伤特征具有优秀的损伤表征能力。
     (5)探讨了如何解决支持向量机在样本训练中对损伤类别的先验条件局限性,提出了实际工程中如何将互相关函数与支持向量机结合进行结构损伤识别的两阶段方法。
Unexpected incidents always cause huge loss of life and property. The structural safety has aroused widespread concerns in recent years, which in turn promotes the development of the structural health monitoring system (SHMS). Dynamic based structural damage detection method is still a hot and difficult topic in the SHMS research. It is practically necessary to apply the dynamic responses induced by environment excitation in structural damage identification.
     In this study the damage detection method is investigated based on the cross-correlation functions of structural random vibration. The following topics are included:
     (1) The cross-correlation functions between the structural displacement, velocity and acceleration excited by the white noise are derived and then amended for the case of the bandlimited white noise. The amplitude vectors of the cross-correlation functions of adjacent measurement points are built and also proved satisfying the solid-shape principle. Theoretical foundations for damage detection method based on cross-correlation functions of dynamic responses are established.
     (2) Cross-correlation functions of dynamic responses based method for damage determination, locating and quantification is proposed. Several key issues including noise immunity, sample length and identification "blind area" in the application of the method are discussed. By numerical simulation of a continuous beam and an eight-story steel frame, the dynamic responses cross-correlation functions are verified feasible for the structural damage detection under environmental excitation.
     (3) By using wavelet package, dynamic responses are decomposed to several frequency bands and the "signal energy" of each band is used to build damage characteristic vector which is used as the input information of support vector machine. In this way, the damage is identified from the prospective of pattern classification. Based on the damage simulation of the frame structure where the acceleration responses are taken as input information of support vector machine, the comparative analysis between single-point and multi-point measurements indicates the deficiency of directly using the wavelet decomposed acceleration "band energy" as the damage characteristic quantity.
     (4) The analytical expressions are also derived indicating that the dynamic responses cross-correlation functions contain more damage information than the time-history response. It is proposed to combine support vector machine and dynamic response cross-correlation as the new method for damage detection. Taking ASCE-SHM benchmark model of phase IIe as example, accelerations, acceleration cross-correlation functions and the amplitude vector of cross-correlation functions are respectively used to extract the damage feature and build the support vector machine. By comparing their damage identification results, it is shown that the damage feature extracted from the cross-correlation functions is an excellent characterization.
     (5) For the aim of practical application in structural damage detection, two steps of identification technique based on cross-correlation functions and support vector machine are provided.
引文
[1]中国建筑学会建筑结构分会高层建筑结构委员会.我国大陆2009年底已建成180m以上高层建筑统计[J].土木工程学报,2010,43(5):149-153
    [2]欧进萍.重大工程结构的智能监测与健康诊断[q.第十一届结构工程学术会议论文集.清华大学出版社,2002:44-53
    [3]李惠,周文松,欧进萍等.大型桥梁结构智能健康监测系统集成技术研究[J].土木工程学报,2006,39(2):46-52
    [4]秦权.桥梁结构的健康监测[J].中国公路学报,2000,13(2):37-42
    [5]J.M.Lifshitz, A.Rotem. Determination of Reinforcement Unbonding of Composites by a Vibration Technique[J]. Journal of Composite Materials.1969,3:412-423
    [6]Adams R D, Walton D, Flitcroft J E, et al. Vibration testing as a nondestructive test tool for composite materials. Composite Reliability, ASTM STP 580. Philadephia:American Society for Testing Materials,1975:159-175
    [7]Adams R D, Cawley P, Pye C J, et al. A vibration technique for non-destructively assessing the integrity of structures. Journal of Mechanical Engineering Science,1978,20(2):93-100
    [8]N.Stubbs, T.H.Broome. Nondestructive Construction Error Detection in Large Space Structures. AIAA.1990,28(11):146-152
    [9]陈淮,何伟,王博等.基于频率和振型摄动的结构损伤识别方法研究[J].工程力学,2010年27(12):244-249
    [10]Aktan A E, Lee K L, Chuntavan C, et al. Modal testing for structural identification and condition assessment of constructed facilities. Proc. of 12th IMAC,1994:462-468
    [11]林友琴.基于随机状态空间模型的结构损伤识别方法研究[D].福州大学.2007年
    [12]Salawu O S. Detection of structural damage through changes in frequencies:a review. Engineering Structures,1997,19(9):718-723
    [13]C.Spyrakos, H.L.Chen, J.Stephens, V.Govidaraj. Evaluating Structural Deterioration Using Dynamic Response Characterization.Proceeding of Intelligent Structures Elsevier Applied Science,1990:137-154
    [14]R.M. Kenely, C.J. Dodds. West Sole WE Platform:Detection of Damage By Structural Response Measurements. Proceeding of the 12th Annual Offshore Technology Conference,1980:111-118
    [15]Farrar C R, Baker W E, Bell T M, et al. Dynamic characterization and damage detection in the 1-40 bridge over the Rio Grande[R]. USA:Los Alamos National Laboratory report, LA-12767-MS,1994
    [16]Allemang R J, Brown D L. A correlation coefficient for modal vector analysis. In:Proceedings of the 1st International Modal Analysis Conference. Orlando,1982:110-116
    [17]West W M. Illustration of the use of modal assurance criterion to detect structural changes in an orbiter test specimen.In:Proceedings of Air Force Conference on Aircraft Structural Integrity.Los Angeles,1984:1-6
    [18]A.K. Pandy, M. Biswas, M.M. Samman. Damage Detection from Change in Curvature Mode Shapes. Journal of Sound and Vibration.1991,145(2):321-332
    [19]J.P. Tang, K.M. Leu. Vibration Test and Damage Detection of P/C Bridges. Journal of the Chinese Institute of Engineers.1991,14:531-536
    [20]Chance J, Tomlinson G R, Worden K. A simplified approach to the numerical and experiment modeling of the dynamics of a cracked beam. In:Procof the 12th IMAC,1994,778-785
    [21]Wu D, Law S S. Damage localization in plate structures from flexibility and its derivatives. Smart Structures and Materials:Proc.of SPIE,2004,5391:449-460
    [22]李德葆,陆秋海,秦权.承弯结构的曲率模态分析[J].清华大学学报(自然科学版),2002,42(2):224-227
    [23]Kim J T, Stubbs N. Model-uncertainty impact and damage-detection accuracy in plate girderJournal of Structural Engineering,1995,121(10):1409-1417
    [24]R.N. Stubbs, J.T. Kim, C.R. Farrar. Field Verification of a Nondestructive Damage Location and Severity Estimation Algorithm. Proceeding of 13th International Modal Analysis Conference, 1995:210-218
    [25]颜王吉,黄天立,任伟新.基于单元模态应变能灵敏度的结构损伤统计识别[J].中南大学学报,2011,42(1):152-156
    [26]李晶,吴柏生.基于广义柔度矩阵的结构损伤识别方法[J].吉林大学学报(理学版),2009,47(6):737-739
    [27]A.K. Pandey, M. Biswas. Damage Detection in Structures Using Changes in Flexibility. Journal of Sound and Vibration.1994,169(1):3-17
    [28]Raghavendrachar M, Aktan A E. Flexibility of multi-reference impact testing for bridge diagnostics. Journal of Structural Engineering,1992,18(8):2186-2203
    [29]Toksoy T, Aktan A E. Bridge-condition assessment by modal flexibility. Experimental Mechanics,1994,34(3):271-278
    [30]Zhang Z and Aktan A E. Application of modal flexibility and its derivatives in structural identification. Research in Nondestructive Evaluation,1998,10:43-61
    [31]Catbas F N, Brown D L, Aktan AE. Use of modal flexibility for damage detection and condition assessment:case studies and demonstrations on large structures. Journal of Structure Engineering,2006,132(11):1699-1712
    [32]J.M. Ricles, J.B. Kosmatka. Damage Detection in Elastic Structures Using Vibratory Residual Forces and Weighted Sensitivity. AIAA Journal.1992,30:2310-2316
    [33]Cao T T, Zimmerman D C. Application of load-dependent Ritz vectors in structural damage detection. Florida:In Proc.of the 15th IMAC,1997,1319-1324
    [34]Sohn H, Law K H. A Bayesian probabilistic approach to damage detection for civil structures [D]. USA:Department of Civil and Environmental Engineering, Stanford University,1999
    [35]范立础,袁万城,张启伟.悬索桥结构基于敏感性分析的动力有限元模型修正[J].土木工程学报,2000,33(1):9-14
    [36]张启伟.基于环境振动测量值的悬索桥结构动力模型修正[J].振动工程学报,2002,15(1):74-78
    [37]费庆国,张令弥,李爱群等.基于统计分析技术的有限元模型修正研究[J].振动与冲击,2005,24(3):24-26
    [38]宗周红,高铭霖,夏樟华.基于健康监测的连续刚构桥有限元模型确认(Ⅰ)--基于响应面法的有限元模型修正[J].土木工程学报,2011,44(2):90-98
    [39]Wang D, Haldar A. System identification with limited observations and without input[J]. Journal of Engineering Mechanics,1997,123(5):504-511
    [40]Wang D, Haldar A. Element-level system identification with unknown input information[J]. Journal of Engineering Mechanics,1994,120(1):159-176
    [41]Ling Xiaolin, Haldar A. Element level system identification with unknown input with Rayleigh damping[J]. Journal of Engineering Mechanics,2004,130(8):877-885
    [42]Yang J.N., Lin S.L.. Identification of parametric variations of structures based on least squares estimation and adaptive tracking technique, Journal of Engineering Mechanics, ASCE,2005, 131(3):290-298
    [43]Yang J.N., Pan S.W. and Silian Lin. Least-Squares Estimation with Unknown Excitations for Damage Identification of Structures. Journal of Engineering Mechanics,2007,130(8):12-21
    [44]Lei Y, Lei J Y, Song Y. Element level structural damagebdetection with limited observations and with unknown inputs[C]. Proceedings of SPIE's Conference on Health Monitoring of Structural and Biological Systems. CA, USA,2007,6532-65321
    [45]刘朝,雷鹰.基于ASCE SHM Benchmark模型的两阶段结构损伤识别方法[J].厦门大学学报.2011,50(1):60-64
    [46]许自谦.基于扩展卡尔曼预测估计的分散式结构损伤识别方法[D].厦门大学,2010年.
    [47]Huang N E, Shen Zheng, LONG S R. A new view of nonlinear water waves:the Hilbert spectrum [J]. Annual Review of Fluid Mechanics,1999,31:417-457
    [48]Yang J N, Lei Ying, Pan Shu-wen, et al. System identification of linear structures based on Hilbert-Huang spectral analysis:part 1 normal modes [J]. Earthquake Engng Struct Dyn,2003, 32(9):1443-1467
    [49]Yang J N, Lei Ying, LinSi-lian, et al. Identification of natural frequencies and dampings of in situ tall buildings using ambient wind vibration data[J]. Journal of Engineering Mechanics, ASCE,2004,130(5):570-577
    [50]J.N.Yang, Y.Lei, S.Lin, N.Huang. Hilbert-Huang Based Approach for Structural Damage Detection. ASCE Journal of Engineering Mechanics.2004:85-95
    [51]X. Wu, J. Ghaboussi, J.H. Garrett. Use of Neural Networks in Detection of Structural Damage. Computers and Structures.1992,42(2):649-659
    [52]P.H. Kirkegaard, A. Rytter. The Use of Neural Networks for Damage Detection and Location and Location in a Steel Member. Neural Networks and Combinatorial Optimization in Civil and Structural Engineering. Edinburgh, UK.1993:1-9
    [53]M.F. Elkordy, K.C. Chang, GC. Lee. Application of Neural Networks in Vibrational Signature Analysis. Journal of Engineering Mechanics.1994,120(2):251-264
    [54]S.S. Chen, S. Kim. Neural Network Based Signal Monitoring in a Smart Structural System. Smart Structures and Materials.1994,2191:175-186
    [55]R.S. Anatha, V.T. Johnson. Damage Assessment of Composite Structures-A Fuzzy Logic Integrated Neural Network Approach. Computer and Structures.1995,57(3):491-502
    [56]P.C. Kaminski. The Approximate Location of Damage through the Analysis of Natural Frequencies with Artificial Neural Networks. Journal of Process Mechanical Engineering.1995, 209:117-123
    [57]J. Rhim, S.W. Lee. A Neural Network Approach for Damage Detection and Identification of Structures. Computational Mechanics.1995,16(6):437-443
    [58]P.C. Pandy, S.V. Barai. Multi Layer Perception in Damage Detection of Bridge Structures. Computers and Structures.1995,54(4):597-608
    [59]N. Mitsuru, S.F. Masri, A.G Chassiakos, T.K. Caughey. A Method for Nonparametric Damage Detection Through the Use of Neural Networks. Earthquake Engineering and Structural Dynamics.1998,27:997-1010
    [60]L.H. Yam, Y.J.Yan, J.S. Jiang. Vibration-Based Damage Detection for Composite Structures Using Wavelet Transform and Neural Network Identification. Composite Structures.2003,60: 403-412
    [61]李忠献,杨晓明,丁阳.基于结构响应统计特征的神经网络损伤识别方法[J].工程力学.2007,24(9):1-7
    [62]杨杰,李爱群,缪长青.BP神经网络在大跨斜拉桥的斜拉索损伤识别中的应用[J].土木工程学报.2006,39(5):72-77
    [63]任伟新.环境振动系统识别方法的比较分析[J].福州大学学报,2001,29(6):82-86
    [64]Ying Lei, J.L. Zhang, L.J. Liu. Time Series-Based Structural Damage Detection and Localization Algorithm with Implementation in Wireless Sensing Units [C]. Proc. SPIE 2006: 169-1180
    [65]Hoon Sohn, Charles R. Farrar. Damage diagnosis using time series analysis of vibration signals [J]. Smart Materials and Structures.2001 (10):446-451
    [66]Jerome P. Lynch. Detection of Structural Cracks Using Piezoelectric active Sensors [C].17th ASCE Engineering Mechanics Conference,2004, University of Delaware, Newark
    [67]沈文爱.新型结构无线监测系统与结构损伤诊断方法的研究[D].厦门大学,2008年.
    [68]李国强,李杰.工程结构动力检测理论与应用[M].北京,科学出版社,2002年:153-159
    [69]冯新,李国强,周晶.土木工程结构健康诊断中的统计识别方法综述[J].地震工程与工程振动,2005,25(2):105-113
    [70]林秀萍.基于概率统计方法的结构损伤识别研究[D].重庆大学,2009年.
    [71]王建江.基于贝叶斯统计方法的桥梁损伤识别研究[D].浙江大学,2005年.
    [72]杨晓楠.基于贝叶斯统计推理的结构损伤识别方法研究[D].同济大学,2007年.
    [73]寇立夯,金峰.基于HHT方法的结构模态参数识别[J].水利水电科技进展,2008,28(3):45-49
    [74]Lin Si-lian, Yang J.N., Zhou Li. Damage identification of a benchmark building for structural health monitoring [J]. Smart Materials and Structures,2005,14(3):162-169
    [75]于哲峰,杨智春.基于互相关函数幅值向量的结构损伤定位方法研究[J].振动与冲击,2006,25(03):77-80
    [76]于哲峰.随机激励下结构损伤检测方法研究[D].西北工业大学,2005年
    [77]党晓娟,杨智春,王乐.离散小波变换和互相关函数幅值向量在复合材料层合结构损伤检测中的应用[J].机械强度,2010,32(2):202-206
    [78]党晓娟,杨智春,谭光辉,王乐.基于互相关函数幅值向量的复合材料层合板损伤的统计检测[J].工程力学,2009,26(03):218-256
    [79]杨智春,王乐,丁燕,党晓娟.基于内积向量的复合材料结构损伤检测[J].工程力学,2009,26(9):191-196
    [80]王乐,杨智春,王慧等.白噪声激励下的复合材料层合结构损伤检测的内积向量法[J].振动与冲击,2009,28(4):127-208
    [81]庄表中,陈乃立.随机振动的理论及实例分析[M].北京:地震出版社,1985.
    [82]胥永刚,李强,王正英,王太勇.基于独立分量分析的机械故障信息提取[J].天津大学学 报,2006,39(9):1066-1071
    [83]G. H. James, T. G. Carrie, and P. S. Veers. Damping Measurements Using Operational Data. Proceedings of the 10th ASME Wind Energy Symposium, Houston, TX, January 20-23,1991
    [84]G. H. James and T. G. Carrie. Damping Measurements on Operating Wind Turbines Using the Natural Excitation Technique (NExT). Proceedings of the 11th ASME Wind Energy Symposium, Houston, TX, January 26-30,1992
    [85]G. H. James, T. G. Carrie, J. P. Lauffer, and A. R. Nerd. Modal Testing Using Natural Excitation. Proceedings of the 10th International Modal Analysis Conference, San Diego, CA, February 3-7,1992.
    [86]G. H. James, T. G. Carrie, J. P. Lauffer. The Natural Excitation Technique (NExT) for modal parameter extraction from operating structures. Modal Analysis:the International Journal of Analytical and Experimental Modal Analysis,1995,10(4):260-277
    [87]季晓东,钱稼茹,徐龙河.模拟环境激励下结构模态参数识别试验研究[J].清华大学学报,2006,46(6):769-772
    [88]孙晓兰,王太勇.基于互相关函数的振动结构工作模态参数识别方法[J].天津大学学报,2007,40(4):503-506
    [89]王济,胡晓.MATLAB在振动信号处理中的应用[M].北京:中国水利水电出版社,知识产权出版社,2006年.
    [90]范颖芳,周晶,朱彤,张学志.拱肋局部特性改变对拱桥动力特性影响试验研究[J].大连理工大学学报,2009,49(3):401-407
    [91]薛松涛,钱宇音,陈镕等.采用二阶频率灵敏度的损伤识别和试验[J].同济大学学报,2003,31(3):263-267
    [92]李洪泉,吕西林.钢筋混凝土框架地震损伤识别与采用耗能装置修复的试验研究[J].建筑结构学报,2001,22(3):9-35
    [93]韩建刚,任伟新,孙增寿.结构损伤识别的小波包分析试验研究.振动与冲击,2006,25(1):47-57
    [94]周丽,吴新亚,尹强,汪新明.基于自适应卡尔曼滤波方法的结构损伤识别实验研究[J].振动工程学报,2008,21(2):197-202
    [95]李洪泉,董亮,吕西林.基于小波变换的结构损伤识别与试验分析[J].土木工程学报,2003,36(5):52-75
    [96]唐和生,薛松涛,陈镕等.基于小波多分辨滤波特性的结构损伤识别[J].力学季刊,2004,25(1):152-154
    [97]孙增寿,韩建刚,任伟新.基于曲率模态和小波变换的结构损伤识别方法[J].振动、测试与诊断,2005,25(4):263-267
    [98]韩建刚,任伟新,孙增寿.基于小波包变换的梁体损伤识别[J].振动、测试与诊断,2006,26(1):5-10
    [99]韩建刚,徐晓霞,任伟新.基于运行检测的小波模态参数识别[J].土木工程学报,2008,41(6):27-32
    [100]徐晓霞,任伟新,韩建刚.基于小波包变换的时间序列模型模态参数识别[J].福州大学学报,2008,36(2):266-271
    [101]任伟新,韩建刚,孙增寿.小波分析在土木工程结构中的应用.北京:中国铁道出版社,2008年
    [102]陈晓强,朱宏平,王丹生等.基于动能密度的结构损伤识别[J].振动与冲击,2009,28(8):35-41
    [103]黄燕.基于模态参数小波变换的结构损伤识别方法研究[D].长沙理工大学,2008年
    [104]陈支援.基于二维小波分析的板损伤识别方法研究[D].长沙理工大学,2009年
    [105]殷亮.基于小波分析和移动质量法的梁式结构损伤识别研究[D].武汉理工大学,2009年
    [106]郭健,陈勇,孙炳楠等.基于多传感器信息融合的结构损伤识别研究[J].振动工程学报,2005,18(2):155-160
    [107]杨晓楠,唐和生,陈镕等.钢结构损伤识别中Db族小波函数选择[J].同济大学学报(自然科学版),2006,34(12):1568-1577
    [108]陈万长.基于小波包能量和神经网络的结构损伤识别方法研究[D].重庆交通大学,2009年
    [109]闫维明,张卫东,何浩祥等.基于小波神经网络的RC梁损伤识别试验研究[J].振动、测试与诊断,2007,27(2):129-132
    [110]J. Rhim, S.W. Lee. A Neural Network Approach for Damage Detection and Identification of Structures. Computational Mechanics.1995,16(6):437-443
    [111]L.H. Yam, Y.J. Yan, J.S. Jiang. Vibration-Based Damage Detection for Composite Structures Using Wavelet Transform and Neural Network Identification. Composite Structures.2003,60: 403-412
    [112]A.V. Ovanesova, L.E. Suarez. Applications of Wavelet Transforms to Damage Detection in Frame Structures. Engineering Structures.2004(26):39-49
    [113]A. Hera, Z. Hou. Application of Wavelet Approach for ASCE Structura Health Monitoring Benchmark Studies. ASCE Journal of Engineering Mechanics,2004,126(7):677-683
    [114]李正国,王猛,曾华军(译).支持向量机导论.北京:电子工业出版社,2004年
    [115]K. Worden, A.J. Lane. Damage Identification Using Support Vector Machines. Smart Materials and Structures.2001,10:540-547
    [116]A. Mita, H. Hagiwara. Quantitative Damage Diagnosis of Shear Structures Using Support Vector Machine. KSCE Journal of Civil Engineering.2003,7(6):683-689
    [117]刘龙,孟光.基于支持向量机和模态频率的结构损伤识别诊断[J].机械强度,2006,28(3):349-352
    [118]刘龙,孟光.支持向量回归算法在梁结构损伤诊断中的应用研究[J].振动与冲击,2006,25(3):99-126
    [119]刘龙,孟光.基于曲率模态和支持向量机的结构损伤位置两步识别方法[J].工程力学,2006,23(增刊):35-45
    [120]刘龙,黄海,孟光.基于支持向量机的结构损伤分步识别研究[J].应用力学学报,2007,24(2):313-317
    [121]瞿伟廉,谭冬梅.基于小波分析和支持向量机的结构损伤识别[J].武汉理工大学学报,2008,30(2):80-86
    [122]何浩祥,闫维明,周锡元.小波支持向量机在结构损伤识别中的应用研究[J].振动、测试与诊断,2007,27(1):53-57
    [123]赵学风,段晨东,刘义艳,韩曼.基于小波包变换的支持向量机损伤诊断方法[J].振动、测试与诊断,2008,28(2):104-107
    [124]龚治国,朱雷,朱春明,唐和生.组合参数的支持向量机在结构损伤识别中的应用[J].结构工程师,2008,24(4):31-35
    [125]张茂雨.支持向量机方法在结构损伤识别中的应用[D].同济大学,2007年
    [126]周绮凤.基于支持向量机的若干分类问题研究[D].厦门大学,2007年
    [127]张学工.关于统计学习理论与支持向量机[J].自动化学报.2000,26(1):32-42
    [128]Erik A. Johnson, H.F. Lam, L.S. Katafygiotis and J.L. Beck. Benchmark Problem for Structural Health Monitoring And Damage Detection (Phase Ⅰ).SHM Task Group Meeting, September 3,2000
    [129]S.J. Dyke, D.Bernal, J.L. Beck, and C. Ventura. An Experimental Benchmark Problem In Structural Health Monitoring. Third International Workshop on Structural Health Monitoring, Stanford,CA, September12-14,2001
    [130]D.Bernal, S.J. Dyke, H.F. Lam, J.L. Beck. Phase Ⅱ of ASCE Benchmark Study on SHM. Proceedings of the 15th ASCE Engineering Mechanics Conference, New York, June2-5,2002
    [131]Jianye Ching, James L. Beck. Two-Stage Bayesian Structural Health Monitoring Approach For Experimental Benchmark Studies
    [132]Diego Giraldo, Shirley J. Dyke. Experimental Phase of the SHM Benchmark Studies:Damage Detection Using NEXT and ERA.
    [133]徐龙河,钱稼茹,纪晓东.Benchmark模型结构两阶段损伤诊断[J].清华大学学报(自然科学版)2005,45(12):1592-1595
    [134]钱稼茹,徐龙河,纪晓东等.Benchmark模型结构两阶段损伤诊断试验分析[J].工程力 学,2006,23(9):89-152
    [135]刘毅,李爱群.环境激励下Benchmark结构损伤识别的试验研究[J].计算力学学报,2010,27(3):500-504
    [136]丁幼亮,李爱群.基于小波包分析的Benchmark结构损伤预警试验研究[J].工程力学,2008,25(11):128-140
    [137]杜思义,殷学纲,陈淮.基于频率摄动理论对结构健康检测BENCHMARK问题的识别[J].应用力学学报,2010,27(4):674-679
    [138]克拉夫,彭津.结构动力学.北京:高等教育出版社,2006年
    [139]曹树签,张文德,箫龙翔编著.振动结构模态分析—理论、实验与应用[M].天津大学出版社,2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700