JNK/c-Jun信号通路在低浓度亚砷酸钠所致HELF细胞增殖异常和细胞周期紊乱中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
砷是自然界分布极广的类金属元素,亚砷酸钠(NaAsO2)是砷元素在环境中主要的存在形式之一。流行病学资料表明,长期摄入砷化物可导致多种癌症发病率升高,如皮肤癌、肺癌、膀胱癌和肝癌等。肺组织是砷对人体产生毒作用的重要靶器官之一,特别是有色金属采矿冶炼工人和含砷农药制造工人长期吸入低浓度无机砷而导致肺癌发病率升高是一种严重危害工人健康的职业病。砷化物虽然是人类确定致癌物,但其致癌的分子机制尚未完全清楚。
     研究认为,正常细胞恶性转化的机理之一是致癌因素作用于正常细胞后,引起原癌基因表达过强或/和抗癌基因表达过低、细胞信号转导异常、细胞周期紊乱,从而引起细胞不可控制地过度生长,导致细胞恶性转化,最终产生癌症。其中,正常细胞周期紊乱及其所致的细胞增殖异常是癌症发生的基础。
     国内外已有研究报道不同浓度NaAsO2可引起细胞增殖与凋亡的双相效应,即低浓度引起细胞增殖升高而凋亡降低,而高浓度则引起细胞增殖降低而凋亡升高;并发现活性氧(ROS)和丝裂素活化蛋白激酶(MAPKs)信号通路在不同浓度NaAsO2所致细胞双相效应中发挥重要作用,但其具体的分子机制尚不清楚。
     本研究拟探讨不同浓度NaAsO2对人胚肺成纤维细胞(HELF)细胞增殖和细胞周期的变化,以及对JNK激活、c-Jun激活和相关周期蛋白cyclin D1表达的影响及其相互关系;并应用JNK特异性抑制SP600125预处理、RNAi技术下调JNK和c-Jun蛋白而阻滞JNK/c-Jun信号通路后再观察低浓度NaAsO2对HELF细胞增殖和细胞周期的影响。从而探讨JNK/c-Jun信号通路在低浓度NaAsO2所致HELF细胞增殖异常和细胞周期紊乱中的作用。
     方法
     一、不同浓度NaAsO2对HELF细胞增殖和细胞周期的影响
     为了解NaAsO2对HELF细胞增殖的影响,分别用0.0、0.1、0.5和5.0μM不同浓度NaAsO2处理HELF细胞12、24和48 h后,CCK-8法检测HELF细胞增殖率;为了解NaAsO2对HELF细胞周期的影响,分别用0.0、0.1、0.5和5.0μM不同浓度NaAsO2处理HELF细胞24 h后,溴化丙啶(PI)染色所收集细胞,流式细胞仪检测细胞周期。
     二、不同浓度NaAsO2对cylclin D1蛋白表达水平的影响
     为了解NaAsO2对HELF细胞周期素cyclin D1蛋白表达的影响,分别用0.0、0.1、0.5和5.0μM不同浓度NaAsO2处理HELF细胞6、12和24 h后,提取HELF细胞总蛋白,用western blot方法检测cyclin D1蛋白表达水平。
     三、不同浓度NaAsO2对JNK/c-Jun信号通路的影响
     为检测NaAsO2对HELF细胞JNK/c-Jun信号通路的影响,分别用0.0、0.1、0.5和5.0μM不同浓度NaAsO2处理HELF细胞6、12和24 h后,提取HELF细胞总蛋白,用western blot方法分别检测JNK、磷酸化JNK、c-Jun和磷酸化c-Jun的表达水平。
     四、JNK/c-Jun信号通路在低浓度NaAsO2所致HELF细胞增殖异常和细胞周期紊乱中的作用
     为探讨JNK/c-Jun信号通路是否参与了低浓度NaAsO2诱导HELF细胞增殖异常和细胞周期紊乱的过程,用20μM JNK抑制剂SP600125预处理HELF细胞30 min或20 nM JNK siRNA和c-Jun siRNA分别转染HELF细胞24 h而阻滞JNK/c-Jun信号通路后,再分别用0.0、0.1、0.5和5.0μM NaAsO2处理HELF细胞24 h,分别用CCK-8法检测细胞增殖率,流式细胞仪检测细胞周期。
     五、JNK/c-Jun信号通路在低浓度NaAsO2诱导cyclin D1蛋白表达升高中的作用
     为探讨低浓度NaAsO2是否通过激活JNK/c-Jun信号通路而介导cyclin D1蛋白表达水平升高,用20μM JNK抑制剂SP600125预处理HELF细胞30 min或20 nM JNK siRNA和c-Jun siRNA分别转染HELF细胞24 h而阻滞JNK/c-Jun信号通路后,再分别用0.1和0.5μM NaAsO2处理HELF细胞12 h,收集HELF细胞总蛋白,用western blot方法检测JNK、磷酸化JNK、c-Jun、磷酸化c-Jun和cyclin D1蛋白表达水平。
     结果
     一、不同浓度NaAsO2对HELF细胞增殖和细胞周期的影响
     (一)不同浓度NaAsO2对HELF细胞增殖的影响
     HELF细胞相对增殖率在低浓度0.1和0.5μM NaAsO2组处理12、24和48 h时均显著高于对照组(P<0.05或<0.01),其增殖高峰表现在0.1μM NaAsO2组和24 h时间点。而高浓度5.0μM NaAsO2组HELF细胞相对增殖率在不同时间均显著低于对照组(P<0.05)。结果说明低浓度NaAsO2可引起HELF细胞增殖升高,而高浓度NaAsO2则引起HELF细胞增殖降低。
     (二)不同浓度NaAsO2对HELF细胞周期的影响
     HELF细胞暴露于低浓度0.1和0.5μM NaAsO2组24 h后,G1期细胞比例显著低于对照组(P<0.01),S期细胞比例则显著高于对照组(P<0.01);而高浓度5.0μM NaAsO2组G2/M期细胞比例显著高于对照组(P<0.01)。结果说明低浓度NaAsO2可诱导HELF细胞由G1期向S期跃迁,促进细胞增殖;而高浓度NaAsO2则可引起HELF细胞G2/M期阻滞,抑制细胞增殖。
     二、不同浓度NaAsO2对cylclin D1蛋白表达水平的影响
     HELF细胞暴露于低浓度0.1和0.5μM NaAsO2组6、12和24 h后,均不同程度地引起cyclin D1蛋白表达水平明显升高;而5μM NaAsO2未引起cyclin D1蛋白表达水平明显升高。结果说明低浓度NaAsO2可引起cyclin D1蛋白表达水平明显升高。
     三、不同浓度NaAsO2对JNK/c-Jun信号通路的影响
     (一)不同浓度NaAsO2对磷酸化JNK表达水平的影响
     HELF细胞暴露于低浓度0.1和0.5μM NaAsO2组6、12和24 h后,磷酸化JNK表达水平明显高于对照组;而高浓度5.0μM NaAsO2未引起JNK磷酸化水平明显升高。结果说明低浓度NaAsO2可不同程度诱导JNK信号通路激活,且变化规律与cyclin D1蛋白表达升高变化基本一致。
     (二)不同浓度NaAsO2对磷酸化c-Jun表达水平的影响
     HELF细胞暴露于低浓度0.1和0.5μM NaAsO2组6、12和24 h后,均引起c-Jun磷酸化水平明显升高;而高浓度5.0μM NaAsO2未引起c-Jun磷酸化水平明显升高。结果说明低浓度NaAsO2可引起c-Jun激活,其变化规律与JNK信号通路激活和cyclin D1蛋白表达升高基本一致。
     四、JNK/c-Jun信号通路在低浓度NaAsO2所致HELF细胞增殖异常和细胞周期紊乱中的作用
     (一)JNK/c-Jun信号通路阻滞对低浓度NaAsO2所致HELF细胞增殖异常的影响
     HELF细胞相对增殖率在SP600125预处理时低浓度0.1和0.5μM NaAsO2组均显著低于同一浓度无抑制剂处理组(P<0.01),但与自身空白对照组无显著性差别(P>0.05);HELF细胞相对增殖率在转染JNK siRNA和c-Jun siRNA时低浓度0.1和0.5μM NaAsO2组细胞相对增殖率均显著低于同一浓度无siRNA转染处理组(P<0.01),而与空白对照组无显著性差别(P>0.05)。结果说明JNK/c-Jun信号通路在低浓度NaAsO2所致HELF细胞增殖异常过程中发挥重要作用。
     (二) JNK/c-Jun蛋白下调对低浓度NaAsO2所致HELF细胞周期紊乱的影响
     HELF细胞S期细胞百分比在用20 nM JNK siRNA转染时0.1和0.5μM NaAsO2组明显低于同一浓度未用siRNA转染组(P<0.05),而与其自身对照组无显著性差别(P>0.05);类似地,HELF细胞S期细胞百分比在用20 nM c-Jun siRNA转染时0.1和0.5μM NaAsO2组明显低于未用siRNA转染组(P<0.05),而与其自身对照组无显著性差别(P>0.05);结果说明JNK/c-Jun信号通路参与了低浓度NaAsO2所致HELF细胞周期紊乱过程。
     五、JNK/c-Jun信号通路在低浓度NaAsO2诱导cyclin D1蛋白表达升高中的作用
     (一)JNK信号通路阻滞对低浓度NaAsO2诱导c-Jun激活和cyclin D1蛋白表达升高的影响
     HELF细胞磷酸化JNK表达水平在用SP600125预处理时0.1和0.5μM NaAsO2组均明显低于同一浓度无抑制剂组,磷酸化c-Jun表达水平和cyclin D1蛋白表达水平也明显降低;类似地,HELF细胞JNK蛋白表达水平在用JNK siRNA转染时0.1和0.5μM NaAsO2组均明显低于同一浓度未用siRNA转染组,磷酸化c-Jun表达水平和cyclin D1蛋白表达水平也均明显降低。结果说明低浓度NaAsO2可能通过激活JNK/c-Jun信号通路,从而引起cyclin D1蛋白表达水平升高。
     (二)C-Jun蛋白下调对低浓度NaAsO2诱导cyclin D1蛋白表达升高的影响
     HELF细胞c-Jun蛋白表达水平在用c-Jun siRNA转染时0.1和0.5μM NaAsO2组均明显低于同一浓度未用siRNA转染组,cyclin D1蛋白表达水平也均随之明显降低,而磷酸化JNK表达水平未受c-Jun siRNA的影响。结果说明低浓度NaAsO2通过激活JNK而激活c-Jun,然后再诱导cyclin D1蛋白表达升高。
     结论
     1.低浓度NaAsO2可引起HELF细胞增殖升高,而高浓度NaAsO2可引起HELF细胞增殖降低。
     2.低浓度NaAsO2可促进HELF细胞从G1期跃迁到S期而引起细胞周期紊乱。
     3.低浓度NaAsO2可激活JNK/c-Jun信号通路而引起细胞周期素cyclin D1蛋白表达升高。
     4. JNK/c-Jun信号通路和细胞周期素cyclin D1在低浓度NaAsO2所致HELF细胞增殖异常和细胞周期紊乱中发挥重要作用。
Arsenic is a metalloid element that is widely distributed in the environment. Sodium arsenite is the main inorganic form of arsenic in the environment. Available epidemiological data have shown that long-term exposure to high concentration of arsenide may induce various cancers including skin cancer, bladder cancer and liver cancer. Importantly, occupational inhalation of arsenic, which exists in nonferrous metal ore smelters and insecticide manufacturers, is associated with increased risks of human lung cancer. Arsenic is an identified human carcinogen. Sodium arsenite is demonstrated to induce cellular proliferation and cell cycle disorder both in cell culture model and animal model; however, its mechanisms are not well known.
     Cancer is one of diseases caused by environmental factors and genetic factors. Cell exposure to carcinogenic agents can lead to a series of events, such as oncogene reinforcement and anti-oncogene inhibition caused by gene mutation, dysfunction of cell signal transduction, deregulation of cell cycle and uncontrolled cellular proliferation, which cause eventually cancer. Of these, the abnormal cellular proliferation and cell cycle disorders are the bases of cancer.
     Some studies indicate that arsenite may induce biphase effects of cellular proliferation and cell apoptosis in human cells. Furthermore, ROS and MAPKs signal pathway may play crucial roles in cellular proliferation and cell apoptosis induced by difference concentration of sodium arsenite. However, molecular mechanisms underlying this phenomenon are not well understood.
     In the present study, we investigated the effects of different concentration of sodium arsenite on cellular proliferation, cell cycle, JNK activation, c-Jun activation and cycline D1 express and their relationship in human embryo lung fibroblast (HELF) cells. Furthermore, we studied the effects of blocking JNK/c-Jun signal pathway, which were caused by JNK inhibitor (SP600125), JNK siRNA, and c-Jun siRNA, on cellular proliferation abnormilty and cell cycle disorder induced by low concentration of sodium arsenite in HELF cells. By these, we demonstrated the roles of JNK/c-Jun signal pathway in cellular proliferation abnormity and cell cycle disorder induced by low concerntration of sodium arsenite in HELF cells.
     Methods
     1. The effects of different concentrantion of sodium arsenite on cellular proliferation and cell cycle in HELF cells
     To evaluate the effects of sodium arsenite on cellular proliferation and cell cycle in HELF cells, the HELF cells were exposed to 0.0, 0.1, 0.5 or 5.0μM of sodium arsenite for 12, 24 or 48 h, respectively. Cellular proliferation was evaluated by Cell Counting Kit-8 assay, and the proportion of cell cycle was analyzed by Flow Cytometry with propidium iodide staining.
     2. The effects of different concentrantion of sodium arsenite on cyclin D1 expression in HELF cells
     To examine cyclin D1 level induced by sodium arsenite in HELF cells, After HELF cells were treated with 0.0, 0.1, 0.5, or 5.0μM of sodium arsenite for 6, 12 or 24 h, cyclin D1 level was detected by western blot assay.
     3. The effects of different concentrantion of sodium arsenite on JNK/c-Jun signal pathway in HELF cells
     We investigated whether sodium arsenite induced JNK and c-Jun activation in HELF cells. After HELF cells were treated with 0.0, 0.1, 0.5, or 5.0μM of sodium arsenite for 6, 12 or 24 h, the levels of JNK, phospho-JNK, c-Jun and phospho-c-Jun were detected by western blot assay.
     4. The roles of JNK/c-Jun signal pathway in the cellular proliferation and cell cycle induced by low concentrantion of sodium arsenite in HELF cells
     To confirm the roles of JNK/c-Jun signal pathway in the cellular proliferation and the cell cycle induced by low concerntrantion of sodium arsenite, HELF cells were left untreated or pre-treated with 20μM of JNK inhibitor (SP600125) for 30 min or transfected with 20 nM of JNK siRNA or c-Jun siRNA for 24 h, then cells were exposed to 0.0, 0.1, 0.5 or 5.0μM of sodium arsenite for 24 h, respectively. Cellular proliferation and the proportion of cell cycle were measured with Cell Counting Kit-8 assay and Flow Cytometry, respectively.
     5. The roles of JNK/c-Jun signal pathway in the cyclin D1 expression induced by low concentrantion of sodium arsenite
     We investigated whether JNK/c-Jun signal pathway was involved in sodium arsenite-induced cyclin D1 expression. HELF cells were left untreated or pre-treated with 20 ofμM JNK inhibitor (SP600125) for 30 min or transfected with 20 nM of JNK siRNA or c-Jun siRNA for 12 h, then cells were exposed to 0.0, 0.1, or 0.5μM of sodium arsenite for 24 h, respectively. The levels of JNK protein, phospho-JNK, c-Jun protein, phospho-c-Jun, and cyclin D1 were detected by western blot assay.
     Results
     1. The effects of different concentrantion of sodium arsenite on cellular proliferation and cell cycle in HELF cells
     (1) The effects of different concerntration of sodium arsenite on cellular proliferation in HELF cells
     Cellular proliferation was significantly increased by 0.1 or 0.5μM of sodium arseinte at 12, 24 or 48 h in HELF cells. The curve peak of cellular proliferation presented at 0.1μM of sodium arsenite and at exposure 24 h. In contrast, cellular proliferation was markedly decreased in 5.0μM of arsenite at each time. Data indicated that low concentarion of sodium arsenite increased cell proliferation but high concerntration of sodium arsenite inhibited cell growth at in HELF cells.
     (2) The effects of different concerntration of sodium arsenite on cell cycle in HELF cells
     The cell proportion in S phase was significantly elevated by 0.1 or 0.5μM of sodium arsenite at 24 h, as well as the cell proportion in G1 phase was markedly decreased. The curve peak was present at 0.1μM sodium arsenite group, 5.0μM of sodium arsenite induced significantly the increases of the cell proportion in G2/M phase at 24 h. Data indicated that low concentration of sodium arsenite promoted cell cycle transition from G1 to S phases. However, high concerntration of sodium arsenite induced cell cycle arrest at G2/M phase.
     2. The effects of different concerntration of sodium arsenite on cyclin D1 expression in HELF cells
     Cyclin D1 expression levels were markedly increased by 0.1 or 0.5μM of sodium arsenite at 6, 12, or 24 h in HELF cells. In contrast, 5.0μM of sodium arsenite showed no effect on cyclin D1 expression in HELF cells. Data indicated that cyclin D1 expression was inducted by low concentration of sodium arsenite in HELF cells.
     3. The effects of different concentrantion of sodium arsenite on JNK/c-Jun signal pathway in HELF cells
     (1) The effects of different concerntration of sodium arsenite on phosho-JNK levels in HELF cells
     Phopho-JNK levels were dramatically increased by 0.1 or 0.5μM of arsenite at 6, 12, or 24 h in HELF cells, whereas 5.0μM of arsenite did not show any effect on phospo-JNK in HELF cells. Data suggested that JNK signal pathway could be activated by low concerntration of arsenite in HELF cells, furthermore, the change similar to the cyclin D1 expression induction by sodium arsenite.
     (2) The effects of different concerntration of sodium arsenite on phosho-c-Jun levels in HELF cells
     Phopho-c-Jun levels were dramatically increased after HELF cells incubated by 0.1 or 0.5μM of sodium arsenite at 6, 12, or 24 h, however, although 5.0μM of sodium arsenite may also increased phopho-c-Jun level, the effect was weakly. Data suggested c-Jun activation was induced by low concentration of sodium arsenite in HELF cells.
     4. The roles of JNK/c-Jun signal pathway in cellular proliferation and cell cycle induced by low concentrantion of sodium arsenite in HELF cells
     (1) The effects of blocking JNK/c-Jun signal pathway on cellular proliferation induced by low concerntration of sodium arsenite
     JNK inhibitor, SP600125, significantly blocked increases of cellular proliferation induced by 0.1 or 0.5μM of sodium arsenite in HELF cells. JNK siRNA and c-Jun siRNA also markedly suppressed the increases of cellular proliferation induced by 0.1 or 0.5μM of sodium arsenite in HELF cells. Data suggested that JNK/c-Jun signal pathway play a critical role on cellular proliferation induced by low concerntration of sodium arsenite in HELF cells.
     (2) The effects of JNK/c-Jun knockdown on cell cycle induced by low concerntration of sodium arsenite
     The elevation of cell proportion in S phase induced by low concerntration of sodium arsenite was markedly inhibited by the JNK siRNA. Furthermore, the c-Jun siRNA inhibited dramatically the sodium arsenite-dependent transition of G1 to S phases in HELF. Data suggested that JNK/c-Jun signal pathway involvedin the cell cycle transition induced by low concerntration of sodium arsenite in HELF cells.
     5. The roles of JNK/c-Jun signal pathway in cyclin D1 expression induced by low concentrantion of sodium arsenite in HELF cells
     (1) The effects of blocking JNK signal pathway on c-Jun activation and cyclin D1 expression induced by low concerntration of sodium arsenite
     Pretreatment of HELF cells with SP600125, resulted in a dramatic inhibition of the phosphorylation of JNK and c-Jun. Furthermore, inhibition of JNK signal pathway by SP600125 resulted in a significant decrease in sodium arsenite-induced cyclin D1 expression. Similarly, with JNK expression was dramatically knockdown by JNK siRNA, the phospho-c-Jun levels and cyclin D1 expression were significantly decreased as well. Data demonstrated that activation of JNK signal pathway may be implicated in c-Jun activation and cyclin D1 expression induction by low concerntrantion of sodium arsenite in HELF cells.
     (2) The effects of c-Jun kockdown on cyclin D1 expression induced by low concerntration of sodium arsenite
     Knockdown of c-Jun expression by transfection of HELF cells with c-Jun siRNA resulted in a significant decrease in cyclin D1 expression induced by low concerntration of sodium arsenite. Whereas, c-Jun siRNA did not show any inhibitory effect on phospho-JNK levels which induction by the same concerntration of sodium arsenite in HELF cells. Data suggested that induction of cyclin D1 expression by low concerntration of sodium arsenite in HELF cells requires JNK/c-Jun signal pathway.
     Conclusions:
     1. The low concerntration of sodium arsenite induces the increases of cellular proliferation; however, the high concerntration of sodium arsenite inhibites cellular proliferation in HELF cells.
     2. The low concerntration of sodium arsenite prometes cell cycle transition from G1 to S phases, which induces cell cycle disorder in HELF cells
     3. Activation of JNK/c-Jun pathway and the cyclin D1 protein expression are induced by low concerntration of sodium arsenite in HELF cells.
     4. JNK/c-Jun pathway and cyclin D1 play critical roles in cellular proliferation abnormity and cell cycle disorder induced by low concerntration of sodium arsenite in HELF cells.
引文
[1] Tapio S and Grosche B. Arsenic in the aetiology of cancer. Mutat Res, 2006, 612(3): 215-246
    [2] Bates M N, Rey O A, Biggs M L, Hopenhayn C, Moore L E, Kalman D, Steinmaus C and Smith A H. Case-control study of bladder cancer and exposure to arsenic in Argentina. Am J Epidemiol, 2004, 159(4): 381-389
    [3] Chen H, Li S, Liu J, Diwan B A, Barrett J C and Waalkes M P. Chronic inorganic arsenic exposure induces hepatic global and individual gene hypomethylation: implications for arsenic hepatocarcinogenesis. Carcinogenesis, 2004, 25(9): 1779-1786
    [4] Huang C, Ke Q, Costa M and Shi X. Molecular mechanisms of arsenic carcinogenesis. Mol Cell Biochem, 2004, 255(1-2): 57-66
    [5]董子明肿瘤基础学,河南科学技术出版社,河南, 2008.
    [6] Fu M, Wang C, Li Z, Sakamaki T and Pestell R G. Minireview: Cyclin D1: normal and abnormal functions. Endocrinology, 2004, 145(12): 5439-5447
    [7] Kastan M B and Bartek J. Cell-cycle checkpoints and cancer. Nature, 2004, 432(7015): 316-323
    [8] DuMond J W, Jr. and Singh K P. Gene expression changes and induction of cell proliferation by chronic exposure to arsenic of mouse testicular Leydig cells. J Toxicol Environ Health A, 2007, 70(13): 1150-1154
    [9] Ouyang W, Li J, Ma Q and Huang C. Essential roles of PI-3K/Akt/IKKbeta/ NFkappaB pathway in cyclin D1 induction by arsenite in JB6 Cl41 cells. Carcinogenesis, 2006, 27(4): 864-873
    [10] Cheng H C, Chien H, Liao C H, Yang Y Y and Huang S Y. Carotenoids suppress proliferating cell nuclear antigen and cyclin D1 expression in oral carcinogenicmodels. J Nutr Biochem, 2007, 18(10): 667-675
    [11] Weston C R and Davis R J. The JNK signal transduction pathway. Curr Opin Cell Biol, 2007, 19(2): 142-149
    [12] Mori Y and Gotoh Y. [Role of the JNK signaling pathway]. Tanpakushitsu Kakusan Koso, 2008, 53(10): 1252-1257
    [13] Shaulian E and Karin M. AP-1 in cell proliferation and survival. Oncogene, 2001, 20(19): 2390-2400
    [14] Lau A T, Li M, Xie R, He Q Y and Chiu J F. Opposed arsenite-induced signaling pathways promote cell proliferation or apoptosis in cultured lung cells. Carcinogenesis, 2004, 25(1): 21-28
    [15] Duyndam M C, Hulscher S T, van der Wall E, Pinedo H M and Boven E. Evidence for a role of p38 kinase in hypoxia-inducible factor 1-independent induction of vascular endothelial growth factor expression by sodium arsenite. J Biol Chem, 2003, 278(9): 6885-6895
    [16] Li J P, Lin J C and Yang J L. ERK activation in arsenite-treated G1-enriched CL3 cells contributes to survival, DNA repair inhibition, and micronucleus formation. Toxicol Sci, 2006, 89(1): 164-172
    [17] Yang P, He X Q, Peng L, Li A P, Wang X R, Zhou J W and Liu Q Z. The role of oxidative stress in hormesis induced by sodium arsenite in human embryo lung fibroblast (HELF) cellular proliferation model. J Toxicol Environ Health A, 2007, 70(11): 976-983
    [18] He X Q, Chen R, Yang P, Li A P, Zhou J W and Liu Q Z. Biphasic effect of arsenite on cell proliferation and apoptosis is associated with the activation of JNK and ERK1/2 in human embryo lung fibroblast cells. Toxicol Appl Pharmacol, 2007, 220(1): 18-24
    [19] Chen C J, Chen C W, Wu M M and Kuo T L. Cancer potential in liver, lung,bladder and kidney due to ingested inorganic arsenic in drinking water. Br J Cancer, 1992, 66(5): 888-892
    [20] Tseng C H, Tseng C P, Chiou H Y, Hsueh Y M, Chong C K and Chen C J. Epidemiologic evidence of diabetogenic effect of arsenic. Toxicol Lett, 2002, 133(1): 69-76
    [21] Tseng C H, Chong C K, Tseng C P, Hsueh Y M, Chiou H Y, Tseng C C and Chen C J. Long-term arsenic exposure and ischemic heart disease in arseniasis- hyperendemic villages in Taiwan. Toxicol Lett, 2003, 137(1-2): 15-21
    [22] Khan M M, Sakauchi F, Sonoda T, Washio M and Mori M. Magnitude of arsenic toxicity in tube-well drinking water in Bangladesh and its adverse effects on human health including cancer: evidence from a review of the literature. Asian Pac J Cancer Prev, 2003, 4(1): 7-14
    [23] Chen W and Chen J. Nested case-control study of lung cancer in four Chinese tin mines. Occup Environ Med, 2002, 59(2): 113-118
    [24] Lubin J H, Pottern L M, Stone B J and Fraumeni J F, Jr. Respiratory cancer in a cohort of copper smelter workers: results from more than 50 years of follow-up. Am J Epidemiol, 2000, 151(6): 554-565
    [25] Abernathy C O, Thomas D J and Calderon R L. Health effects and risk assessment of arsenic. J Nutr, 2003, 133(5 Suppl 1): 1536S-1538S
    [26] Enterline P E, Henderson V L and Marsh G M. Exposure to arsenic and respiratory cancer. A reanalysis. Am J Epidemiol, 1987, 125(6): 929-938
    [27] Qiao Y L, Taylor P R, Yao S X, Erozan Y S, Luo X C, Barrett M J, Yan Q Y, Giffen C A, Huang S Q, Maher M M, Forman M R and Tockman M S. Risk factors and early detection of lung cancer in a cohort of Chinese tin miners. Ann Epidemiol, 1997, 7(8): 533-541
    [28] Liu Y T and Chen Z. A retrospective lung cancer mortality study of peopleexposed to insoluble arsenic and radon. Lung Cancer, 1996, 14 Suppl 1(S137-148
    [29] Qian Y, Castranova V and Shi X. New perspectives in arsenic-induced cell signal transduction. J Inorg Biochem, 2003, 96(2-3): 271-278
    [30] Massague J. G1 cell-cycle control and cancer. Nature, 2004, 432(7015): 298-306
    [31]吴顺华,刘开泰,杨晓燕.亚砷酸钠对人皮肤细胞增殖作用的影响.新疆医科大学学报, 2003, 26(1): 6-8
    [32]孙鲜策,孙贵范,王璐.亚砷酸钠对角质形成细胞增值力和细胞周期的影响.中华劳动卫生职业病杂志, 2004, 22(3): 219-220
    [33] Wang S, Zhao Y, Wu L, Tang M, Su C, Hei T K and Yu Z. Induction of germline cell cycle arrest and apoptosis by sodium arsenite in Caenorhabditis elegans. Chem Res Toxicol, 2007, 20(2): 181-186
    [34] Ouyang W, Ma Q, Li J, Zhang D, Liu Z G, Rustgi A K and Huang C. Cyclin D1 induction through IkappaB kinase beta/nuclear factor-kappaB pathway is responsible for arsenite-induced increased cell cycle G1-S phase transition in human keratinocytes. Cancer Res, 2005, 65(20): 9287-9293
    [35] Vincenzi B, Schiavon G, Silletta M, Santini D, Perrone G, Di Marino M, Angeletti S, Baldi A and Tonini G. Cell cycle alterations and lung cancer. Histol Histopathol, 2006, 21(4): 423-435
    [36] Caldon C E, Daly R J, Sutherland R L and Musgrove E A. Cell cycle control in breast cancer cells. J Cell Biochem, 2006, 97(2): 261-274
    [37] Tashiro E, Tsuchiya A and Imoto M. Functions of cyclin D1 as an oncogene and regulation of cyclin D1 expression. Cancer Sci, 2007, 98(5): 629-635
    [38] Yamasaki L and Pagano M. Cell cycle, proteolysis and cancer. Curr Opin Cell Biol, 2004, 16(6): 623-628
    [39] Arnold A and Papanikolaou A. Cyclin D1 in breast cancer pathogenesis. J Clin Oncol, 2005, 23(18): 4215-4224
    [40] Ouyang W, Li J, Zhang D, Jiang B H and Huang D C. PI-3K/Akt signal pathway plays a crucial role in arsenite-induced cell proliferation of human keratinocytes through induction of cyclin D1. J Cell Biochem, 2007, 101(4): 969-978
    [41] Liao W T, Chang K L, Yu C L, Chen G S, Chang L W and Yu H S. Arsenic induces human keratinocyte apoptosis by the FAS/FAS ligand pathway, which correlates with alterations in nuclear factor-kappa B and activator protein-1 activity. J Invest Dermatol, 2004, 122(1): 125-129
    [42] Luster M I and Simeonova P P. Arsenic and urinary bladder cell proliferation. Toxicol Appl Pharmacol, 2004, 198(3): 419-423
    [43] Zhang D, Li J, Gao J and Huang C. c-Jun/AP-1 pathway-mediated cyclin D1 expression participates in low dose arsenite-induced transformation in mouse epidermal JB6 Cl41 cells. Toxicol Appl Pharmacol, 2009, 235(1): 18-24
    [44] Ouyang W, Luo W, Zhang D, Jian J, Ma Q, Li J, Shi X, Chen J, Gao J and Huang C. PI-3K/Akt pathway-dependent cyclin D1 expression is responsible for arsenite-induced human keratinocyte transformation. Environ Health Perspect, 2008, 116(1): 1-6
    [45] Johnson G L and Nakamura K. The c-jun kinase/stress-activated pathway: regulation, function and role in human disease. Biochim Biophys Acta, 2007, 1773(8): 1341-1348
    [46] Kennedy N J and Davis R J. Role of JNK in tumor development. Cell Cycle, 2003, 2(3): 199-201
    [47] Uhlirova M, Jasper H and Bohmann D. Non-cell-autonomous induction of tissue overgrowth by JNK/Ras cooperation in a Drosophila tumor model. Proc Natl Acad Sci U S A, 2005, 102(37): 13123-13128
    [48] Nateri A S, Spencer-Dene B and Behrens A. Interaction of phosphorylated c-Jun with TCF4 regulates intestinal cancer development. Nature, 2005, 437(7056):281-285
    [49] Lee K B, Kim K R, Huh T L and Lee Y M. Proton induces apoptosis of hypoxic tumor cells by the p53-dependent and p38/JNK MAPK signaling pathways. Int J Oncol, 2008, 33(6): 1247-1256
    [50] Potin S, Bertoglio J and Breard J. Involvement of a Rho-ROCK-JNK pathway in arsenic trioxide-induced apoptosis in chronic myelogenous leukemia cells. FEBS Lett, 2007, 581(1): 118-124
    [51] Bivik C and Ollinger K. JNK mediates UVB-induced apoptosis upstream lysosomal membrane permeabilization and Bcl-2 family proteins. Apoptosis, 2008, 13(9): 1111-1120
    [52] Lan K P, Wang C J, Hsu J D, Chen K M, Lai S C and Lee H H. Induced eosinophilia and proliferation in Angiostrongylus cantonensis-infected mouse brain are associated with the induction of JAK/STAT1, IAP/NF-kappaB and MEKK1/JNK signals. J Helminthol, 2004, 78(4): 311-317
    [53] Khalil N, Xu Y D, O'Connor R and Duronio V. Proliferation of pulmonary interstitial fibroblasts is mediated by transforming growth factor-beta1-induced release of extracellular fibroblast growth factor-2 and phosphorylation of p38 MAPK and JNK. J Biol Chem, 2005, 280(52): 43000-43009
    [54] Gadea A, Schinelli S and Gallo V. Endothelin-1 regulates astrocyte proliferation and reactive gliosis via a JNK/c-Jun signaling pathway. J Neurosci, 2008, 28(10): 2394-2408
    [55] Sato T, Torashima T, Sugihara K, Hirai H, Asano M and Yoshioka K. The scaffold protein JSAP1 regulates proliferation and differentiation of cerebellar granule cell precursors by modulating JNK signaling. Mol Cell Neurosci, 2008, 39(4): 569-578
    [56] Gao A, Liu B C, Huang C S, Shi X L, Jia X W, You B R and Ye M. [ERK andJNK/AP-1 pathways involved in benzo(a)pyrene induced cell cycle changes in human embryo lung fibroblasts]. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi, 2006, 24(2): 72-76
    [57] Sabapathy K, Hochedlinger K, Nam S Y, Bauer A, Karin M and Wagner E F. Distinct roles for JNK1 and JNK2 in regulating JNK activity and c-Jun-dependent cell proliferation. Mol Cell, 2004, 15(5): 713-725
    [58] Ouafik L, Berenguer-Daize C and Berthois Y. Adrenomedullin promotes cell cycle transit and up-regulates cyclin D1 protein level in human glioblastoma cells through the activation of c-Jun/JNK/AP-1 signal transduction pathway. Cell Signal, 2009, 21(4): 597-608
    [59] Wang M, Atayar C, Rosati S, Bosga-Bouwer A, Kluin P and Visser L. JNK is constitutively active in mantle cell lymphoma: cell cycle deregulation and polyploidy by JNK inhibitor SP600125. J Pathol, 2009, 218(1): 95-103
    [60]史毅,金由辛. RNA干扰与siRNA(小干扰RNA)研究进展.生命科学, 2008, 20(2): 196-201
    [61]吴正思,王彪. RNA干扰及其医学研究中应用的进展.医学综述, 2008, 3(14): 821-823
    [1] Weston C R and Davis R J. The JNK signal transduction pathway. Curr Opin Genet Dev, 2002, 12(1): 14-21
    [2] Kyriakis J M and Avruch J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev, 2001, 81(2): 807-869
    [3] Vasilevskaya I and O'Dwyer P J. Role of Jun and Jun kinase in resistance of cancer cells to therapy. Drug Resist Updat, 2003, 6(3): 147-156
    [4] Bogoyevitch M A. The isoform-specific functions of the c-Jun N-terminal Kinases (JNKs): differences revealed by gene targeting. Bioessays, 2006, 28(9): 923-934
    [5] Gupta S, Barrett T, Whitmarsh A J, Cavanagh J, Sluss H K, Derijard B and Davis R J. Selective interaction of JNK protein kinase isoforms with transcription factors. Embo J, 1996, 15(11): 2760-2770
    [6] Yu J, Novgorodov S A, Chudakova D, Zhu H, Bielawska A, Bielawski J, Obeid L M, Kindy M S and Gudz T I. JNK3 signaling pathway activates ceramide synthase leading to mitochondrial dysfunction. J Biol Chem, 2007, 282(35): 25940-25949
    [7]Ries V, Silva R M, Oo T F, Cheng H C, Rzhetskaya M, Kholodilov N, Flavell R A, Kuan C Y, Rakic P and Burke R E. JNK2 and JNK3 combined are essential for apoptosis in dopamine neurons of the substantia nigra, but are not required for axon degeneration. J Neurochem, 2008, 107(6): 1578-1588
    [8] Liu C J, Lo J F, Kuo C H, Chu C H, Chen L M, Tsai F J, Tsai C H, Tzang B S, Kuo W W and Huang C Y. Akt Mediates 17beta-Estradiol and/or Estrogen Receptor alpha Inhibition of LPS-Induced Tumor Necrosis Factor-alpha Expression and Myocardial Cell Apoptosis by Suppressing the JNK1/2-NFkappaB Pathway. J Cell Mol Med, 2009:
    [9] Zubova S G, Bykova T V, Zubova Iu G, Romanov V S, Aksenov N D, Pospelov V A and Pospelova T V. [Sodium butyrate do not induce the program of premature senescence in transformants with JNK1,2 knockout]. Tsitologiia, 2008, 50(11): 964-971
    [10] Bode A M and Dong Z. The functional contrariety of JNK. Mol Carcinog, 2007, 46(8): 591-598
    [11] Wu J J, Roth R J, Anderson E J, Hong E G, Lee M K, Choi C S, Neufer P D, Shulman G I, Kim J K and Bennett A M. Mice lacking MAP kinase phosphatase-1 have enhanced MAP kinase activity and resistance to diet-induced obesity. Cell Metab, 2006, 4(1): 61-73
    [12] Chi H, Barry S P, Roth R J, Wu J J, Jones E A, Bennett A M and Flavell R A. Dynamic regulation of pro- and anti-inflammatory cytokines by MAPK phosphatase 1 (MKP-1) in innate immune responses. Proc Natl Acad Sci U S A, 2006, 103(7): 2274-2279
    [13] Morrison D K and Davis R J. Regulation of MAP kinase signaling modules by scaffold proteins in mammals. Annu Rev Cell Dev Biol, 2003, 19(91-118
    [14] Willoughby E A, Perkins G R, Collins M K and Whitmarsh A J. TheJNK-interacting protein-1 scaffold protein targets MAPK phosphatase-7 to dephosphorylate JNK. J Biol Chem, 2003, 278(12): 10731-10736
    [15] Davis R J. Signal transduction by the JNK group of MAP kinases. Cell, 2000, 103(2): 239-252
    [16]Im J Y, Lee K W, Kim M H, Lee S H, Ha H Y, Cho I H, Kim D, Yu M S, Kim J B, Lee J K, Kim Y J, Youn B W, Yang S D, Shin H S and Han P L. Repression of phospho-JNK and infarct volume in ischemic brain of JIP1-deficient mice. J Neurosci Res, 2003, 74(2): 326-332
    [17] Kim J W, Kim M J, Kim K J, Yun H J, Chae J S, Hwang S G, Chang T S, Park H S, Lee K W, Han P L, Cho S G, Kim T W and Choi E J. Notch interferes with the scaffold function of JNK-interacting protein 1 to inhibit the JNK signaling pathway. Proc Natl Acad Sci U S A, 2005, 102(40): 14308-14313
    [18] Jaeschke A, Czech M P and Davis R J. An essential role of the JIP1 scaffold protein for JNK activation in adipose tissue. Genes Dev, 2004, 18(16): 1976-1980
    [19] Weston C R and Davis R J. The JNK signal transduction pathway. Curr Opin Cell Biol, 2007, 19(2): 142-149
    [20] Turpaev K T. [Role of transcription factor AP-1 in integration of cellular signalling systems]. Mol Biol (Mosk), 2006, 40(6): 945-961
    [21] Kikuchi J, Kinoshita I, Shimizu Y, Oizumi S, Nishimura M, Birrer M J and Dosaka-Akita H. Simultaneous blockade of AP-1 and phosphatidylinositol 3-kinase pathway in non-small cell lung cancer cells. Br J Cancer, 2008, 99(12): 2013-2019
    [22] Dube C, Bergeron F, Vaillant M J, Robert N M, Brousseau C and Tremblay J J. The nuclear receptors SF1 and LRH1 are expressed in endometrial cancer cells and regulate steroidogenic gene transcription by cooperating with AP-1 factors. Cancer Lett, 2009, 275(1): 127-138
    [23] Sabapathy K, Hochedlinger K, Nam S Y, Bauer A, Karin M and Wagner E F. Distinct roles for JNK1 and JNK2 in regulating JNK activity and c-Jun-dependent cell proliferation. Mol Cell, 2004, 15(5): 713-725
    [24] Whang Y M, Kim Y H, Kim J S and Yoo Y D. RASSF1A suppresses the c-Jun-NH2-kinase pathway and inhibits cell cycle progression. Cancer Res, 2005, 65(9): 3682-3690
    [25] Tournier C, Hess P, Yang D D, Xu J, Turner T K, Nimnual A, Bar-Sagi D, Jones S N, Flavell R A and Davis R J. Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science, 2000, 288(5467): 870-874
    [26]Sabapathy K and Wagner E F. JNK2: a negative regulator of cellular proliferation. Cell Cycle, 2004, 3(12): 1520-1523
    [27] Jaeschke A, Karasarides M, Ventura J J, Ehrhardt A, Zhang C, Flavell R A, Shokat K M and Davis R J. JNK2 is a positive regulator of the cJun transcription factor. Mol Cell, 2006, 23(6): 899-911
    [28] Martial S, Giorgelli J L, Renaudo A, Derijard B and Soriani O. SP600125 inhibits Kv channels through a JNK-independent pathway in cancer cells. Biochem Biophys Res Commun, 2008, 366(4): 944-950
    [29] Kennedy N J, Sluss H K, Jones S N, Bar-Sagi D, Flavell R A and Davis R J. Suppression of Ras-stimulated transformation by the JNK signal transduction pathway. Genes Dev, 2003, 17(5): 629-637
    [30] Ouafik L, Berenguer-Daize C and Berthois Y. Adrenomedullin promotes cell cycle transit and up-regulates cyclin D1 protein level in human glioblastoma cells through the activation of c-Jun/JNK/AP-1 signal transduction pathway. Cell Signal, 2009, 21(4): 597-608
    [31] Yang Y M, Bost F, Charbono W, Dean N, McKay R, Rhim J S, Depatie C and Mercola D. C-Jun NH(2)-terminal kinase mediates proliferation and tumor growthof human prostate carcinoma. Clin Cancer Res, 2003, 9(1): 391-401
    [32] MacCorkle R A and Tan T H. Inhibition of JNK2 disrupts anaphase and produces aneuploidy in mammalian cells. J Biol Chem, 2004, 279(38): 40112-40121
    [33]Hideshima T, Hayashi T, Chauhan D, Akiyama M, Richardson P and Anderson K. Biologic sequelae of c-Jun NH(2)-terminal kinase (JNK) activation in multiple myeloma cell lines. Oncogene, 2003, 22(54): 8797-8801
    [34] Mingo-Sion A M, Marietta P M, Koller E, Wolf D M and Van Den Berg C L. Inhibition of JNK reduces G2/M transit independent of p53, leading to endoreduplication, decreased proliferation, and apoptosis in breast cancer cells. Oncogene, 2004, 23(2): 596-604
    [35] Chen N, Nomura M, She Q B, Ma W Y, Bode A M, Wang L, Flavell R A and Dong Z. Suppression of skin tumorigenesis in c-Jun NH(2)-terminal kinase-2- deficient mice. Cancer Res, 2001, 61(10): 3908-3912
    [36] Gonzalez-Garcia A, Pritchard C A, Paterson H F, Mavria G, Stamp G and Marshall C J. RalGDS is required for tumor formation in a model of skin carcinogenesis. Cancer Cell, 2005, 7(3): 219-226
    [37] Maesako Y, Uchiyama T and Ohno H. Comparison of gene expression profiles of lymphoma cell lines from transformed follicular lymphoma, Burkitt's lymphoma and de novo diffuse large B-cell lymphoma. Cancer Sci, 2003, 94(9): 774-781
    [38] Rennefahrt U E, Illert B, Kerkhoff E, Troppmair J and Rapp U R. Constitutive JNK activation in NIH 3T3 fibroblasts induces a partially transformed phenotype. J Biol Chem, 2002, 277(33): 29510-29518
    [39] Wang H Y, Cheng Z and Malbon C C. Overexpression of mitogen-activated protein kinase phosphatases MKP1, MKP2 in human breast cancer. Cancer Lett, 2003, 191(2): 229-237
    [40] Cho Y Y, Tang F, Yao K, Lu C, Zhu F, Zheng D, Pugliese A, Bode A M and DongZ. Cyclin-dependent kinase-3-mediated c-Jun phosphorylation at Ser63 and Ser73 enhances cell transformation. Cancer Res, 2009, 69(1): 272-281
    [41] Eferl R, Ricci R, Kenner L, Zenz R, David J P, Rath M and Wagner E F. Liver tumor development. c-Jun antagonizes the proapoptotic activity of p53. Cell, 2003, 112(2): 181-192
    [42] Stepniak E, Ricci R, Eferl R, Sumara G, Sumara I, Rath M, Hui L and Wagner E F. c-Jun/AP-1 controls liver regeneration by repressing p53/p21 and p38 MAPK activity. Genes Dev, 2006, 20(16): 2306-2314
    [43] Srinivas H, Juroske D M, Kalyankrishna S, Cody D D, Price R E, Xu X C, Narayanan R, Weigel N L and Kurie J M. c-Jun N-terminal kinase contributes to aberrant retinoid signaling in lung cancer cells by phosphorylating and inducing proteasomal degradation of retinoic acid receptor alpha. Mol Cell Biol, 2005, 25(3): 1054-1069
    [44] Nateri A S, Spencer-Dene B and Behrens A. Interaction of phosphorylated c-Jun with TCF4 regulates intestinal cancer development. Nature, 2005, 437(7056): 281-285
    [45] Mialon A, Sankinen M, Soderstrom H, Junttila T T, Holmstrom T, Koivusalo R, Papageorgiou A C, Johnson R S, Hietanen S, Elenius K and Westermarck J. DNA topoisomerase I is a cofactor for c-Jun in the regulation of epidermal growth factor receptor expression and cancer cell proliferation. Mol Cell Biol, 2005, 25(12): 5040-5051
    [46] Yamagata H, Matsuzaki K, Mori S, Yoshida K, Tahashi Y, Furukawa F, Sekimoto G, Watanabe T, Uemura Y, Sakaida N, Yoshioka K, Kamiyama Y, Seki T and Okazaki K. Acceleration of Smad2 and Smad3 phosphorylation via c-Jun NH(2)-terminal kinase during human colorectal carcinogenesis. Cancer Res, 2005, 65(1): 157-165
    [47] Zoumpourlis V, Papassava P, Linardopoulos S, Gillespie D, Balmain A and Pintzas A. High levels of phosphorylated c-Jun, Fra-1, Fra-2 and ATF-2 proteins correlate with malignant phenotypes in the multistage mouse skin carcinogenesis model. Oncogene, 2000, 19(35): 4011-4021
    [48] Rangatia J, Vangala R K, Singh S M, Peer Zada A A, Elsasser A, Kohlmann A, Haferlach T, Tenen D G, Hiddemann W and Behre G. Elevated c-Jun expression in acute myeloid leukemias inhibits C/EBPalpha DNA binding via leucine zipper domain interaction. Oncogene, 2003, 22(30): 4760-4764
    [49] She Q B, Chen N, Bode A M, Flavell R A and Dong Z. Deficiency of c-Jun-NH(2)-terminal kinase-1 in mice enhances skin tumor development by 12-O-tetradecanoylphorbol-13-acetate. Cancer Res, 2002, 62(5): 1343-1348
    [50]Heasley L E and Han S Y. JNK regulation of oncogenesis. Mol Cells, 2006, 21(2): 167-173
    [51] Winn R A, Marek L, Han S Y, Rodriguez K, Rodriguez N, Hammond M, Van Scoyk M, Acosta H, Mirus J, Barry N, Bren-Mattison Y, Van Raay T J, Nemenoff R A and Heasley L E. Restoration of Wnt-7a expression reverses non-small cell lung cancer cellular transformation through frizzled-9-mediated growth inhibition and promotion of cell differentiation. J Biol Chem, 2005, 280(20): 19625-19634
    [52] Brumby A M and Richardson H E. Using Drosophila melanogaster to map human cancer pathways. Nat Rev Cancer, 2005, 5(8): 626-639
    [53] Uhlirova M, Jasper H and Bohmann D. Non-cell-autonomous induction of tissue overgrowth by JNK/Ras cooperation in a Drosophila tumor model. Proc Natl Acad Sci U S A, 2005, 102(37): 13123-13128
    [54] Yamada S D, Hickson J A, Hrobowski Y, Vander Griend D J, Benson D, Montag A, Karrison T, Huo D, Rutgers J, Adams S and Rinker-Schaeffer C W. Mitogen-activated protein kinase kinase 4 (MKK4) acts as a metastasis suppressorgene in human ovarian carcinoma. Cancer Res, 2002, 62(22): 6717-6723
    [55] Vander Griend D J, Kocherginsky M, Hickson J A, Stadler W M, Lin A and Rinker-Schaeffer C W. Suppression of metastatic colonization by the context-dependent activation of the c-Jun NH2-terminal kinase kinases JNKK1/MKK4 and MKK7. Cancer Res, 2005, 65(23): 10984-10991
    [56] Yoshida S, Fukino K, Harada H, Nagai H, Imoto I, Inazawa J, Takahashi H, Teramoto A and Emi M. The c-Jun NH2-terminal kinase3 (JNK3) gene: genomic structure, chromosomal assignment, and loss of expression in brain tumors. J Hum Genet, 2001, 46(4): 182-187
    [57] Farooq A and Zhou M M. Structure and regulation of MAPK phosphatases. Cell Signal, 2004, 16(7): 769-779
    [58] Masuda K, Shima H, Katagiri C and Kikuchi K. Activation of ERK induces phosphorylation of MAPK phosphatase-7, a JNK specific phosphatase, at Ser-446. J Biol Chem, 2003, 278(34): 32448-32456
    [59]Vicent S, Garayoa M, Lopez-Picazo J M, Lozano M D, Toledo G, Thunnissen F B, Manzano R G and Montuenga L M. Mitogen-activated protein kinase phosphatase-1 is overexpressed in non-small cell lung cancer and is an independent predictor of outcome in patients. Clin Cancer Res, 2004, 10(11): 3639-3649
    [60] Jan H J, Lee C C, Lin Y M, Lai J H, Wei H W and Lee H M. Rosiglitazone reduces cell invasiveness by inducing MKP-1 in human U87MG glioma cells. Cancer Lett, 2009, 277(2): 141-148
    [61] Hoornaert I, Marynen P, Goris J, Sciot R and Baens M. MAPK phosphatase DUSP16/MKP-7, a candidate tumor suppressor for chromosome region 12p12-13, reduces BCR-ABL-induced transformation. Oncogene, 2003, 22(49): 7728-7736
    [62] Lowe S W, Cepero E and Evan G. Intrinsic tumour suppression. Nature, 2004,432(7015): 307-315
    [63] Xu Y. Regulation of p53 responses by post-translational modifications. Cell Death Differ, 2003, 10(4): 400-403
    [64] Cui Y X, Kerby A, McDuff F K, Ye H and Turner S D. NPM-ALK inhibits the p53 tumour suppressor pathway in an MDM2 and JNK-dependent manner. Blood, 2009:
    [65] Das M, Jiang F, Sluss H K, Zhang C, Shokat K M, Flavell R A and Davis R J. Suppression of p53-dependent senescence by the JNK signal transduction pathway. Proc Natl Acad Sci U S A, 2007, 104(40): 15759-15764
    [66] Gong X, Wang M, Tashiro S, Onodera S and Ikejima T. Involvement of JNK- initiated p53 accumulation and phosphorylation of p53 in pseudolaric acid B induced cell death. Exp Mol Med, 2006, 38(4): 428-434
    [67] Toh W H, Siddique M M, Boominathan L, Lin K W and Sabapathy K. c-Jun regulates the stability and activity of the p53 homologue, p73. J Biol Chem, 2004, 279(43): 44713-44722

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700