食管癌侵袭转移相关基因研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Studies on Invasion and Metastasis Associated Genes in Esophageal Carcinoma
  • 作者:周转
  • 论文级别:博士
  • 学科专业名称:免疫学
  • 学位年度:2008
  • 导师:杨治华
  • 学科代码:100102
  • 学位授予单位:中国协和医科大学
  • 论文提交日期:2008-05-01
摘要
食管癌的死亡率在我国恶性肿瘤中居第四位,五年生存率低于10%。抑制食管癌淋巴结转移和邻近组织侵袭是有效治疗食管癌、提高食管癌生存率的关键。我们采用两种策略研究食管癌侵袭转移相关功能基因:即采用基因芯片分析高侵袭转移潜能亚细胞系与亲本细胞系差异表达基因和功能性单体库筛选分离功能抗原基因。
     采用基因芯片技术分析时,我们首先采用体外Matrigel侵袭克隆筛选建立高侵袭高转移食管癌亚细胞系EC9706-P4,应用全基因组芯片比较EC9706-P4与其亲本细胞系EC9706的基因表达谱,获得124个差异表达基因,其中48.3%(60/124)是与侵袭转移相关的基因。通过表达谱分析和生物信息学分析,表明TM4SF3可能是候选的食管癌侵袭转移相关的功能基因。Western blotting表明TM4SF3在57.1%的食管癌组织和高侵袭食管癌细胞系中显著上调表达。RNA干扰和外源性基因表达研究表明TM4SF3可显著促进食管癌细胞侵袭。在EC9706细胞过表达TM4SF3促进体内移植瘤基质侵袭、自发肺转移,并缩短小鼠生存期。进一步研究其分子机制表明TM4SF3显著上调ADAM12m,再上调ILK的表达。RNAi抑制ADAM12m表达能显著抑制TM4SF3介导的侵袭。这些研究结果表明TM4SF3是一个食管癌表达上调的具有促进癌细胞侵袭转移的功能性基因。因此该基因有可能作为靶向食管癌侵袭转移治疗的分子靶标。有关TM4SF3基因侵袭转移功能及分子机制的研究国内外还尚未见到报道。在克隆TM4SF3基因时我们还首次发现了一个功能性的SNP改变,即TM4SF3 397bp位点的SNP(G→C),我们的实验结果证明这一SNP改变能够消除TM4SF3对ADAM12m的表达调节,显著影响TM4SF3促肿瘤侵袭转移潜能。
     在研究基因芯片中差异表达的基因时,我们也同时发现ADAM12显著上调,因此我们对该基因在食管癌转移发挥的功能做了深入的研究。采用119例食管癌组织芯片和98例原发肿瘤和转移性淋巴结配对免疫组化研究表明ADAM12m在肿瘤组织显著过表达,并表现为伴随侵袭、淋巴结转移呈梯度上调,预后的相关性分析表明过表达的ADAM12m是一个独立于食管癌淋巴结转移或者局部侵袭之外的有重要意义的预后分子标志物。RNA干扰或者外源性表达ADAM12m表明其在体内外均显著促进食管癌侵袭和自发性肺转移,并缩短实验小鼠的生存期。分子机理研究表明过表达的ADAM12m参与稳定点状粘附,并通过促进FAK磷酸化和ILK表达参与肿瘤侵袭转移。ADAM12m介导的FAK磷酸化依赖于Integrinβ3,并且通过促进Integrinβ3-FAK相互作用以促进FAK磷酸化。而且ADAM12m过表达与FAK磷酸化上调和ILK表达上调在临床组织标本具有高频度的相关性。因此,ADAM12m过表达及其相关信号通路的活化是食管癌进展中的高频事件,是促进食管癌侵袭和转移的重要功能性基因,因此也可能是治疗食管癌侵袭转移的有价值的靶标。这些关于ADAM12m在肿瘤侵袭转移中的功能及其分子机制的研究,国内外尚未见到报道。
     功能性单抗库筛选功能性抗原基因的研究中,采用转移性食管癌原发瘤中分离的有核细胞免疫Balb/c小鼠,制备含有1260个杂交瘤克隆株的大容量食管癌功能性单抗库。活细胞免疫荧光筛选获得了545株识别食管癌细胞膜蛋白的单抗。通过免疫组化筛选获得了485株与正常人食管组织不反应或者较弱反应的相对特异的单抗。通过迁移、侵袭、粘附、增殖等功能筛选获得了70株抑制迁移,7株抑制侵袭,5株抑制增殖,32株抑制与肺内皮粘附,48株与淋巴内皮粘附相关的单抗。选取其中20株进行抗原特征分析,并对其中8株单抗纯化抗体制备抗体亲和柱亲和纯化相应的功能性抗原蛋白。采用MALDI-TOF和LCQ-TOF鉴定了其中3个抗体识别的功能性抗原及抗原相关序列,包括hDUS2(单抗12B8),1FAKI(单抗3D11),GRLF1(单抗4B9)。生物信息学分析这3个抗原基因具有粘附、运动和增殖等相关功能,表明功能性单抗库技术能有效筛选鉴定肿瘤相关抗原基因。通过这种方式筛选获得的功能性抗体及其靶抗原具有潜在的应用价值,表明功能性单抗库也是研究食管癌侵袭转移的有效策略。
Esophageal cancer is the fourth most common malignancy in China and its 5-years survival rate is less than 10%. Esophageal cancer is characterized by rapid clinical progression and poor prognosis due to adjacent tissue invasion and distant organs metastasis at a very early stage. Therefore, disrupting invasion and metastasis is essential to develop effective treatments and longer the survival time of esophageal cancer. To investigate genes involved in esophageal carcinoma invasion and metastasis, we applied two different strategies, as by microarray comparison high invasive and metastasis potential subcell line with parent cell line or by building functional mAb libray fowolling functional mAb screen and antigen identification.
     For microarray analyses, an in vitro metastasis model via matrigel invasion clonal selection approach was employed, and a highly invasive sub-line EC9706-P4 was established. Then the expression profile of the sub-line and the parental cell line EC9706 was analyzed by gene microarray analysis. By this screen, TM4SF3 (transmembrane 4 superfamily 3) was identified as a candidate promoter for esophageal carcinoma cell invasion and metastasis. Western blotting revealed that TM4SF3 was overexpressed in 57.1% (8/14) of esophageal carcinomas and esophageal carcinoma cell lines with high-invasive potential. RNAi knockdown and ectopic expression indicated it promoted cell migration and invasion. Upregulating TM4SF3 expression in EC9706 cells promoted xenograft tumor invading into surrounding tissues, enhanced lung metastasis, and shortened the lifespan of mice in a spontaneous metastasis model. Further studies demonstrated that ADAM12m was upregulated by TM4SF3 overexpression in vitro and in vivo. Abrogating up-expression of ADAM12m by siRNA significantly suppressed TM4SF3-mediated invasion. Furthermore, a SNP of 397bp (G→C) in TM4SF3 abrogated ADAM12m upregulated by TM4SF3, and decreased its promoting invasion and metastasis potential.
     By gene microarray analysis, we also identified ADAM12m, a membrane-anchored form of a disintegrin and metalloprotease, was over expressed in EC9706-P4 cells. Immunohistochemical analysis on 119 cases tissue microarray and 98 cases paired primary cancer tissues and lymph nodes with tumor metastasis showed ADAM12m was overexpressed in tumor, and gradient upregulated in tumor invasion and lymph node metastasis. The overexpressed ADAM12m was a valuable prognostic factor independent of lymph node metastasis or local invasion. RNAi-mediated knockdown and ectopic expression of ADAM12m showed that ADAM12m promoted esophageal carcinoma metastasis in vitro and in vivo. Subsequent mechanistic studies showed that ADAM12m overexpression participated in focal adhesion and conferred metastatic properties to cancer cells by promoting FAK phosphorylation and ILK expression. The ADAM12 mediated FAK phosphorylation is integrinβ3 dependent and due to the enhancement of integrinβ3-FAK interaction. Furthermore, the correlation of ADAM12m overexpression with up-regulated FAK phosphorylation and ILK expression was frequently observed in clinical samples. Thus, ADAM12m overexpression and the related pathway activation, should be frequent events in esophageal carcinoma progression, and contributes to the cancer invasion and metastasis. Therefore, AMAM12 may be a valuable target for the treatment of esophageal carcinoma invasion and metastasis.
     To screen functional mAbs associated with esophageal carcinoma invasion and metastasis, an esophageal carcinoma functional monoclonal antibodies library containing 1,260 clones, was prepared by immunized Balb/c mouse with nucleated cells separated from metastatic esophageal carcinoma primary tumor. From this library, 545 membrane reactive clones were got by viable cell immunofluorescence assay. Then 485 clones, which did not or weakly reacted with normal esophageal tissue were selected out by immunohistochemitry. By migration, invasion, adhesion and proliferation assays, 70 clones showed the ability of migration inhibition, 7 clones showed the ability of invasion inhibition, 5 clones showed the ability of proliferation inhibition, 32 clones could inhibit the adhesion of esophageal tumor cells with HLEC and 48 clones could inhibit or promote the adhesion of esophageal tumor cells with LYEC. Then 20 of these clones were picked out for further assayed and at last 8 clones were cultured to produce antibody for antibody affinity assay. Three antigens purified by antibody affinity assay were identified by MALDI- TOF and LCQ-TOF, and were homology to hDUS2 (12B8 mAb), 1FAK1 (3D11 mAb) and GRLF1 (4B9 mAb). These functional mAb or antigens recognized by them might have potential application for development of therapies targeting esophageal carcinoma invasion and metastasis. Moreover, these mAb might be valuable for investigate the mechanism of esophageal carcinoma invasion and metastasis.
引文
1. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin 2005; 55(2):74-108.
    
    2. Enzinger PC, Mayer RJ. Esophageal cancer. N Engl J Med 2003; 349 (23):2241-2252.
    
    3. Kim JE, Kim SJ, Jeong HW et al. RGD peptides released from beta ig-h3, a TGF-beta-induced cell-adhesive molecule, mediate apoptosis. Oncogene 2003; 22 (13):2045-2053.
    
    4. Furihata T, Sakai T, Kawamata H et al. A new in vivo model for studying invasion and metastasis of esophageal squamous cell carcinoma. Int J Oncol 2001; 19 (5):903-907.
    
    5. Chambers AF, Groom AC, MacDonald IC. Dissemination and growth of cancer cells in metastatic sites.Nat Rev Cancer 2002; 2 (8):563-572.
    
    6. Yoshinaga K, Inoue H, Utsunomiya T et al. N-cadherin is regulated by activin A and associated with tumor aggressiveness in esophageal carcinoma. Clin Cancer Res 2004; 10 (17):5702-5707.
    
    7. Ito T, Shimada Y, Hashimoto Y et al. Involvement of TSLC1 in progression of esophageal squamous cell carcinoma. Cancer Res 2003; 63 (19):6320-6326.
    
    8. Qian H, Lu N, Xue L et al. Reduced MTA1 Expression by RNAi Inhibits in Vitro Invasion and Migration of Esophageal Squamous Cell Carcinoma Cell Line. Clin Exp Metastasis 2006.
    
    9. Hori T, Yamashita Y, Ohira M et al. A novel orthotopic implantation model of human esophageal carcinoma in nude rats: CD44H mediates cancer cell invasion in vitro and in vivo. Int J Cancer 2001; 92(4):489-496.
    
    10. Bao S, Ouyang G, Bai X et al. Periostin potently promotes metastatic growth of colon cancer by augmenting cell survival via the Akt/PKB pathway. Cancer cell 2004; 5 (4):329-339.
    
    11. Kim M, Gans JD, Nogueira C et al. Comparative oncogenomics identifies NEDD9 as a melanoma metastasis gene. Cell 2006; 125 (7): 1269-1281.
    
    12. Minn AJ, Gupta GP, Siegel PM et al. Genes that mediate breast cancer metastasis to lung. Nature 2005;436(7050):518-524.
    
    13. Kang Y, Siegel PM, Shu W et al. A multigenic program mediating breast cancer metastasis to bone.Cancer cell 2003; 3 (6):537-549.
    
    14. Gupta GP, Nguyen DX, Chiang AC et al. Mediators of vascular remodelling co-opted for sequential steps in lung metastasis. Nature 2007; 446 (7137):765-770.
    
    15. Stracke ML, Murata J, Aznavoorian S, Liotta LA. The role of the extracellular matrix in tumor cell metastasis. In vivo (Athens, Greece) 1994; 8 (1):49-58.
    
    16. Mueller MM, Fusenig NE. Tumor-stroma interactions directing phenotype and progression of epithelial skin tumor cells. Differentiation; research in biological diversity 2002; 70(9-10):486-497.
    
    17. Kleinman HK, Martin GR. Matrigel: basement membrane matrix with biological activity. Seminars in cancer biology 2005; 15 (5):378-386.
    
    18. Han Y, Wei F, Xu X et al. [Establishment and comparative genomic hybridization analysis of human esophageal carcinomas cell line EC9706]. Zhonghua yi xue yi chuan xue za zhi = Zhonghua yixue yichuanxue zazhi = Chinese journal of medical genetics 2002; 19 (6):455-457.
    
    19. Shen XM, Wu YP, Feng YB et al. Interaction of MTl-MMP and Iaminin-5gamma2 chain correlates with metastasis and invasiveness in human esophageal squamous cell carcinoma. Clinical & experimental metastasis 2007; 24 (7):541-550.
    
    20. Lu Z, Liu H, Xue L et al. An activated Notch1 signaling pathway inhibits cell proliferation and induces apoptosis in human esophageal squamous cell carcinoma cell line EC9706. International journal of oncology 2008; 32 (3):643-651.
    
    21. Chung J, Yoon SO, Lipscomb EA, Mercurio AM. The Met receptor and alpha 6 beta 4 integrin can function independently to promote carcinoma invasion. J Biol Chem 2004; 279 (31):32287-32293.
    
    22. Fendrich V, Slater EP, Heinmoller E et al. Alterations of the tissue inhibitor of metalloproteinase-3 (TIMP3) gene in pancreatic adenocarcinomas. Pancreas 2005; 30 (2):e40-45.
    
    23. Dhawan P, Singh AB, Deane NG et al. Claudin-1 regulates cellular transformation and metastatic behavior in colon cancer. J Clin Invest 2005; 115 (7): 1765-1776.
    
    24. Vajkoczy P, Knyazev P, Kunkel A et al. Dominant-negative inhibition of the Axl receptor tyrosine kinase suppresses brain tumor cell growth and invasion and prolongs survival. Proceedings of the National Academy of Sciences of the United States of America 2006; 103 (15):5799-5804.
    
    25. Lin MT, Zuon CY, Chang CC et al. Cyr61 induces gastric cancer cell motility/invasion via activation of the integrin/nuclear factor-kappaB/cyclooxygenase-2 signaling pathway. Clin Cancer Res 2005; 11(16):5809-5820.
    
    26. Kanetaka K, Sakamoto M, Yainamoto Y et al. Overexpression of tetraspanin CO-029 in hepatocellular carcinoma. J Hepatol 2001; 35 (5):637-642.
    
    27. Le Pabic H, Bonnier D, Wewer UM et al. ADAM12 in human liver cancers: TGF-beta-regulated expression in stellate cells is associated with matrix remodeling. Hepatology (Baltimore, Md 2003; 37(5):1056-1066.
    
    28. Rhodes DR, Yu J, Shanker K et al. ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia (New York, NY 2004; 6 (1):1-6.
    
    29. Kanetaka K, Sakamoto M, Yamamoto Y et al. Possible involvement of tetraspanin CO-029 in hematogenous intrahepatic metastasis of liver cancer cells. J Gastroenterol Hepatol 2003; 18(11):1309-1314.
    
    30. Kuhn S, Koch M, Nubel T et al. A Complex of EpCAM, Claudin-7, CD44 Variant Isoforms, and Tetraspanins Promotes Colorectal Cancer Progression. Mol Cancer Res 2007; 5 (6):553-567.
    
    31. Chu YW, Yang PC, Yang SC et al. Selection of invasive and metastatic subpopulations from a human lung adenocarcinoma cell line. American journal of respiratory cell and molecular biology 1997; 17(3):353-360.
    
    32. Sato H, Takino T, Okada Y et al. A matrix metalloproteinase expressed on the surface of invasive tumour cells. Nature 1994; 370 (6484):61-65.
    
    33. Deryugina EI, Ratnikov B, Monosov E et al. MT1-MMP initiates activation of pro-MMP-2 and integrin alphavbeta3 promotes maturation of MMP-2 in breast carcinoma cells. Exp Cell Res 2001; 263(2):209-223.
    
    34. Claas C. Wahl J, Orlicky DJ et al. The tetraspanin D6.1A and its molecular partners on rat carcinoma cells. Biochem J 2005; 389 (Pt 1):99-110.
    
    35. Herlevsen M, Schmidt DS, Miyazaki K, Zoller M. The association of the tetraspanin D6.1A with the alpha6beta4 integrin supports cell motility and liver metastasis formation. Journal of cell science 2003;116(Pt 21):4373-4390.
    
    36. Thodeti CK, Frohlich C, Nielsen CK et al. ADAM12-mediated focal adhesion formation is differently regulated by beta1 and beta3 integrins. FEBS letters 2005; 579 (25):5589-5595.
    
    37. Hannigan G Troussard AA, Dedhar S. Integrin-linked kinase: a cancer therapeutic target unique among its ILK. Nature reviews 2005; 5 (1):51-63.
    
    38. Attwell S, Roskelley C, Dedhar S. The integrin-linked kinase (ILK) suppresses anoikis. Oncogene 2000;19(33):3811-3815.
    39. Rosano L, Spinella F, Di Castro V et al. Integrin-linked kinase functions as a downstream mediator of endothelin-1 to promote invasive behavior in ovarian carcinoma. Molecular cancer therapeutics 2006; 5(4):833-842.
    
    40. Nho RS, Xia H, Kahm J et al. Role of integrin-linked kinase in regulating phosphorylation of Akt and fibroblast survival in type I collagen matrices through a betal integrin viability signaling pathway. The Journal of biological chemistry 2005; 280 (28):26630-26639.
    
    41. Friedl P, Wolf K. Tumour-cell invasion and migration: diversity and escape mechanisms. Nature reviews 2003; 3 (5):362-374.
    
    42. Even-Ram S, Yamada KM. Cell migration in 3D matrix. Curr Opin Cell Biol 2005; 17 (5):524-532.
    
    43. Li W, Ding F, Zhang L et al. Overexpression of stefin A in human esophageal squamous cell carcinoma cells inhibits tumor cell growth, angiogenesis, invasion, and metastasis. Clin Cancer Res 2005; 11 (24 Pt 1):8753-8762.
    
    44. Boucheix C, Rubinstein E. Tetraspanins. Cell Mol Life Sci 2001; 58 (9):1189-1205.
    
    45. Hemler ME. Tetraspanin functions and associated microdomains. Nature reviews 20G5; 6 (10):801-811.
    
    46. Szala S, Kasai Y, Steplewski Z et al. Molecular cloning of cDNA for the human tumor-associated antigen CO-029 and identification of related transmembrane antigens. Proceedings of the National Academy of Sciences of the United States of America 1990; 87 (17):6833-6837.
    
    47. Zoller M. Gastrointestinal tumors: metastasis and tetraspanins. Z Gastroenterol 2006; 44 (7):573-586.
    
    48. Gesierich S, Paret C, Hildebrand D et al. Colocalization of the tetraspanins, CO-029 and CD151, with integrins in human pancreatic adenocarcinoma: impact on cell motility. Clin Cancer Res 2005; 11(8):2840-2852.
    
    49. Gesierich S, Berezovskiy 1, Ryschich E, Zoller M. Systemic induction of the angiogenesis switch by the tetraspanin D6.1A/CO-029. Cancer Res 2006; 66 (14):7083-7094.
    
    50. Bick RL. Coagulation abnormalities in malignancy: a review. Seminars in thrombosis and hemostasis 1992; 18(4):353-372.
    
    51. Seals DF, Azucena EF, Jr., Pass I et al. The adaptor protein Tks5/Fish is required for podosome formation and function, and for the protease-driven invasion of cancer cells. Cancer Cell 2005; 7(2):155-165.
    
    52. Masson V, de la Ballina LR, Munaut C et al. Contribution of host MMP-2 and MMP-9 to promote tumor vascularization and invasion of malignant keratinocytes. Faseb J 2005; 19 (2):234-236.
    
    53. Liotta LA, Steeg PS, Stetler-Stevenson WG Cancer metastasis and angiogenesis: An imbalance of positive and negative regulation. Cell 1991; 64 (2):327-336.
    
    54. Roy R, Wewer UM, Zurakowski D, Pories SE, Moses MA. ADAM 12 cleaves extracellular matrix proteins and correlates with cancer status and stage. J Biol Chem 2004; 279 (49):51323-51330.
    
    55. Carl-McGrath S, Lendeckel U, Ebert M, Roessner A, Rocken C. The disintegrin-metalloproteinases ADAM9, ADAM12, and ADAM15 are upregulated in gastric cancer. Int J Oncol 2005; 26 (1): 17-24.
    
    56. Iba K, Albrechtsen R, Gilpin BJ, Loechel F, Wewer UM. Cysteine-rich domain of human ADAM 12 (meltrin alpha) supports tumor cell adhesion. Am J Pathol 1999; 154 (5):1489-1501.
    
    57. Li F, Zhang Y, Wu C. Integrin-linked kinase is localized to cell-matrix focal adhesions but not cell-cell adhesion sites and the focal adhesion localization of integrin-linked kinase is regulated by the PINCH-binding ANK repeats. Journal of cell science 1999; 112 ( Pt 24):4S89-4599.
    
    58. Qian Y, Zhong X, Flynn DC et al. ILK mediates actin filament rearrangements and cell migration and invasion through PI3K/Akt/Racl signaling. Oncogene 2005; 24 (19):3154-3165.
    
    59. Stupack DG, Teitz T, Potter MD et al. Potentiation of neuroblastoma metastasis by loss of caspase-8. Nature 2006; 439 (7072):95-99.
    
    60. Kveiborg M, Frohlich C, Albrechtsen R et al. A role for ADAM12 in breast tumor progression and stromal cell apoptosis. Cancer research 2005; 65 (11):4754-4761.
    
    61. Peduto L, Reuter VE, Sehara-Fujisawa A et al. ADAM12 is highly expressed in carcinoma-associated stroma and is required for mouse prostate tumor progression. Oncogene 2006.
    
    62. Claas C, Seiter S, Claas A et al. Association between the rat homologue of CO-029, a metastasis-associated tetraspanin molecule and consumption coagulopathy. The Journal of cell biology 1998; 141 (1):267-280.
    
    63. Kodama T, Ikeda E, Okada A et al. ADAM12 is selectively overexpressed in human glioblastomas and is associated with glioblastoma cell proliferation and shedding of heparin-binding epidermal growth factor. Am J Pathol 2004; 165 (5): 1743-1753.
    
    64. Mochizuki S, Okada Y. ADAMs in cancer cell proliferation and progression. Cancer science 2007; 98(5):621-628.
    
    65. Arribas J, Bech-Serra JJ, Santiago-Josefat B. ADAMs, cell migration and cancer. Cancer metastasis reviews 2006; 25(1):57-68.
    
    66. Dyczynska E, Syta E, Sun D, Zolkiewska A. Breast cancer-associated mutations in metalloprotease disintegrin ADAM12 interfere with the intracellular trafficking and processing of the protein.International journal of cancer 2008; 122 (11):2634-2640.
    
    67. Gilpin BJ, Loechel F, Mattei MG et al. A novel, secreted form of human ADAM 12 (meltrin alpha) provokes myogenesis in vivo. The Journal of biological chemistry 1998; 273 (1):157-166.
    
    68. Zhou Z, Ran YL, Hu H et al. TM4SF3 promotes esophageal carcinoma metastasis via upregulating ADAM12m expression. Clinical & experimental metastasis 2008.
    
    69. Christofori G. New signals from the invasive front. Nature 2006; 441 (7092):444-450.
    
    70. Sundberg C, Thodeti CK, Kveiborg M et al. Regulation of ADAM12 cell-surface expression by protein kinase C epsilon. J Biol Chem 2004; 279 (49):51601-51611.
    
    71. Cao Y, Kang Q, Zhao Z, Zolkiewska A. Intracellular processing of metalloprotease disintegrin ADAM12.The Journal of biological chemistry 2002; 277 (29):26403-26411.
    
    72. Hougaard S, Loechel F, Xu X et al. Trafficking of human ADAM 12-L: retention in the trans-Golginetwork. Biochem Biophys Res Commun 2000; 275 (2):261-267.
    
    73. Gschwind A, Hart S, Fischer OM, Ullrich A. TACE cleavage of proamphiregulin regulates GPCR-induced proliferation and motility of cancer cells. Embo J 2003; 22 (10):2411-2421.
    
    74. Chandrasekar B, Bysani S, Mummidi S. CXCL16 signals via Gi, phosphatidylinositol 3-kinase, Akt, I kappa B kinase, and nuclear factor-kappa B and induces cell-cell adhesion and aortic smooth muscle cell proliferation. J Biol Chem 2004; 279(5):3188-3196.
    
    75. Guarino M, Rubino B, Ballabio G The role of epithelial-mesenchymal transition in cancer pathology.Pathology 2007; 39 (3):305-318.
    
    76. Thiery JP. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2002; 2(6):442-454.
    
    77. Guarino M. Epithelial-mesenchymal transition and tumour invasion. The international journal of biochemistry & cell biology 2007; 39 (12):2153-2160.
    
    78. Wozniak MA, Modzelewska K, Kwong L, Keely PJ. Focal adhesion regulation of cell behavior.Biochim Biophys Acta 2004; 1692 (2-3): 103-119.
    
    79. Parsons JT, Martin KH, Slack JK, Taylor JM, Weed SA. Focal adhesion kinase: a regulator of focal adhesion dynamics and cell movement. Oncogene 2000; 19 (49):5606-5613.
    80. Turner CE, Glenney JR, Jr., Burridge K. Paxillin: a new vinculin-binding protein present in focal adhesions. The Journal of cell biology 1990; 111 (3):1059-1068.
    
    81. Thodeti CK, Albrechtsen R, Grauslund M et al. ADAM12/syndecan-4 signaling promotes beta 1 integrin-dependent cell spreading through protein kinase Calpha and RhoA. The Journal of biological chemistry 2003; 278 (11):9576-9584.
    
    82. Suzuki A, Kadota N, Hara T et al. Meltrin alpha cytoplasmic domain interacts with SID domains of Src and Grb2 and is phosphorylated by v-Src. Oncogene 2000; 19 (51):5842-5850.
    
    83. Miyazaki T, Kato H, Nakajima M et al. FAK overexpression is correlated with tumour invasiveness and lymph node metastasis in oesophageal squamous cell carcinoma. British journal of cancer 2003; 89(1):140-145.
    
    84. Parsons JT. Focal adhesion kinase: the first ten years. Journal of cell science 2003; 116 (Pt 8):1409-1416.
    
    85. Kawaguchi N, Sundberg C, Kveiborg M et al. ADAM12 induces actin cytoskeleton and extracellular matrix reorganization during early adipocyte differentiation by regulating beta1 integrin function.Journal of cell science 2003; 116 (Pt 19):3893-3904.
    
    86. Lozonschi L, Sunamura M, Kobari M et al. Controlling tumor angiogenesis and metastasis of C26 murine colon adenocarcinoma by a new matrix metalloproteinase inhibitor, KB-R7785, in two tumor models. Cancer Res 1999; 59 (6): 1252-1258.
    
    87. Ichikawa Y, Miura T, Nakano A et al. The role of ADAM protease in the tyrosine kinase-mediated trigger mechanism of ischemic preconditioning. Cardiovasc Res 2004; 62 (1):167-175.
    
    88. Asakura M, Kitakaze M, Takashima S et al. Cardiac hypertrophy is inhibited by antagonism of ADAM12 processing of HB-EGF: metalloproteinase inhibitors as a new therapy. Nature medicine 2002;8(1):35-40.
    
    89. Spinardi L, Marchisio PC. Podosomes as smart regulators of cellular adhesion. Eur J Cell Biol 2006; 85(3-4):191-194.
    
    90. Linder S, Kopp P. Podosomes at a glance. Journal of cell science 2005; 118 (Pt 10):2079-2082.
    
    91. Bowden ET, Onikoyi E, Slack R et al. Co-localization of cortactin and phosphotyrosine identifies active invadopodia in human breast cancer cells. Experimental cell research 2006; 312 (8): 1240-1253.
    
    92. Lener T, Burgstaller G, Crimaldi L, Lach S, Gimona M. Matrix-degrading podosomes in smooth muscle cells. Eur J Cell Biol 2006; 85 (3-4):183-189.
    
    93. Petit V, Thiery JP. Focal adhesions: structure and dynamics. Biology of the cell / under the auspices of the European Cell Biology Organization 2000; 92 (7):477-494.
    
    94. Burridge K, Fath K, Kelly T, Nuckolls G, Turner C. Focal adhesions: transmembrane junctions between the extracellular matrix and the cytoskeleton. Annual review of cell biology 1988; 4:487-525.
    
    95. McLean GW, Carragher NO, Avizienyte E et al. The role of focal-adhesion kinase in cancer - a new therapeutic opportunity. Nat Rev Cancer 2005; 5 (7):505-515.
    
    96. van Nimwegen MJ, van de Water B. Focal adhesion kinase: A potential target in cancer therapy.Biochem Pharmacol 2006.
    
    97. van Nimwegen MJ, van de Water B. Focal adhesion kinase: a potential target in cancer therapy.Biochem Pharmacol 2007; 73 (5):597-609.
    
    98. Lin SW, Ke FC, Hsiao PW et al. Critical involvement of ILK in TGFbeta1-stimulated invasion/migration of human ovarian cancer cells is associated with urokinase plasminogen activator system. Experimental cell research 2007; 313 (3):602-613.
    
    99. Abram CL, Seals DF, Pass I et al. The adaptor protein fish associates with members of the ADAMs family and localizes to podosomes of Src-transformed cells.The Journal of biological chemistry 2003;278(19):16844-16851.
    100.Kang Q,Cao Y,Zolkiewska A.Metalloprotease-disintegrin ADAM 12 binds to the SH3 domain of Src and activates Src tyrosine kinase in C2C12 cells.Biochem J 2000;352 Pt 3:883-892.
    101.Fedak PW,Moravec CS,McCarthy PM et al.Altered expression of disintegrin metalloproteinases and their inhibitor in human dilated cardiomyopathy.Circulation 2006;113(2):238-245.
    102.Bartholin L,Destaing O,Forissier Set al.FLRG,a new ADAMl2-associated protein,modulates osteoclast differentiation.Biol Cell 2005;97(7):577-588.
    103.Huang J,Bridges LC,White JM.Selective modulation of integrin-mediated cell migration by distinct ADAM family members.Mol Bioi Cell 2005;16(10):4982-4991.
    104.Lafuste P,Sonnet C,Chazaud Bet al.ADAMI2 and alpha9betal integrin are instrumental in human myogenic cell differentiation.Mol Biol Cell 2005;16(2):861-870.
    105.Zhao Z,Gruszczynska-Biegala J,Cheuwont T et al.Interaction of the disintegrin and cysteine-rich domains of ADAM12 with tntegrin alpha7betal.Experimental cell research 2004;298(1):28-37.
    106.Sato M,Narita T,Kawakami-Kimura N et al.Increased expression of integrins by heparin-binding EGF like growth factor in human esophageal cancer cells.Cancer letters 1996;102(1-2):183-191.
    107.Katayama M,Kan M.Heparin-binding(fibroblast) growth factors are potential autocrine regulators of esophageal epithelial cell proliferation.In Vitro Cell Dev Biol 1991;27A(7):533-541.
    108.Berns K,Hijmans EM,Mullenders J et al.A large-scale RNAi screen in human cells identifies new components of the p53 pathway.Nature 2004;428(6981):431-437.
    109.Michl P,Ramjaun AR,Pardo OE et al.CUTL1 is a target of TGF(beta) signaling that enhances cancer cell motility and invasiveness.Cancer cell 2005;7(6):521-532.
    110.Zhang Y,Ran Y,Yu L et al.Monoclonal antibody to human esophageal cancer endothelium inhibits angiogenesis and tumor growth.Anticancer research 2006;26(4B):2963-2970.
    111.胡海.冉宇靓,遇珑 et al.靶向肿瘤血管内皮细胞抑制人肝癌移植瘤生长的功能忾抗体的研制.癌症 2007;26(5):453-457.
    112.遇珑,潘健,周转et al.抑制食管癌与肺血管内皮黏附的功能性抗体的制备.中国肿瘤生物治疗杂志 2006;13(5):332-337.
    113.Kato T,Daigo Y,Hayama Set al.A novel human tRNA-dihydrouridine synthase involved in pulmonary carcinogenesis.Cancer research 2005;65(13):5638-5646.
    114.Izumi Y,Xu L,di Tomaso E,Fukumura D,Jain RK.Tumour biology:herceptin acts as an anti-angiogenic cocktail.Nature 2002;416(6878):279-280.
    115.Mattheakis LC,Bhatt RR,Dower WJ.An in vitro polysome display system for identifying ligands from very large peptide libraries.Proceedings of the National Academy of Sciences of the United States of America 1994;91(19):9022-9026.
    116.Liu B,Yang JL,Song X et al.[Screening tumor antigens of ovarian carcinoma by Western blot,immunoprecipitation,and mass spectrometry].Ai zheng = Aizheng = Chinese journal of cancer 2005;24(7):890-892.
    117.Hauptschein RS,Sloan KE,Torella C et al.Functional proteomic screen identifies a modulating role for CD44 in death receptor-mediated apoptosis.Cancer research 2005;65(5):1887-1896.
    118.Sloan KE,Eustace BK,Stewart JK et al.CDI55/PVR plays a key role in cell motility during tumor cell invasion and migration.BMC cancer 2004;4:73.
    119.Yan X,Lin Y,Yang D et al.A novel anti-CD146 monoclonal antibody,AA98,inhibits angiogenesis and tumor growth.Blood 2003;102(1):184-191.
    120.Eustace BK, Sakurai T, Stewart JK et al. Functional proteomic screens reveal an essential extracellular role for hsp90 alpha in cancer cell invasiveness. Nature cell biology 2004; 6 (6):507-514.
    121.Mittelstadt M, Frump A, Khuu T et al. Interaction of human tRNA-dihydrouridine synthase-2 with interferon-induced protein kinase PKR. Nucleic acids research 2008; 36 (3):998-1008.
    122.Wakasugi K, Schimmel P. Two distinct cytokines released from a human aminoacyl-tRNA synthetase.Science (New York, NY 1999; 284 (5411):147-151.
    123.Park SG, Kim HJ, Min YH et al. Human lysyl-tRNA synthetase is secreted to trigger proinflammatory response. Proceedings of the National Academy of Sciences of the United States of America 2005; 102(18):6356-6361.
    124.Kusama T, Mukai M, Endo H et al. Inactivation of Rho GTPases by p190 RhoGAP reduces human pancreatic cancer cell invasion and metastasis. Cancer science 2006; 97 (9):848-853.
    125.Kulkarni SV, Gish G, van der Geer P, Henkemeyer M, Pawson T. Role of pl20 Ras-GAP in directed cell movement. The Journal of cell biology 2000; 149 (2):457-470.
    
    126.Gupta GP, Massague J. Cancer metastasis: building a framework. Cell 2006; 127 (4):679-695.
    127.FidIer IJ. The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis revisited. Nature reviews 2003; 3 (6):453-458.
    
    128.Norton L, Massague J. Is cancer a disease of self-seeding? Nature medicine 2006; 12 (8):875-878.
    129.Ishii G, Sangai T, Oda T et al. Bone-marrow-derived myofibroblasts contribute to the cancer-induced stromal reaction. Biochemical and biophysical research communications 2003; 309 (l):232-240.
    130.Direkze NC, Hodivala-Dilke K, Jeffery R et al. Bone marrow contribution to tumor-associated myofibroblasts and fibroblasts. Cancer research 2004; 64 (23):8492-8495.
    131.Sugimoto H, Mundel TM, Kieran MW, Kalluri R. Identification of fibroblast heterogeneity in the tumor microenvironment. Cancer biology & therapy 2006; 5 (12): 1640-1646.
    132.Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet 2001; 357(9255):539-545.
    
    133.Coussens LM, Werb Z. Inflammation and cancer. Nature 2002; 420 (6917):860-867.
    134.Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends in immunology 2002; 23(11):549-555.
    135.Li B, Sharpe EE, Maupin AB et al. VEGF and PIGF promote adult vasculogenesis by enhancing EPC recruitment and vessel formation at the site of tumor neovascularization. Faseb J 2006; 20(9):1495-1497.
    136.Pittenger MF, Mackay AM, Beck SC et al. Multilineage potential of adult human mesenchymal stem cells. Science (New York, NY 1999; 284 (5411):143-147.
    137.Abramsson A, Lindblom P, Betsholtz C. Endothelial and nonendothelial sources of PDGF-B regulate pericyte recruitment and influence vascular pattern formation in tumors. The Journal of clinical investigation 2003; 112 (8):1142-1151.
    138.Dadras SS, Lange-Asschenfeldt B, Velasco P et al. Tumor lymphangiogenesis predicts melanoma metastasis to sentinel lymph nodes. Mod Pathol 2005; 18 (9):1232-1242.
    139.Hirakawa S, Brown LF, Kodama S et al. VEGF-C-induced lymphangiogenesis in sentinel lymph nodes promotes tumor metastasis to distant sites. Blood 2007; 109 (3):1010-1017.
    140.Hirakawa S, Kodama S, Kunstfeld R et al. VEGF-A induces tumor and sentinel lymph node lymphangiogenesis and promotes lymphatic metastasis. The Journal of experimental medicine 2005;201(7): 1089-1099.
    141.Kurose K, Gilley K, Matsumoto S et al. Frequent somatic mutations in PTEN and TP53 are mutually exclusive in the stroma of breast carcinomas. Nature genetics 2002; 32 (3):355-357.
    142.Hu M, Yao J, Cai L et al. Distinct epigenetic changes in the stromal cells of breast cancers. Nature genetics 2005; 37 (8):899-905.
    143.Bhowmick NA, Neilson EG, Moses HL. Stromal fibroblasts in cancer initiation and progression. Nature 2004; 432(7015):332-337.
    144.HiII R, Song Y, Cardiff RD, Van Dyke T. Selective evolution of stromal mesenchyme with p53 loss in response to epithelial tumorigenesis. Cell 2005; 123 (6):1001-1011.
    145.Hayward SW, Wang Y, Cao M et al. Malignant transformation in a nontumorigenic human prostatic epithelial cell line. Cancer research 2001; 61 (22):8135-8142.
    146.Maeda H, Akaike T. Nitric oxide and oxygen radicals in infection, inflammation, and cancer.Biochemistry(Mosc) 1998; 63 (7):854-865.
    147.Lin EY, Nguyen AV, Russell RG, Pollard JW. Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. The Journal of experimental medicine 2001; 193 (6):727-740.
    148.Pelham RJ, Rodgers L, Hall I et al. Identification of alterations in DNA copy number in host stromal cells during tumor progression. Proceedings of the National Academy of Sciences of the United States of America 2006; 103 (52): 19848-19853.
    149.Hudson JD, Shoaibi MA, Maestro R et al. A proinflammatory cytokine inhibits p53 tumor suppressor activity. The Journal of experimental medicine 1999; 190 (10):1375-1382.
    150.Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 1996; 86 (3):353-364.
    151.Lamalice L, Le Boeuf F, Huot J. Endothelial cell migration during angiogenesis. Circulation research 2007; 100 (6):782-794.
    152.Baluk P, Hashizume H, McDonald DM. Cellular abnormalities of blood vessels as targets in cancer.Current opinion in genetics & development 2005; 15 (1):102-111.
    153.Jain RK, Booth MF. What brings pericytes to tumor vessels? The Journal of clinical investigation 2003;112(8):1134-1136.
    154.Bergers G, Song S, Meyer-Morse N, Bergsland E, Hanahan D. Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. The Journal of clinical investigation 2003; 111 (9): 1287-1295.
    155.Lin EY, Jones JG, Li P et al. Progression to malignancy in the polyoma middle T oncoprotein mouse breast cancer model provides a reliable model for human diseases. The American journal of pathology 2003; 163(5):2113-2126.
    156.Lin CY, Lin CJ, Chen KH et al. Macrophage activation increases the invasive properties of hepatoma cells by destabilization of the adherens junction. FEBS letters 2006; 580 (13):3042-3050.
    157.Leek RD, Hunt NC, Landers RJ et al. Macrophage infiltration is associated with VEGF and EGFR expression in breast cancer. The Journal of pathology 2000; 190 (4):430-436.
    158.Lewis JS, Landers RJ, Underwood JC, Harris AL, Lewis CE. Expression of vascular endothelial growth factor by macrophages is up-regulated in poorly vascularized areas of breast carcinomas. The Journal of pathology 2000; 192 (2): 150-158.
    159.Fukumura D, Xavier R, Sugiura T et al. Tumor induction of VEGF promoter activity in stromal cells.Cell 1998;94(6):715-725.
    160.De Palma M, Venneri MA, Galli R et al. Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer cell 2005; 8 (3):211-226.
    161.Venneri MA, De Palma M, Ponzoni M et al. Identification of proangiogenic TE2-expressing monocytes (TEMs) in human peripheral blood and cancer. Blood 2007; 109 (12):5276-5285.
    162.Lyden D, Hattori K, Dias S et al. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nature medicine 2001; 7(11):1194-1201.
    
    163.Rafii S, Lyden D. Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. Nature medicine 2003; 9 (6):702-712.
    164.Kopp HG, Ramos CA, Rafii S. Contribution of endothelial progenitors and proangiogenic hematopoietic cells to vascularization of tumor and ischemic tissue. Current opinion in hematology 2006; 13(3):175-181.
    165.Case J, Mead LE, Bessler WK et al. Human CD34+AC133+VEGFR-2+ cells are not endothelial progenitor cells but distinct, primitive hematopoietic progenitors. Experimental hematology 2007; 35(7):1109-1118.
    
    166.Voswinckel R, Ziegelhoeffer T, Heil M et al. Circulating vascular progenitor cells do not contribute to compensatory lung growth. Circulation research 2003; 93 (4):372-379.
    167.Ziegelhoeffer T, Fernandez B, Kostin S et al. Bone marrow-derived cells do not incorporate into the adult growing vasculature. Circulation research 2004; 94 (2):230-238.
    168.Gao D, Nolan DJ, Mellick AS et al. Endothelial progenitor cells control the angiogenic switch in mouse lung metastasis. Science (New York, NY 2008; 319 (5860):195-198.
    169.Nolan DJ, Ciarrocchi A, Mellick AS et al. Bone marrow-derived endothelial progenitor cells are a major determinant of nascent tumor neovascularization. Genes & development 2007; 21 (12): 1546-1558.
    170.Lyden D, Young AZ, Zagzag D et al. Id1 and Id3 are required for neurogenesis, angiogenesis and vascularization of tumour xenografts. Nature 1999; 401 (6754):670-677.
    171.Grunewald M, Avraham I, Dor Y et al. VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell 2006; 124 (1):175-189.
    172.Donovan MJ, Lin MI, Wiegn P et al. Brain derived neurotrophic factor is an endothelial cell survival factor required for intramyocardial vessel stabilization. Development (Cambridge, England) 2000; 127(21):4531-4540.
    173.Okamoto R, Ueno M, Yamada Y et al. Hematopoietic cells regulate the angiogenic switch during tumorigenesis. Blood 2005; 105 (7):2757-2763.
    174.Otani A, Takagi H, Oh H et al. Vascular endothelial growth factor family and receptor expression in human choroidal neovascular membranes. Microvascular research 2002; 64 (1):162-169.
    175.Shojaei F, Wu X, Malik AK et al. Tumor refractoriness to anti-VEGF treatment is mediated by CD11b+Grl+ myeloid cells. Nature biotechnology 2007; 25 (8):911-920.
    176.Bronte V, Chappell DB, Apolloni E et al. Unopposed production of granulocyte-macrophage colony-stimulating factor by tumors inhibits CD8+ Tcell responses by dysregulating antigen-presenting cell maturation. J Immunol 1999; 162 (10):5728-5737.
    177.Kusmartsev S, Nefedova Y, Yoder D, Gabrilovich DI. Antigen-specific inhibition of CD8+ T cell response by immature myeloid cells in cancer is mediated by reactive oxygen species. J Immunol 2004;172 (2):989-999.
    178.Melani C, Chiodoni C, Fomi G, Colombo MP. Myeloid cell expansion elicited by the progression of spontaneous mammary carcinomas in c-erbB-2 transgenic BALB/c mice suppresses immune reactivity.Blood 2003; 102 (6):2138-2145.
    179.Sica A, Bronte V. Altered macrophage differentiation and immune dysfunction in tumor development.The Journal of clinical investigation 2007; 117 (5):1155-1166.
    180.Sinha P, Clements VK, Ostrand-Rosenberg S. Reduction of myeloid-derived suppressor cells and induction of Ml macrophages facilitate the rejection of established metastatic disease. J Immunol 2005;174 (2):636-645.
    181.Kusmartsev S, Nagaraj S, Gabrilovich DI. Tumor-associated CD8+ T cell tolerance induced by bone marrow-derived immature myeloid cells. J Immunol 2005; 175 (7):4583-4592.
    182.Orimo A, Gupta PB, Sgroi DC et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 2005; 121(3):335-348.
    183.Mhawech P, Dulguerov P, Assaly M, Ares C, Allal AS. EB-D fibronectin expression in squamous cell carcinoma of the head and neck. Oral oncology 2005; 41 (1):82-88.
    184.Castellani P, Borsi L, Camemolla B et al. Differentiation between high- and low-grade astrocytoma using a human recombinant antibody to the extra domain-B of fibronectin. The American journal of pathology 2002; 161 (5): 1695-1700.
    185.Schor SL, Ellis IR, Jones SJ et al. Migration-stimulating factor: a genetically truncated onco-fetal fibronectin isoform expressed by carcinoma and tumor-associated stromal cells. Cancer research 2003;63 (24):8827-8836.
    186.Nakamura T, Matsumoto K, Kiritoshi A, Tano Y, Nakamura T. Induction of hepatocyte growth factor in fibroblasts by tumor-derived factors affects invasive growth of tumor cells: in vitro analysis of tumor-stromal interactions. Cancer research 1997; 57 (15):3305-3313.
    187.Pollard JW. Tumour-educated macrophages promote tumour progression and metastasis. Nature reviews 2004;4(1):71-78.
    188.Murdoch C, Giannoudis A, Lewis CE. Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood 2004; 104 (8):2224-2234.
    189.Goswami S, Sahai E, Wyckoff JB et al. Macrophages promote the invasion of breast carcinoma cells via a colony-stimulating factor-1/epidermal growth factor paracrine loop. Cancer research 2005; 65(12):5278-5283.
    190.Nakao S, Kuwano T, Tsutsumi-Miyahara C et al. Infiltration of COX-2-expressing macrophages is a prerequisite for IL-1 beta-induced neovascularization and tumor growth. The Journal of clinical investigation 2005; 115 (11):2979-2991.
    191.Robinson SC, Scott KA, Balkwill FR. Chemokine stimulation of monocyte matrix metalloproteinase-9 requires endogenous TNF-alpha. European journal of immunology 2002; 32 (2):404-412.
    192.Locati M, Deuschle U, Massardi ML et al. Analysis of the gene expression profile activated by the CC chemokine ligand 5/RANTES and by lipopolysaccharide in human monocytes. J Immunol 2002; 168(7):3557-3562.
    193.Murdoch C, Lewis CE. Macrophage migration and gene expression in response to tumor hypoxia.International journal of cancer 2005; 117 (5):701-708.
    194.Bingle L, Brown NJ, Lewis CE. The role of tumour-associated macrophages in tumour progression:implications for new anticancer therapies. The Journal of pathology 2002; 196 (3):254-265.
    195.Koide N, Nishio A, Sato T, Sugiyama A, Miyagawa S. Significance of macrophage chemoattractant protein-1 expression and macrophage infiltration in squamous cell carcinoma of the esophagus. The American journal of gastroenterology 2004; 99 (9): 1667-1674.
    196.Hanada T, Nakagawa M, Emoto A et al. Prognostic value of tumor-associated macrophage count in human bladder cancer. Int J Urol 2000; 7 (7):263-269.
    
    197.Lissbrant IF, Stattin P, Wikstrom P et al. Tumor associated macrophages in human prostate cancer: relation to clinicopathological variables and survival. International journal of oncology 2000; 17(3):445-451.
    
    198.Ohno S, Ohno Y, Suzuki N et al. Correlation of histological localization of tumor-associated macrophages with clinicopathological features in endometrial cancer. Anticancer research 2004; 24(5C):3335-3342.
    
    199.Leek RD, Landers RJ, Harris AL, Lewis CE. Necrosis correlates with high vascular density and focal macrophage infiltration in invasive carcinoma of the breast. British journal of cancer 1999; 79(5-6):991-995.
    200.Soeda S, Nakamura N, Ozeki T et al. Tumor-associated macrophages correlate with vascular space invasion and myometrial invasion in endometrial carcinoma. Gynecologic oncology 2008.
    201.Woo IS, Hong SH, Byun JH et al. Circulating stromal cell derived factor-1alpha (SDF-1 alpha) is predictive of distant metastasis in gastric carcinoma. Cancer investigation 2000; 26 (3):256-261.
    202.Chen JJ, Yao PL, Yuan A et al. Up-regulation of tumor interleukin-8 expression by infiltrating macrophages: its correlation with tumor angiogenesis and patient survival in non-small cell lung cancer.Clin Cancer Res 2003; 9 (2):729-737.
    
    203.Toomey D, Smyth G, Condron C et al. Infiltrating immune cells, but not tumour cells, express FasL in non-small cell lung cancer: No association with prognosis identified in 3-year follow-up. International journal of cancer 2003; 103 (3):408-412.
    
    204.Ohno S, Inagawa H, Dhar DK et al. The degree of macrophage infiltration into the cancer cell nest is a significant predictor of survival in gastric cancer patients. Anticancer research 2003; 23(6D):5015-5022.
    
    205.Welsh TJ, Green RH, Richardson D et al. Macrophage and mast-cell invasion of tumor cell islets confers a marked survival advantage in non-small-cell lung cancer. J Clin Oncol 2005; 23(35):8959-8967.
    
    206.Graf MR, Jadus MR, Hiserodt JC, Wepsic HT, Granger GA. Development of systemic immunity to glioblastoma multiforme using tumor cells genetically engineered to express the membrane-associated isoform of macrophage colony-stimulating factor. J Immunol 1999; 163 (10):5544-5551.
    207.Hildenbrand R, Wolf G, Bohme B, Bleyl U, Steinborn A. Urokinase plasminogen activator receptor (CD87) expression of tumor-associated macrophages in ductal carcinoma in situ, breast cancer, and resident macrophages of normal breast tissue. Journal of leukocyte biology 1999; 66 (l):40-49.
    208.Vasiljeva O, Papazoglou A, Kruger A et al. Tumor cell-derived and macrophage-derived cathepsin B promotes progression and lung metastasis of mammary cancer. Cancer research 2006; 66(10):5242-5250.
    209.Wyckoff J, Wang W, Lin EY et al. A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer research 2004; 64 (19):7022-7029.
    210.Hagemann T, Robinson SC, Schulz M et al. Enhanced invasiveness of breast cancer cell lines upon co-cultivation with macrophages is due to TNF-alpha dependent up-regulation of matrix metalloproteases. Carcinogenesis 2004; 25 (8):1543-1549.
    211.Hagemann T, Wilson J, Kulbe H et al. Macrophages induce invasiveness of epithelial cancer cells via NF-kappa B and JNK. J Immunol 2005; 175 (2): 1197-1205.
    
    212.Pukrop T, Klemm F, Hagemann T et al Wnt 5a signaling is critical for macrophage-induced invasion of breast cancer cell lines. Proceedings of the National Academy of Sciences of the United States of America 2006; 103 (14):5454-5459.
    213.Huber MA, Kraut N, Beug H. Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol 2005; 17 (5):548-558.
    214.Grunert S, Jechlinger M, Beug H. Diverse cellular and molecular mechanisms contribute to epithelial plasticity and metastasis. Nature reviews 2003; 4 (8):657-665.
    215.Paulus P, Stanley ER, Schafer R, Abraham D, Aharinejad S. Colony-stimulating factor-1 antibody reverses chemoresistance in human MCF-7 breast cancer xenografts. Cancer research 2006; 66(8):4349-4356.
    216.Zhu P, Baek SH, Bourk EM et al. Macrophage/cancer cell interactions mediate hormone resistance by a nuclear receptor derepression pathway. Cell 2006; 124 (3):615-629.
    217.Hall B, Andreeff M, Marini F. The participation of mesenchymal stem cells in tumor stroma formation and their application as targeted-gene delivery vehicles. Handbook of experimental pharmacology 2007(180):263-283.
    218.Karnoub AE, Dash AB, Vo AP et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 2007; 449 (7162):557-563.
    219.Yang L, Huang J, Ren X et al. Abrogation of TGF beta signaling in mammary carcinomas recruits Gr-1+CD11b+ myeloid cells that promote metastasis. Cancer cell 2008; 13 (1):23-35.
    220.Friedl P, Brocker EB. The biology of cell locomotion within three-dimensional extracellular matrix. Cell Mol Life Sci 2000; 57 (1):41-64.
    221.Friedl P, Noble PB, Walton PA et al. Migration of coordinated cell clusters in mesenchymal and epithelial cancer explants in vitro. Cancer research 1995; 55 (20):4557-4560.
    222.Gaggioli C, Hooper S, Hidalgo-Carcedo C et al. Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nature cell biology 2007; 9(12): 1392-1400.
    223.Wolf K, Wu YI, Liu Y et al. Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion. Nature cell biology 2007; 9 (8):893-904.
    224.Mueller MM, Fusenig NE. Friends or foes - bipolar effects of the tumour stroma in cancer. Nature reviews 2004; 4 (11 ):839-849.
    225.Orimo A, Weinberg RA. Stromal fibroblasts in cancer: a novel tumor-promoting cell type. Cell cycle (Georgetown, Tex 2006; 5 (15): 1597-1601.
    
    226.Kailuri R, Zeisberg M. Fibroblasts in cancer. Nature reviews 2006; 6 (5):392-401.
    227.Lebret SC, Newgreen DF, Thompson EW, Ackland ML. Induction of epithelial to mesenchymal transition in PMC42-LA human breast carcinoma cells by carcinoma-associated fibroblast secreted factors. Breast Cancer Res 2007; 9(1):R19.
    228.Muller T, Bain G, Wang X, Papkoff J. Regulation of epithelial cell migration and tumor formation by beta-catenin signaling. Experimental cell research 2002; 280 (1):119-133.
    229.Lochter A, Galosy S, Muschler J et al. Matrix metalloproteinase stromelysin-1 triggers a cascade of molecular alterations that leads to stable epithelial-to-mesenchymal conversion and a premalignant phenotype in mammary epithelial cells. The Journal of cell biology 1997; 139 (7):1861-1872.
    230.Lyons JG, Lobo E, Martorana AM, Myerscough MR. Clonal diversity in carcinomas: its implications for tumour progression and the contribution made to it by epithelial-mesenchymal transitions. Clinical & experimental metastasis 2007.
    231.Stuelten CH. DaCosta Byfield S, Arany PR et al. Breast cancer cells induce stromal fibroblasts to express MMP-9 via secretion of TNF-alpha and TGF-beta. Journal of cell science 2005; 118 (Pt 10):2143-2153.
    232.Heppner KJ, Matrisian LM, Jensen RA, Rodgers WH. Expression of most matrix metalloproteinase family members in breast cancer represents a tumor-induced host response. The American journal of pathology 1996; 149(1):273-282.
    233.0kada A, Bellocq JP, Rouyer N et al. Membrane-type matrix metalloproteinase (MT-MMP) gene is expressed in stromal cells of human colon, breast, and head and neck carcinomas. Proceedings of the National Academy of Sciences of the United States of America 1995; 92 (7):2730-2734.
    234.Radisky DC, Levy DD, Littlepage LE et al. Raclb and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature 2005; 436 (7047): 123-127.
    235.Boire A, Covic L, Agarwal A et al. PAR1 is a matrix metalloprotease-1 receptor that promotes invasion and tumorigenesis of breast cancer cells. Cell 2005; 120 (3):303-313.
    236.Xian X, Hakansson J, Stahlberg A et al. Pericytes limit tumor cell metastasis. The Journal of clinical investigation 2006; 116(3):642-651.
    237.Kaplan RN, Riba RD, Zacharoulis S et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 2005; 438 (7069):820-827.
    238.Olaso E, Santisteban A, Bidaurrazaga J et al. Tumor-dependent activation of rodent hepatic stellate cells during experimental melanoma metastasis. Hepatology (Baltimore, Md 1997; 26 (3):634-642.
    239.Olaso E, Salado C, Egilegor E et al. Proangiogenic role of tumor-activated hepatic stellate cells in experimental melanoma metastasis. Hepatology (Baltimore, Md 2003; 37 (3):674-685.
    240.Heizmann CW, Fritz G, Schafer BW. S100 proteins: structure, functions and pathology. Front Biosci 2002; 7:d1356-1368.
    241.Grum-Schwensen B, Klingelhofer J, Berg CH et al. Suppression of tumor development and metastasis formation in mice lacking the S100A4(mts1) gene. Cancer research 2005; 65 (9):3772-3780.
    242.Kopitz C, Gerg M, Bandapalli OR et al. Tissue inhibitor of metalloproteinases-1 promotes liver metastasis by induction of hepatocyte growth factor signaling. Cancer research 2007; 67(18):8615-8623.
    243.Hiratsuka S, Nakamura K, Iwai S et al. MMP9 induction by vascular endothelial growth factor receptor-1 is involved in lung-specific metastasis. Cancer cell 2002; 2 (4):289-300.
    244.Hiratsuka S, Watanabe A, Aburatani H, Maru Y. Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nature cell biology 2006; 8 (12):1369-1375.
    245.Akeo K, Fujiwara T, Yorifuji H, Okisaka S. X-ray microanalysis and phagocytotic activity of cultured retinal pigment epithelial cells in hypoxia. Pigment cell research / sponsored by the European Society for Pigment Cell Research and the International Pigment Cell Society 1997; 10 (5):257-264.
    246.Erler JT, Bennewith KL, Nicolau M et al. Lysyl oxidase is essential for hypoxia-induced metastasis.Nature 2006; 440 (7088): 1222-1226.
    247.Postovit LM, Abbott DE, Payne SL et al. Hypoxia/reoxygenation: A dynamic regulator of lysyl oxidase-facilitated breast cancer migration. Journal of cellular biochemistry 2007; 103 (5):1369-1378.
    248.Rafii S, Lyden D. S100 chemokines mediate bookmarking of premetastatic niches. Nature cell biology 2006;8(12):1321-1323.
    249.Rafii S, Lyden D. Cancer. A few to flip the angiogenic switch. Science (New York, NY 2008; 319(5860):163-164.
    250.Yang L, DeBusk LM, Fukuda K et al. Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer cell 2004; 6 (4):409-421.
    251.Lin EY, Gouon-Evans V, Nguyen AV, Pollard JW. The macrophage growth factor CSF-1 in mammary gland development and tumor progression. Journal of mammary gland biology and neoplasia 2002; 7(2):147-162.
    252.Wels J, Kaplan RN, Rafii S, Lyden D. Migratory neighbors and distant invaders: tumor-associated niche cells. Genes & development 2008; 22 (5):559-574.
    253.Ara T, Tokoyoda K, Sugiyama T et al. Long-term hematopoietic stem cells require stromal cell-derived factor-1 for colonizing bone marrow during ontogeny. Immunity 2003; 19 (2):257-267.
    254.Dar A, Goichberg P, Shinder V et al. Chemokine receptor CXCR4-dependent intemalization and resecretion of functional chemokine SDF-1 by bone marrow endothelial and stromal cells. Nature immunology 2005; 6 (10):1038-1046.
    255.Nagasawa T, Hirota S, Tachibana K et al. Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature 1996; 382 (6592):635-638.
    256.Kaifi JT, Yekebas EF, Schurr P et al. Tumor-cell homing to lymph nodes and bone marrow and CXCR4 expression in esophageal cancer. Journal of the National Cancer Institute 2005; 97 (24): 1840-1847.
    257.Muller A, Homey E, Sotc H et al. Involvement of chemokine receptors in breast cancer metastasis. Nature 2001; 410 (6824):50-56.
    258.Geminder H, Sagi-Assif O, Goldberg L et al. A possible role for CXCR4 and its ligand, the CXC chemokine stromal cell-derived factor-1, in the development of bone marrow metastases in neuroblastoma. J Immunol 2001; 167 (8):4747-4757.
    259.Porcile C, Bajetto A, Barbero S, Pirani P, Schettini G CXCR4 activation induces epidermal growth factor receptor transactivation in an ovarian cancer cell line. Annals of the New York Academy of Sciences 2004; 1030:162-169.
    260.Sun YX, Wang J, Shelbume CE et al. Expression of CXCR4 and CXCL12 (SDF-1) in human prostate cancers (PCa) in vivo. Journal of cellular biochemistry 2003; 89 (3):462-473.
    261.Nakamura ES, Koizumi K, Kobayashi M et al. RANKL-induced CCL22/macrophage-derived chemokine produced from osteoclasts potentially promotes the bone metastasis of lung cancer expressing its receptor CCR4. Clinical & experimental metastasis 2006; 23 (1):9-18.
    262.Moore MA. The role of chemoattraction in cancer metastases. Bioessays 2001; 23 (8):674-676.
    263.Sipkins DA, Wei X, Wu JW et al. In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature 2005; 435 (7044):969-973.
    264.Asou Y, Rittling SR, Yoshitake H et al. Osteopontin facilitates angiogenesis, accumulation of osteoclasts,and resorption in ectopic bone. Endocrinology 2001; 142 (3): 1325-1332.
    265.Nilsson SK, Johnston HM, Whitty GA et al. Osteopontin, a key component of the hematopoietic stem cell niche and regulator of primitive hematopoietic progenitor cells. Blood 2005; 106 (4): 1232-1239.
    266.Rodrigues LR, Teixeira JA, Schmitt FL, Paulsson M, Lindmark-Mansson H. The role of osteopontin in tumor progression and metastasis in breast cancer. Cancer Epidemiol Biomarkers Prev 2007; 16(6): 1087-1097.
    267.Wai PY, Kuo PC. The role of Osteopontin in tumor metastasis. The Journal of surgical research 2004;121 (2):228-241.
    268.Tuck AB, Hota C, Wilson SM, Chambers AF. Osteopontin-induced migration of human mammary epithelial cells involves activation of EGF receptor and multiple signal transduction pathways.Oncogene 2003; 22 (8): 1198-1205.
    269.Jin DK. Shido K, Kopp HG et al. Cytokine-mediated deployment of SDF-1 induces revascularization through recruitment of CXCR4- hemangiocytes. Nature medicine 2006; 12 (5):557-567.
    270.Massberg S. Konrad I, Schurzinger K et al. Platelets secrete stromal cell-derived factor 1alpha and recruit bone marrow-derived progenitor cells to arterial thrombi in vivo. The Journal of experimental medicine 2006; 203 (5):1221-1233.
    271.Kopp HG, Rafii S. Thrombopoietic cells and the bone marrow vascular niche. Annals of the New York Academy of Sciences 2007; 1106:175-179.
    272.Li JJ, Huang YQ, Basch R, Karpatkin S. Thrombin induces the release of angiopoietin-1 from platelets.Thrombosis and haemostasis 2001; 85 (2):204-206.
    273.Mohle R, Green D, Moore MA, Nachman RL, Rafii S. Constitutive production and thrombin-induced release of vascular endothelial growth factor by human megakaryocytes and platelets. Proceedings of the National Academy of Sciences of the United States of America 1997; 94 (2):663-668.
    274.Arafat WO, Casado E, Wang M et al. Genetically modified CD34+ cells exert a cytotoxic bystander effect on human endothelial and cancer cells. Clin Cancer Res 2000; 6 (11):4442-4448.
    275.Morita Y, Araki H, Sugimoto T et al. Legumain/asparaginyl endopeptidase controls extracellular matrix remodeling through the degradation of fibronectin in mouse renal proximal tubular cells. FEBS letters 2007; 581 (7):1417-1424.
    276.Gawenda J, Traub F, Luck HJ, Kreipe H, von Wasielewski R. Legumain expression as a prognostic factor in breast cancer patients. Breast cancer research and treatment 2007; 102 (1):1-6.
    277.Vigneswaran N, Wu J, Nagaraj N et al. Silencing of cystatin M in metastatic oral cancer cell line MDA-686Ln by siRNA increases cysteine proteinases and legumain activities, cell proliferation and in vitro invasion. Life sciences 2006; 78 (8):898-907.
    278.Murthy RV, Arbman G, Gao J, Roodman GD, Sun XF. Legumain expression in relation to clinicopathologic and biological variables in colorectal cancer. Clin Cancer Res 2005; 11 (6):2293-2299.
    279.Liu C, Sun C, Huang H, Janda K, Edgington T. Overexpression of legumain in tumors is significant for invasion/metastasis and a candidate enzymatic target for prodrug therapy. Cancer research 2003; 63(11):2957-2964.
    280.Luo Y, Zhou H, Krueger J et al. Targeting tumor-associated macrophages as a novel strategy against breast cancer. The Journal of clinical investigation 2006; 116 (8):2132-2141.
    281.Lewen S, Zhou H, Hu HD et al. A Legumain-based minigene vaccine targets the tumor stroma and suppresses breast cancer growth and angiogenesis. Cancer Immunol Immunother 2008; 57 (4):507-515.
    282.Park JE, Lenter MC, Zimmermann RN et al. Fibroblast activation protein, a dual specificity serine protease expressed in reactive human tumor stromal fibroblasts. The Journal of biological chemistry 1999;274(51):36505-36512.
    283.Levy MT, McCaughan GW, Abbott CA et al. Fibroblast activation protein: a cell surface dipeptidyl peptidase and gelatinase expressed by stellate cells at the tissue remodelling interface in human cirrhosis.Hepatology (Baltimore, Md 1999; 29 (6):1768-1778.
    284.Aggarwal S, Brennen WN, Kole TP et al. Fibroblast activation protein peptide substrates identified from human collagen I derived gelatin cleavage sites. Biochemistry 2008; 47 (3): 1076-1086.
    285.Cheng JD, Dunbrack RL, Jr., Valianou M et al. Promotion of tumor growth by murine fibroblast activation protein, a serine protease, in an animal model. Cancer research 2002; 62 (16):4767-4772.
    286.Lee J, Fassnacht M, Nair S, Boczkowski D, Gilboa E. Tumor immunotherapy targeting fibroblast activation protein, a product expressed in tumor-associated fibroblasts. Cancer research 2005; 65(23):11156-11163.
    287.Stormes KA, Lemken CA, Lepre JV, Marinucci MN, Kurt RA. Inhibition of metastasis by inhibition of tumor-derived CCL5. Breast cancer research and treatment 2005; 89 (2):209-212.
    288.Hong X, Jiang F, Kalkanis SN et al. SDF-1 and CXCR4 are up-regulated by VEGF and contribute to glioma cell invasion. Cancer letters 2006; 236 (1):39-45.
    289.Kang H, Mansel RE, Jiang WG Genetic manipulation of stromal cell-derived factor-l attests the pivotal role of the autocrine SDF-1-CXCR4 pathway in the aggressiveness of breast cancer cells. International journal of oncology 2005; 26 (5):l429-l434.
    290.Tang CH, Tan TW, Fu WM, Yang RS. Involvement of matrix metalloproteinase-9 in stromal cell-derived factor-1/CXCR4 pathway of lung cancer metastasis. Carcinogenesis 2008; 29 (1):35-43.
    291.Ishida T, Ueda R. CCR4 as a novel molecular target for immunotherapy of cancer. Cancer science 2006;97(11):1139-1146.
    292.Okada T, Ozawa K. Vector-producing tumor-tracking multipotent mesenchymal stromal cells for suicide cancer gene therapy. Front Biosci 2008; 13:1887-1891.
    293.Xin H, Kanehira M, Mizuguchi H et al. Targeted delivery of CX3CL1 to multiple lung tumors by mesenchymal stem cells. Stem cells (Dayton, Ohio) 2007; 25 (7):1618-1626.
    294.Chen X, Lin X, Zhao J et al. A Tumor-selective Biotherapy With Prolonged Impact on Established Metastases Based on Cytokine Gene-engineered MSCs. Mol Ther 2008.
    295.Kanehira M, Xin H, Hoshino K et al. Targeted delivery of NK4 to multiple lung tumors by bone marrow-derived mesenchymal stem cells. Cancer gene therapy 2007; 14 (11 ):894-903.
    296.Deng W, Jia J. Endothelial progenitor cells as cellular vehicles to deliver oncolytic virus therapies to metastatic tumors: The "Trojan horse" approach. Medical hypotheses 2008; 70 (4):842-844.
    297.Debatin KM, Wei J, Beltinger C. Endothelial progenitor cells for cancer gene therapy. Gene therapy 2008.
    298.Wei J, Blum S, Unger M et al. Embryonic endothelial progenitor cells armed with a suicide gene target hypoxic lung metastases after intravenous delivery. Cancer cell 2004; 5 (5):477-488.
    299.Arap W, Pasqualini R. Engineered embryonic endothelial progenitor cells as therapeutic Trojan horses.Cancer cell 2004; 5 (5):406-408.
    300.Ahn GO, Brown JM. Matrix metalloproteinase-9 is required for tumor vasculogenesis but not for angiogenesis: role of bone marrow-derived myelomonocytic cells. Cancer cell 2008; 13 (3):193-205.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700