高效非病毒基因载体的构建及重组树突状细胞应用于肿瘤的免疫治疗
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:构建筛选高效非病毒基因转染载体,用于携载报告基因及目的基因转染树突状细胞(Dendritic Cell, DC)。通过理化性质和生物学手段评价非病毒转染载体的转染效率、安全性及转染机制,并在小鼠模型上评价以基因转染DC为疫苗预防黑色素瘤生成的效果。
     方法:1、合成和表征β-聚氨酯(Polyβ-amino ester, PBAE),壳聚糖-聚醚酰亚胺(Chitosan-Polyetherimide,CP)及精胺-右旋糖酐(Spermine-Dextran,SD)三种非病毒基因转染材料;2、孵育法制备非病毒基因转染材料/DNA纳米复合物,并对各种材料/DNA复合物进行表征,通过携载虫荧光素酶报告基因质粒或绿荧光蛋白EGFP质粒等报告基因对肿瘤细胞株进行常规转染;3、进一步利用上述制备的携载有报告基因质粒的材料/DNA纳米复合物转染DC,利用流式细胞技术及荧光显微成像技术考察纳米复合物转染效率、利用MTT法考察复合物细胞毒性,利用共聚焦显微成像技术考察复合物入核入胞情况,从而筛选出适于DC转染的安全高效载体;4、利用上述材料/DNA复合物包裹肿瘤相关抗原基因及细胞性趋化因子受体基因共转染DC,考察该DC疫苗免疫预防抑制小鼠黑色素实体瘤效果;5、利用所筛选的载体材料携载肿瘤相关抗原基因及细胞性趋化因子受体基因转染DC,利用Transwell方法考察基因重组DC体外游走迁移情况,并通过细胞示踪结合载体荧光成像技术考察经转染DC体内游走迁移情况。
     结果:成功合成PBAE、CP与SD等非病毒基因转染材料。通过孵育法成功制备PBAE,CP和SD的基因复合纳米粒。TEM观察表明SD/DNA复合物是结构均一类球形复合纳米粒。通过携载报告基因对细胞株进行转染结果表明三种材料载体基因复合物对于肿瘤细胞株均有良好的转染活性。荧光显微镜及激光共聚焦显微镜结果表明经三种非病毒载体携载的DNA均能成功进入DC胞浆及细胞核。三种非病毒基因转染材料携载EGFP报告基因转染实验结果表明,与市售试剂Lipofectamine2000 (Lipo)/DNA复合物相比,CP与SD的基因复合纳米粒对DC具有较佳转染效率及生物安全性,对于后者,其入胞抑制实验结果显示SD/DNA在入胞抑制剂NaN3及MβCD存在下入胞量减少,证明其入胞途径为能量依赖性的小窝-脂筏介导的内吞途径。经SD携载趋化性细胞因子受体CCR7质粒复合物转染的DC在体外迁移实验中较Lipo基因复合物转染DC显示出更高的迁移活性;进一步,在体内迁移实验中亦显示出更明显的淋巴趋向归巢现象。在ex vivo实验中,经SD携载的黑色素瘤抗原gp100质粒转染的DC疫苗具有良好的免疫抑制黑色素实体瘤效果,而经CP携载的gp100抗原质粒转染的DC疫苗免疫抑瘤活性较差。进一步的DC疫苗免疫实验中,经SD携载抗原质粒gp100和CCR7质粒转染的DC疫苗组产生了显著的抑瘤效果并提高荷瘤小鼠生存率。
     结论:成功合成PBAE,CP与SD三种非病毒基因转染材料,其对肿瘤细胞株具有高效安全的转染效率。经筛选SD携载的DNA纳米复合物,对于DC具有良好的转染活性,转染目的基因后能够提高DC的抗原表达能力及迁移活性,体内免疫预防实验证明经SD转染的DC疫苗免疫对预防和治疗癌症具有很好的应用潜力。
Objective:Construction of efficient non-viral gene transfer vectors for DC gene delivery. Characterization of physical and chemical properties of these novel non-viral vector, and evaluaton of transfection efficiency and safety of materials/DNA nanocomplex in DCs. Evaluation of DC gene vaccine immunotherapy effect against melanoma cells in vivo.
     Methods:1.Synthesis and characterization of different non-viral gene transfer materials; 2.Preparation and characterization of various material/DNA nanocomplexes by incubation. After tranfection on cell lines by different material/DNA nanocomplexes, Spermine-Dextran(SD) was selected as the relatively better non-toxic and efficient non-viral gene transfer material for DCs.3.Transfection efficiency, cytotoxicity and mechanisms of distribution in cytoplasm and nucleus were all investigated in dendritic cells (DC) by using SD/DNA nanocomplexes; 4.By using SD/DNA complex, DCs were co-transfected with plasmid DNA encoding tumor-associated antigen and chemokine. Then we studied the transferred DCs migration behavior in vitro and in vivo. Finally, we examined vaccine protection treament effect in mice beared melanoma solid tumor.
     Results:After incubation, Spermine-Dextran (SD) and plasmid DNA can form homogeneous spherical composite nanoparticle complexes. The incubated complex shows relatively high transfect efficiency and low cytotoxicity in DCs. Endocytosis results showed DCs uptook SD/DNA into cytoplasm through energy dependendent lipid-raft mediated endocytosis pathway. After 4 hours transfection, plasmid DNA can enter into the nucleus. The SD/CCR7 plasmid complex transfection of DCs transfected by SD/CCR7 plasmid complexes appeared high migration activity in vivo. In ex vivo experiments, DCs were co-transfected by plasmids encoding gp100, a melanoma antigen peptide, and CCR7, a chemokine receptor. It showed good anti-tumor therapeutic effect after vaccination of the engineered DCs, and the survival of tumor-bearing mice was increased largely.
     Conclusion:SD/DNA nano-complex is a novel efficient non-viral gene transfer vector with low cytotoxicity for transfection of DC. DCs engineered by these complexes have a good vaccine effect for tumor immunotherapy and have a good clinical therapy potential
引文
1. Jemal A, Bray F, Center MM, et al.2011. Global cancer statistics. CA Cancer J Clin,61(2):69-90.
    2. Tiwari M.2010. From tumor immunology to cancer immunotherapy:miles to go. J Cancer Res Ther,6(4):427-431.
    3. Vasievich EA, Huang L.2011. The suppressive tumor microenvironment:a challenge in cancer immunotherapy. Mol Pharm,8(3):635-641.
    4. Laffont S, Powrie F.2009. Immunology:Dendritic-cell genealogy. Nature, 462(7274):732-733.
    5. Kaouther M, Ridha O.2011. Dendritic cell-based graft tolerance. ISRN Pharmacol, 2011:347134.
    6. Zanoni I, Granucci F.2011. The regulatory role of dendritic cells in the induction and maintenance of T-cell tolerance. Autoimmunity,44(1):23-32.
    7. Inaba K, Metlay JP, Crowley MT, et al.1990. Dendritic cells pulsed with protein antigens in vitro can prime antigen-specific, MHC-restricted T cells in situ. J Exp Med, 172(2):631-640.
    8. Hama S, Akita H, Iida S, et al.2007. Quantitative and mechanism-based investigation of post-nuclear delivery events between adenovirus and lipoplex. Nucleic Acids Res,35(5):1533-1543.
    9. Hacein-Bey-Abina S, von Kalle C, Schmidt M, et al.2003. A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N Engl J Med,348(3):255-256.
    10. Kanazawa T, Takashima Y, Murakoshi M, et al.2009. Enhancement of gene transfection into human dendritic cells using cationic PLGA nanospheres with a synthesized nuclear localization signal. Int J Pharm,379(1):187-195.
    11. Ishihara T, Kubota T, Choi T, et al.2009. Polymeric nanoparticles encapsulating betamethasone phosphate with different release profiles and stealthiness. Int J Pharm, 375(1-2):148-154.
    12. Lu Y, Kawakami S, Yamashita F, et al.2007. Development of an antigen-presenting cell-targeted DNA vaccine against melanoma by mannosylated liposomes. Biomaterials,28(21):3255-3262.
    13. Lavertu M, Methot S, Tran-Khanh N, et al.2006. High efficiency gene transfer using chitosan/DNA nanoparticles with specific combinations of molecular weight and degree of deacetylation. Biomaterials,27(27):4815-4824.
    14. Park MR, Han KO, Han IK, et al.2005. Degradable polyethylenimine-alt-poly(ethylene glycol) copolymers as novel gene carriers. J Control Release,105(3):367-380.
    15. Yoshida M, Jo J, Tabata Y.2010. Augmented anti-tumor effect of dendritic cells genetically engineered by interleukin-12 plasmid DNA. J Biomater Sci Polym Ed, 21(5):659-675.
    16. Chen YZ, Yao XL, Tabata Y, et al.2010. Gene carriers and transfection systems used in the recombination of dendritic cells for effective cancer immunotherapy. Clin Dev Immunol,2010:565643.
    17. Birkenbach M, Josefsen K, Yalamanchili R, et al.1993. Epstein-Barr virus-induced genes:first lymphocyte-specific G protein-coupled peptide receptors. J Virol, 67(4):2209-2220.
    18. Wiley HE, Gonzalez EB, Maki W, et al.2001. Expression of CC chemokine receptor-7 and regional lymph node metastasis of B16 murine melanoma. J Natl Cancer Inst,93(21):1638-1643.
    19. Yanagihara S, Komura E, Nagafune J, et al.1998. EBI1/CCR7 is a new member of dendritic cell chemokine receptor that is up-regulated upon maturation. J Immunol, 161(6):3096-3102.
    20. Eo SK, Kumaraguru U, Rouse BT.2001. Plasmid DNA encoding CCR7 ligands compensate for dysfunctional CD8+ T cell responses by effects on dendritic cells. J Immunol,167(7):3592-3599.
    21. Okada N, Masunaga Y, Okada Y, et al.2003. Dendritic cells transduced with gp100 gene by RGD fiber-mutant adenovirus vectors are highly efficacious in generating anti-B16BL6 melanoma immunity in mice. Gene Ther,10(22):1891-1902.
    22. Okada N, Mori N, Koretomo R, et al.2005. Augmentation of the migratory ability of DC-based vaccine into regional lymph nodes by efficient CCR7 gene transduction. Gene Ther,12(2):129-139.
    23. Morimoto K, Fukushi N, Chono S, et al.2008. Spermined dextran, a cationized polymer, as absorption enhancer for pulmonary application of peptide drugs.6Pharmazie, 63(3):180-184.
    24. Hosseinkhani H, Azzam T, Tabata Y, et al.2004. Dextran-spermine polycation:an efficient nonviral vector for in vitro and in vivo gene transfection. Gene Ther, 11(2):194-203.
    25. Jo J, Nagane K, Yamamoto M, et al.2010. Effect of amine type on the expression of plasmid DNA by cationized dextran. J Biomater Sci Polym Ed,21(2):225-236.
    26. Okasora T, Jo JI, Tabata Y.2008. Augmented anti-tumor therapy through natural targetability of macrophages genetically engineered by NK4 plasmid DNA. Gene Ther, 15(7):524-530.
    27. Zhao QQ, Chen JL, Lv TF, et al.2009. N/P ratio significantly influences the transfection efficiency and cytotoxicity of a polyethylenimine/chitosan/DNA complex. Biol Pharm Bull,32(4):706-710.
    28. Gao JQ, Zhao QQ, Lv TF, et al.2010. Gene-carried chitosan-linked-PEI induced high gene transfection efficiency with low toxicity and significant tumor-suppressive activity. Int J Pharm,387(1-2):286-294.
    29. Jo J, Nagane K, Yamamoto M, et al.2010. Effect of amine type on the expression of plasmid DNA by cationized dextran. J Biomater Sci Polym Ed,21(2):225-236.
    30. Zhao QQ, Chen JL, Han M, et al.2008. Combination of poly(ethylenimine) and chitosan induces high gene transfection efficiency and low cytotoxicity. J Biosci Bioeng, 105(1):65-68.
    31. Kim TI, Seo HJ, Choi JS, et al.2005. Synthesis of biodegradable cross-linked poly(beta-amino ester) for gene delivery and its modification, inducing enhanced transfection efficiency and stepwise degradation. Bioconjug Chem,16(5):1140-1148.
    32. Lynn DM, Anderson DG, Putnam D, et al.2001. Accelerated discovery of synthetic transfection vectors:parallel synthesis and screening of a degradable polymer library. J Am Chem Soc,123(33):8155-8156.
    33. Green JJ, Shi J, Chiu E, et al.2006. Biodegradable polymeric vectors for gene delivery to human endothelial cells. Bioconjug Chem,17(5):1162-1169.
    34.陈郧东,蔡妙颜,张英,郑文玲,马文丽,壳聚糖-DNA复合物形成机理研究,药物生物技术,2005,12(5):291-293.
    35. He CX, Li N, Hu YL, et al.2011. Effective gene delivery to mesenchymal stem cells based on the reverse transfection and three-dimensional cell culture system. Pharm Res,28(7):1577-1590.
    36. Lutz MB, Kukutsch N, Ogilvie AL, et al.1999. An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J Immunol Methods,223(1):77-92.
    37. Steinman RM.1991. The dendritic cell system and its role in immunogenicity. Annu Rev Immunol,9:271-296.
    38. Rasanen L, Lehto M, Leinikki P.1988. Enrichment of dendritic cells from human peripheral blood. J Leukoc Biol,43(4):343-348.
    39. Paczesny S, Li YP, Li N, et al.2007. Efficient generation of CD34+ progenitor-derived dendritic cells from G-CSF-mobilized peripheral mononuclear cells does not require hematopoietic stem cell enrichment. J Leukoc Biol,81(4):957-967.
    40. Caux C, Dezutter-Dambuyant C, Schmitt D, et al.1992. GM-CSF and TNF-alpha cooperate in the generation of dendritic Langerhans cells. Nature,360(6401):258-261.
    41. Barratt-Boyes SM, Zimmer MI, Harshyne LA, et al.2000. Maturation and trafficking of monocyte-derived dendritic cells in monkeys:implications for dendritic cell-based vaccines. J Immunol,164(5):2487-2495.
    42. Jeannin P, Magistrelli G, Herbault N, et al.2003. Outer membrane protein A renders dendritic cells and macrophages responsive to CCL21 and triggers dendritic cell migration to secondary lymphoid organs. Eur J Immunol,33(2):326-333.
    43.刘安全,趋化性细胞因子和T细胞游走的研究进展,国外医学:免疫学分册,2000,23(3):154-157.
    44. Hattori Y.2010. Development of non-viral vector for cancer gene therapy. Yakugaku Zasshi,130(7):917-923.
    45.龚卫娟,龚春香,王长荣,肖炜明,钱莉,季明春,树突状细胞上调MHCI类相关抗原A表达对NK细胞活性的影响,细胞与分子免疫学杂志,2011,27(1):11-14.
    46.张湘宁,何志巍,吴江雪,黄文林,共激活分子及相关因子对机体抗肿瘤免疫的调节作用,中国医药生物技术,2010,5(3):220-223.
    47. A. Benard, J. Boue, E. Chapey, M. Jaume, B. Gomes, G. Dietrich, Delta opioid receptors mediate chemotaxis in bone marrow-derived dendritic cells. J Neuroimmunol 197(2008)21-28.
    [1]Jemal, A.; Siegel, R.; Ward, E.; Hao, Y.; Xu, J.; Thun, M. J. Cancer statistics,2009, CA Cancer J Clin, 2009,59,225-49.
    [2]Hinz, T.; Buchholz, C. J.; van der Stappen, T.; Cichutek, K.; Kalinke, U. Manufacturing and quality control of cell-based tumor vaccines:a scientific and a regulatory perspective, J Immunother,2006,29, 472-6.
    [3]Palena, C.; Abrams, S. I.; Schlom, J.; Hodge, J. W. Cancer vaccines:preclinical studies and novel strategies, Adv Cancer Res,2006,95,115-45.
    [4]Dudziak, D.; Kamphorst, A. O.; Heidkamp, G. F.; Buchholz, V. R.; Trumpfheller, C.; Yamazaki, S.; Cheong, C.; Liu, K.; Lee, H. W.; Park, C. G.; Steinman, R. M.; Nussenzweig, M. C. Differential antigen processing by dendritic cell subsets in vivo, Science,2007,315,107-11.
    [5]Dhodapkar, M. V.; Dhodapkar, K. M.; Palucka, A. K. Interactions of tumor cells with dendritic cells: balancing immunity and tolerance, Cell Death Differ,2008,15,39-50.
    [6]Janeway, C. A., Jr.; Medzhitov, R. Innate immune recognition, Annu Rev Immunol,2002,20,197-216.
    |7] Itano, A. A.; Jenkins, M. K. Antigen presentation to naive CD4 T cells in the lymph node, Nat Immunol,2003,4,733-9.
    [8]Randolph, G. J.; Angeli, V.; Swartz, M. A. Dendritic-cell trafficking to lymph nodes through lymphatic vessels, Nat Rev Immunol,2005,5,617-28.
    [9]Inaba, K.; Metlay, J. P.; Crowley, M. T.; Steinman, R. M. Dendritic cells pulsed with protein antigens in vitro can prime antigen-specific, MHC-restricted T cells in situ, J Exp Med,1990,172,631-40.
    [10]Paczesny, S.; Ueno, H.; Fay, J.; Banchereau, J.; Palucka, A. K. Dendritic cells as vectors for immunotherapy of cancer, Semin Cancer Biol,2003,13,439-47.
    [11]Rughetti, A.; Biffoni, M.; Sabbatucci, M.; Rahimi, H.; Pellicciotta, I.; Fattorossi, A.; Pierelli, L.; Scambia, G.; Lavitrano, M.; Frati, L.; Nuti, M. Transfected human dendritic cells to induce antitumor immunity, Gene Ther,2000,7,1458-66.
    [12]Engelhard, V. H.; Bullock, T. N.; Colella, T. A.; Sheasley, S. L.; Mullins, D. W. Antigens derived from melanocyte differentiation proteins:self-tolerance, autoimmunity, and use for cancer immunotherapy, Immunol Rev,2002,188,136-46.
    [13]Shevach, E. M. Fatal attraction:tumors beckon regulatory T cells, Nat Med,2004,10,900-1.
    [14]Zhang, X.; Gordon, J. R.; Xiang, J. Advances in dendritic cell-based vaccine of cancer, Cancer Biother Radiopharm,2002,17,601-19.
    [15]Sallusto, F.; Lanzavecchia, A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha, J Exp Med,1994,179,1109-18.
    [16]Villadangos, J. A.; Heath, W. R.; Carbone, F. R. Outside looking in:the inner workings of the cross-presentation pathway within dendritic cells, Trends Immunol,2007,28,45-7.
    [17]Shortman, K.; Naik, S. H. Steady-state and inflammatory dendritic-cell development, Nat Rev Immunol,2007,7,19-30.
    [18]Dubois, B.; Bridon, J. M.; Fayette, J.; Barthelemy, C.; Banchereau, J.; Caux, C.; Briere, F. Dendritic cells directly modulate B cell growth and differentiation, J Leukoc Biol,1999,66,224-30.
    [19]Shortman, K.; Liu, Y. J. Mouse and human dendritic cell subtypes, Nat Rev Immunol,2002,2, 151-61.
    [20]Merad, M.; Manz, M. G. Dendritic cell homeostasis, Blood,2009,113,3418-27.
    [211 Maldonado-Lopez, R.; De Smedt, T.; Pajak, B.; Heirman, C.; Thielemans, K.; Leo, O.; Urbain, J.; Maliszewski, C. R.; Moser, M. Role of CD8alpha+ and CD8alpha- dendritic cells in the induction of primary immune responses in vivo, J Leukoc Biol,1999,66,242-6.
    [22]Pulendran, B.; Smith, J. L.; Caspary, G.; Brasel, K.; Pettit, D.; Maraskovsky, E.; Maliszewski, C. R. Distinct dendritic cell subsets differentially regulate the class of immune response in vivo, Proc Natl Acad Sci U S A,1999,96,1036-41.
    [23]Wilson, N. S.; Villadangos, J. A. Regulation of antigen presentation and cross-presentation in the dendritic cell network:facts, hypothesis, and immunological implications, Adv Immunol,2005,86, 241-305.
    [24]Reis e Sousa, C. Dendritic cells in a mature age, Nat Rev Immunol,2006,6,476-83.
    [25]Villadangos, J. A.; Heath, W. R. Life cycle, migration and antigen presenting functions of spleen and lymph node dendritic cells:limitations of the Langerhans cells paradigm, Semin Immunol,2005,17, 262-72.
    [261 Akira, S.; Takeda, K. Toll-like receptor signalling, Nat Rev Immunol,2004,4,499-511.
    [27]Kondo, H.; Hazama, S.; Kawaoka, T.; Yoshino, S.; Yoshida, S.; Tokuno, K.; Takashima, M.; Ueno, T.; Hinoda, Y; Oka, M. Adoptive immunotherapy for pancreatic cancer using MUC1 peptide-pulsed dendritic cells and activated T lymphocytes, Anticancer Res,2008,28,379-87.
    |28| Meylan, E.; Tschopp, J.; Karin, M. Intracellular pattern recognition receptors in the host response, Nature,2006,442,39-44.
    [29]Salgame, P.; Abrams, J. S.; Clayberger, C.; Goldstein, H.; Convit, J.; Modlin, R. L.; Bloom, B. R. Differing lymphokine profiles of functional subsets of human CD4 and CD8 T cell clones, Science,1991, 254,279-82.
    [30]Caux, C.; Massacrier, C.; Vanbervliet, B.; Dubois, B.; Van Kooten, C.; Durand, I.; Banchereau, J. Activation of human dendritic cells through CD40 cross-linking, J Exp Med,1994,180,1263-72.
    [31]Macagno, A.; Napolitani, G.; Lanzavecchia, A.; Sallusto, F. Duration, combination and timing:the signal integration model of dendritic cell activation, Trends Immunol,2007,28,227-33.
    [32]Schoenberger, S. P.; Toes, R. E.; van der Voort, E. I.; Offringa, R.; Melief, C. J. T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions, Nature,1998,393,480-3.
    [33]Pierre, P.; Turley, S. J.; Gatti, E.; Hull, M.; Meltzer, J.; Mirza, A.; Inaba, K.; Steinman, R. M.; Mellman, I. Developmental regulation of MHC class II transport in mouse dendritic cells, Nature,1997, 388,787-92.
    [34]Engell-Noerregaard, L.; Hansen, T. H.; Andersen, M. H.; Thor Straten, P.; Svane, I. M. Review of clinical studies on dendritic cell-based vaccination of patients with malignant melanoma:assessment of correlation between clinical response and vaccine parameters, Cancer Immunol Immunother,2009,58, 1-14.
    [35]Gilboa, E. DC-based cancer vaccines, J Clin Invest,2007,117,1195-203.
    |36] Kaech, S. M.; Ahmed, R. Immunology. CD8 T cells remember with a little help, Science,2003,300, 263-5.
    [37]Kawamura, K.; Kadowaki, N.; Suzuki, R.; Udagawa, S.; Kasaoka, S.; Utoguchi, N.; Kitawaki, T.; Sugimoto, N.; Okada, N.; Maruyama, K.; Uchiyama, T. Dendritic cells that endocytosed antigen-containing IgG-liposomes elicit effective antitumor immunity, J Immunother,2006,29,165-74.
    [38]Trombetta, E. S.; Mellman, I. Cell biology of antigen processing in vitro and in vivo, Annu Rev Immunol,2005,23,975-1028.
    [39]Heath, W. R.; Belz, G. T.; Behrens, G. M.; Smith, C. M.; Forehan, S. P.; Parish, I. A.; Davey, G. M.; Wilson, N. S.; Carbone, F. R.; Villadangos, J. A. Cross-presentation, dendritic cell subsets, and the generation of immunity to cellular antigens, Immunol Rev,2004,199,9-26.
    [40]Ochsenbein, A. F.; Sierro, S.; Odermatt, B.; Pericin, M.; Karrer, U.; Hermans, J.; Hemmi, S.; Hengartner, H.; Zinkernagel, R. M. Roles of tumour localization, second signals and cross priming in cytotoxic T-cell induction, Nature,2001,411,1058-64.
    [41]Willimsky, G.; Blankenstein, T. Sporadic immunogenic tumours avoid destruction by inducing T-cell tolerance, Nature,2005,437,141-6.
    [42]Raychaudhuri, S.; Rock, K. L. Fully mobilizing host defense:building better vaccines, Nat Biotechnol,1998,16,1025-31.
    [43]Bangari, D. S.; Mittal, S. K. Current strategies and future directions for eluding adenoviral vector immunity, Curr Gene Ther,2006,6,215-26.
    [44]Tuettenberg, A.; Becker, C.; Huter, E.; Knop, J.; Enk, A. H.; Jonuleit, H. Induction of strong and persistent MelanA/MART-1-specific immune responses by adjuvant dendritic cell-based vaccination of stage Ⅱ melanoma patients, Int J Cancer,2006,118,2617-27.
    [45]Babatz, J.; Rollig, C.; Lobel, B.; Folprecht, G.; Haack, M.; Gunther, H.; Kohne, C. H.; Ehninger, G.; Schmitz, M.; Bornhauser, M. Induction of cellular immune responses against carcinoembryonic antigen in patients with metastatic tumors after vaccination with altered peptide ligand-loaded dendritic cells, Cancer Immunol Immunother,2006,55,268-76.
    [46]Bae, M. Y.; Cho, N. H.; Seong, S. Y. Protective anti-tumour immune responses by murine dendritic cells pulsed with recombinant Tat-carcinoembryonic antigen derived from Escherichia coli, Clin Exp Immunol,2009,157,128-38.
    [47]Kim, D. K.; Lee, T. V.; Castilleja, A.; Anderson, B. W.; Peoples, G. E.; Kudelika, A. P.; Murray, J. L.; Sittisomwong, T.; Wharton, J. T.; Kim, J. W.; Ioannides, C. G. Folate binding protein peptide 191-199 presented on dendritic cells can stimulate CTL from ovarian and breast cancer patients, Anticancer Res, 1999,19,2907-16.
    [48]Kim, D. K.; Kim, J. H.; Kim, Y. T.; Kim, J. W.; Ioannides, C. G. The comparison of cytotoxic T-lymphocyte effects of dendritic cells stimulated by the folate binding protein peptide cultured with IL-15 and IL-2 in solid tumor, Yonsei Med J,2002,43,691-700.
    [49]Garetto, S.; Sizzano, F.; Brusa, D.; Tizzani, A.; Malavasi, F.; Matera, L. Binding of prostate-specific membrane antigen to dendritic cells:a critical step in vaccine preparation, Cytotherapy,2009,11, 1090-100.
    [50]Waeckerle-Men, Y.; Uetz-von Allmen, E.; Fopp, M.; von Moos, R.; Bohme, C.; Schmid, H. P.; Ackermann, D.; Cerny, T.; Ludewig, B.; Groettrup, M.; Gillessen, S. Dendritic cell-based multi-epitope immunotherapy of hormone-refractory prostate carcinoma, Cancer Immunol Immunother,2006,55, 1524-33.
    [51]Yang, H.; Cho, N. H.; Seong, S. Y. The Tat-conjugated N-terminal region of mucin antigen 1 (MUC1) induces protective immunity against MUC1-expressing tumours, Clin Exp Immunol,2009,158,174-85.
    [52]Wierecky, J.; Mueller, M.; Brossart, P. Dendritic cell-based cancer immunotherapy targeting MUC-1, Cancer Immunol Immunother,2006,55,63-7.
    [53]Woo, S. J.; Kim, C. H.; Park, M. Y.; Kim, H. S.; Sohn, H. J.; Park, J. S.; Kim, H. J.; Oh, S. T.; Kim, T. G. Co-administration of carcinoembryonic antigen and HIV TAT fusion protein with CpG-oligodeoxynucleotide induces potent antitumor immunity, Cancer Sci,2008,99,1034-9.
    [54]Fong, L.; Engleman, E. G. Dendritic cells in cancer immunotherapy, Annu Rev Immunol,2000,18, 245-73.
    [55]Schott, M.; Feldkamp, J.; Schattenberg, D.; Krueger, T.; Dotzenrath, C.; Seissler, J.; Scherbaum, W. A. Induction of cellular immunity in a parathyroid carcinoma treated with tumor lysate-pulsed dendritic cells, Eur J Endocrinol,2000,142,300-6.
    [56]Schnurr, M.; Galambos, P.; Scholz, C.; Then, F.; Dauer, M.; Endres, S.; Eigler, A. Tumor cell lysate-pulsed human dendritic cells induce a T-cell response against pancreatic carcinoma cells:an in vitro model for the assessment of tumor vaccines, Cancer Research,2001,61,6445-6450.
    [57]Zhao, X.; Wei, Y. Q.; Peng, Z. L. Induction of T cell responses against autologous ovarian tumors with whole tumor cell lysate-pulsed dendritic cells, Immunol Invest,2001,30,33-45.
    [58]Inzkirweli, N.; Guckel, B.; Sohn, C.; Wallwiener, D.; Bastert, G.; Lindner, M. Antigen loading of dendritic cells with apoptotic tumor cell-preparations is superior to that using necrotic cells or tumor lysates, Anticancer Res,2007,27,2121-9.
    [59]Boczkowski, D.; Nair, S. K.; Snyder, D.; Gilboa, E. Dendritic cells pulsed with RNA are potent antigen-presenting cells in vitro and in vivo, J Exp Med,1996,184,465-72.
    [60]Ashley, D. M.; Faiola, B.; Nair, S.; Hale, L. P.; Bigner, D. D.; Gilboa, E. Bone marrow-generated dendritic cells pulsed with tumor extracts or tumor RNA induce antitumor immunity against central nervous system tumors, J Exp Med,1997,186,1177-82.
    [61]Tyagi, R. K.; Mangal, S.; Garg, N.; Sharma, P. K. RNA-based immunotherapy of cancer:role and therapeutic implications of dendritic cells, Expert Rev Anticancer Ther,2009,9,97-114.
    [62]Hernando, J. J.; Park, T. W.; Fischer, H. P.; Zivanovic, O.; Braun, M.; Polcher, M.; Grunn, U.; Leutner, C.; Potzsch, B.; Kuhn, W. Vaccination with dendritic cells transfected with mRNA-encoded folate-receptor-alpha for relapsed metastatic ovarian cancer, Lancet Oncol,2007,8,451-4.
    [631 Chen, L.; Tang, X. D.; Yu, S. T.; Ai, Z. H.; Fang, D. C.; Cai, Y. G.; Luo, Y. H.; Liang, G. P.; Yang, S. M. Induction of anti-tumour immunity by dendritic cells transduced with hTERT recombinant adenovirus in mice, J Pathol,2009,217,685-92.
    [64]Kim, C. H.; Yoon, J. S.; Sohn, H. J.; Kim, C. K.; Paik, S. Y.; Hong, Y. K.; Kim, T. G. Direct vaccination with pseudotype baculovirus expressing murine telomerase induces anti-tumor immunity comparable with RNA-electroporated dendritic cells in a murine glioma model, Cancer Lett,2007,250, 276-83.
    [65]Weissman, D.; Ni, H.; Scales, D.; Dude, A.; Capodici, J.; McGibney, K.; Abdool, A.; Isaacs, S. N.; Cannon, G.; Kariko, K. HIV gag mRNA transfection of dendritic cells (DC) delivers encoded antigen to MHC class Ⅰ and Ⅱ molecules, causes DC maturation, and induces a potent human in vitro primary immune response, J Immunol,2000,165,4710-7.
    [66]Nicolette, C. A.; Healey, D.; Tcherepanova, I.; Whelton, P.; Monesmith, T.; Coombs, L.; Finke, L. H.; Whiteside, T.; Miesowicz, F. Dendritic cells for active immunotherapy:optimizing design and manufacture in order to develop commercially and clinically viable products, Vaccine,2007,25 Suppl 2, B47-60.
    [67]Boczkowski, D.; Nair, S. RNA as performance-enhancers for dendritic cells, Expert Opin Biol Ther.
    [68]Morse, M. A.; Lyerly, H. K. DNA and RNA modified dendritic cell vaccines, World J Surg,2002,26, 819-25.
    [69]Van Tendeloo, V. F.; Ponsaerts, P.; Lardon, F.; Nijs, G.; Lenjou, M.; Van Broeckhoven, C.; Van Bockstaele, D. R.; Berneman, Z. N. Highly efficient gene delivery by mRNA electroporation in human hematopoietic cells:superiority to lipofection and passive pulsing of mRNA and to electroporation of plasmid cDNA for tumor antigen loading of dendritic cells, Blood,2001,98,49-56.
    [70]Ribas, A. Genetically modified dendritic cells for cancer immunotherapy, Curr Gene Ther,2005,5, 619-28.
    [71]Mack, C. A.; Song, W. R.; Carpenter, H.; Wickham, T. J.; Kovesdi, I.; Harvey, B. G.; Magovern, C. J.; Isom, O. W.; Rosengart, T.; Falck-Pedersen, E.; Hackett, N. R.; Crystal, R. G.; Mastrangeli, A. Circumvention of anti-adenovirus neutralizing immunity by administration of an adenoviral vector of an alternate serotype, Hum Gene Ther,1997,8,99-109.
    [72]Wu, T. L.; Ertl, H. C. Immune barriers to successful gene therapy, Trends Mol Med,2009,15,32-9.
    [73]Okada, N.; Saito, T.; Masunaga, Y.; Tsukada, Y.; Nakagawa, S.; Mizuguchi, H.; Mori, K.; Okada, Y.; Fujita, T.; Hayakawa, T.; Mayumi, T.; Yamamoto, A. Efficient antigen gene transduction using Arg-Gly-Asp fiber-mutant adenovirus vectors can potentiate antitumor vaccine efficacy and maturation of murine dendritic cells, Cancer Res,2001,61,7913-9.
    [74]Mizuguchi, H.; Hayakawa, T. Targeted adenovirus vectors, Hum Gene Ther,2004,15,1034-44.
    [75]Eto, Y.; Yoshioka, Y.; Mukai, Y.; Okada, N.; Nakagawa, S. Development of PEGylated adenovirus vector with targeting ligand, Int J Pharm,2008,354,3-8.
    [76]Yao, X.; Yoshioka, Y.; Morishige, T.; Eto, Y.; Watanabe, H.; Okada, Y.; Mizuguchi, H.; Mukai, Y.; Okada, N.; Nakagawa, S. Systemic administration of a PEGylated adenovirus vector with a cancer-specific promoter is effective in a mouse model of metastasis, Gene Ther,2009,16,1395-404.
    [77]Edelstein, M. L.; Abedi, M. R.; Wixon, J.; Edelstein, R. M. Gene therapy clinical trials worldwide 1989-2004-an overview, J Gene Med,2004,6,597-602.
    [78]Adams, W. C.; Bond, E.; Havenga, M. J.; Holterman, L.; Goudsmit, J.; Karlsson Iledestam, G. B.; Koup, R. A.; Lore, K. Adenovirus serotype 5 infects human dendritic cells via a coxsackievirus-adenovirus receptor-independent receptor pathway mediated by lactoferrin and DC-SIGN, J Gen Virol,2009,90,1600-10.
    [79]Okada, N.; Iiyama, S.; Okada, Y.; Mizuguchi, H.; Hayakawa, T.; Nakagawa, S.; Mayumi, T.; Fujita, T.; Yamamoto, A. Immunological properties and vaccine efficacy of murine dendritic cells simultaneously expressing melanoma-associated antigen and interleukin-12, Cancer Gene Ther,2005,12,72-83.
    [80]Okada, N.; Mori, N.; Koretomo, R.; Okada, Y.; Nakayama, T.; Yoshie, O.; Mizuguchi, H.; Hayakawa, T.; Nakagawa, S.; Mayumi, T.; Fujita, T.; Yamamoto, A. Augmentation of the migratory ability of DC-based vaccine into regional lymph nodes by efficient CCR7 gene transduction, Gene Ther,2005,12, 129-39.
    [81]Lundqvist, A.; Choudhury, A.; Nagata, T.; Andersson, T.; Quinn, G.; Fong, T.; Maitland, N.; Pettersson, S.; Paulie, S.; Pisa, P. Recombinant adenovirus vector activates and protects human monocyte-derived dendritic cells from apoptosis, Hum Gene Ther,2002,13,1541-9.
    [82]Schumacher, L.; Ribas, A.; Dissette, V. B.; McBride, W. H.; Mukherji, B.; Economou, J. S.; Butterfield, L. H. Human dendritic cell maturation by adenovirus transduction enhances tumor antigen-specific T-cell responses, J Immunother,2004,27,191-200.
    [83]Youlin, K.; Xiaodong, W.; Xiuheng, L.; Hengchen, Z.; Zhiyuan, C.; Botao, J.; Hui, C. Anti-tumor immune response induced by dendritic cells transduced with truncated PSMA IRES 4-1BBL recombinant adenoviruses, Cancer Lett.
    [84]Kim, S.; Lee, J. B.; Lee, G. K.; Chang, J. Vaccination with recombinant adenoviruses and dendritic cells expressing prostate-specific antigens is effective in eliciting CTL and suppresses tumor growth in the experimental prostate cancer, Prostate,2009,69,938-48.
    [85]Jiang, N.; Wang, G. S.; Li, H.; Zhang, J.; Zhang, J. F.; Yi, S. H.; Yi, H. M.; Yang, Y; Cai, C. J.; Lu, M. Q.; Chen, G. H. [Immunization with dendritic cells infected with mTERT adenovirus vector effectively elicits immunity against mouse H22 hepatoma in vivo], Zhonghua Zhong Liu Za Zhi,2009,31,405-9.
    [86]Gonzalez-Carmona, M. A.; Lukacs-Kornek, V.; Timmerman, A.; Shabani, S.; Kornek, M.; Vogt, A.; Yildiz, Y.; Sievers, E.; Schmidt-Wolf, I. G.; Caselmann, W. H.; Sauerbruch, T.; Schmitz, V. CD401igand-expressing dendritic cells induce regression of hepatocellular carcinoma by activating innate and acquired immunity in vivo, Hepatology,2008,48,157-68.
    |87] Yang, J. Y.; Cao, D. Y.; Xue, Y.; Yu, Z. C.; Liu, W. C. Improvement of dendritic-based vaccine efficacy against hepatitis B virus-related hepatocellular carcinoma by two tumor-associated antigen gene-infected dendritic cells, Hum Immunol.
    [88]Zhu, X. P.; Chen, Z. Z.; Li, C. T.; Lin, X.; Zhuang, J. L.; Hu, J. D.; Yang, T.; Xu, Z. S. In vitro inducing effect of dendritic cells cotransfected with survivin and granulocyte-macrophage colony-stimulating factor on cytotoxic T cell to kill leukemic cells, Chin Med J (Engl),2008,121, 2180-4.
    [89]Tsai, B. Y.; Lin, Y. L.; Chiang, B. L. Application of interleukin-12 expressing dendritic cells for the treatment of animal model of leukemia, Exp Biol Med (Maywood),2009,234,952-60.
    [90]Huang, J. H.; Zhang, S. N.; Choi, K. J.; Choi, I. K.; Kim, J. H.; Lee, M.; Kim, H.; Yun, C. O. Therapeutic and tumor-specific immunity induced by combination of dendritic cells and oncolytic adenovirus expressing IL-12 and 4-1BBL, Mol Ther,18,264-74.
    [91]Xie, J.; Xiong, L.; Tao, X.; Li, X.; Su, Y.; Hou, X.; Shi, H. Antitumor effects of murine bone marrow-derived dendritic cells infected with xenogeneic livin alpha recombinant adenoviral vectors against Lewis lung carcinoma, Lung Cancer,2009.
    [92]Kikkawa, K.; Fujii, R.; Kuramoto, T.; Mori, T.; Inagaki, T.; Kohjimoto, Y.; Iwahashi, M.; Yamaue, H.; Hara, I. Dendritic cells with transduced survivin gene induce specific cytotoxic T lymphocytes in human urologic cancer cell lines, Urology,2009,74,222-8.
    [93]Bello-Fernandez, C.; Matyash, M.; Strobl, H.; Pickl, W. F.; Majdic, O.; Lyman, S. D.; Knapp, W. Efficient retrovirus-mediated gene transfer of dendritic cells generated from CD34+cord blood cells under serum-free conditions, Hum Gene Ther,1997,8,1651-8.
    [94]Szabolcs, P.; Gallardo, H. F.; Ciocon, D. H.; Sadelain, M.; Young, J. W. Retrovirally transduced human dendritic cells express a normal phenotype and potent T-cell stimulatory capacity, Blood,1997,90, 2160-7.
    [95]Bushman, F. D. Integration site selection by lentiviruses:biology and possible control, Curr Top Microbiol Immunol,2002,261,165-77.
    [96]Goujon, C.; Jarrosson-Wuilleme, L.; Bernaud, J.; Rigal, D.; Darlix, J. L.; Cimarelli, A. With a little help from a friend:increasing HIV transduction of monocyte-derived dendritic cells with virion-like particles of SIV(MAC), Gene Ther,2006,13,991-4.
    [97]Goujon, C.; Riviere, L.; Jarrosson-Wuilleme, L.; Bernaud, J.; Rigal, D.; Darlix, J. L.; Cimarelli, A. SIVSM/HIV-2 Vpx proteins promote retroviral escape from a proteasome-dependent restriction pathway present in human dendritic cells, Retrovirology,2007,4,2.
    [98]Esslinger, C.; Romero, P.; MacDonald, H. R. Efficient transduction of dendritic cells and induction of a T-cell response by third-generation lentivectors, Hum Gene Ther,2002,13,1091-100.
    [99]Li, G. B.; Lu, G. X. Gene Delivery Efficiency in Bone Marrow-derived Dendritic Cells:Comparison of Four Methods and Optimization for Lentivirus Transduction, Mol Biotechnol,2009,43,250-6.
    [100]Han, S.; Chang, L. J. Immunity of lentiviral vector-modified dendritic cells, Methods Mol Biol, 2009,542,245-59.
    [101]Yang, L.; Yang, H.; Rideout, K.; Cho, T.; Joo, K. I.; Ziegler, L.; Elliot, A.; Walls, A.; Yu, D.; Baltimore, D.; Wang, P. Engineered lentivector targeting of dendritic cells for in vivo immunization, Nat Biotechnol,2008,26,326-34.
    1102] Breckpot, K.; Emeagi, P.; Dullaers, M.; Michiels, A.; Heirman, C.; Thielemans, K. Activation of immature monocyte-derived dendritic cells after transduction with high doses of lentiviral vectors, Hum Gene Ther,2007,18,536-46.
    [103]Stripecke, R. Lentiviral vector-mediated genetic programming of mouse and human dendritic cells, Methods Mol Biol,2009,506,139-58.
    [104]Zhang, L.; Procuik, M.; Fang, T.; Kung, S. K. Functional analysis of the quantitative expression of a costimulatory molecule on dendritic cells using lentiviral vector-mediated RNA interference, J Immunol Methods,2009,344,87-97.
    [105]Zhang, Y.; Yang, H.; Xiao, B.; Wu, M.; Zhou, W.; Li, J.; Li, G.; Christadoss, P. Dendritic cells transduced with lentiviral-mediated RelB-specific ShRNAs inhibit the development of experimental autoimmune myasthenia gravis, Mol Immunol,2009,46,657-67.
    1106] Veron, P.; Boutin, S.; Bernard, J.; Danos, O.; Davoust, J.; Masurier, C. Efficient transduction of monocyte- and CD34+-derived Langerhans cells with lentiviral vectors in the absence of phenotypic and functional maturation, J Gene Med,2006,8,951-61.
    1107] Hacein-Bey-Abina, S.; von Kalle, C.; Schmidt, M.; Le Deist, F.; Wulffraat, N.; McIntyre, E.; Radford, I.; Villeval, J. L.; Fraser, C. C.; Cavazzana-Calvo, M.; Fischer, A. A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency, N Engl J Med,2003,348, 255-6.
    [108]Ren, J.; Jia, J.; Zhang, H.; Zhang, L.; Ma, B.; Jiang, H.; Di, L.; Song, G.; Yu, J. Dendritic cells pulsed with alpha-fetoprotein and mutant P53 fused gene induce bi-targeted cytotoxic T lymphocyte response against hepatic carcinoma, Cancer Sci,2008,99,1420-6.
    [109]Antonia, S. J.; Mirza, N.; Fricke, I.; Chiappori, A.; Thompson, P.; Williams, N.; Bepler, G.; Simon, G; Janssen, W.; Lee, J. H.; Menander, K.; Chada, S.; Gabrilovich, D. I. Combination of p53 cancer vaccine with chemotherapy in patients with extensive stage small cell lung cancer, Clin Cancer Res,2006, 12,878-87.
    [110]Foged, C.; Arigita, C.; Sundblad, A.; Jiskoot, W.; Storm, G.; Frokjaer, S. Interaction of dendritic cells with antigen-containing liposomes:effect of bilayer composition, Vaccine,2004,22,1903-13.
    [111]Yamada, M.; Nishikawa, M.; Kawakami, S.; Hattori, Y; Nakano, T.; Yamashita, F.; Hashida, M. Tissue and intrahepatic distribution and subcellular localization of a mannosylated lipoplex after intravenous administration in mice, J Control Release,2004,98,157-67.
    [112]Lu, Y; Kawakami, S.; Yamashita, F.; Hashida, M. Development of an antigen-presenting cell-targeted DNA vaccine against melanoma by mannosylated liposomes, Biomaterials,2007,28, 3255-62.
    [113]Hattori, Y; Kawakami, S.; Nakamura, K.; Yamashita, F.; Hashida, M. Efficient gene transfer into macrophages and dendritic cells by in vivo gene delivery with mannosylated lipoplex via the intraperitoneal route, J Pharmacol Exp Ther,2006,318,828-34.
    [114]Suzuki, R.; Oda, Y.; Utoguchi, N.; Namai, E.; Taira, Y.; Okada, N.; Kadowaki, N.; Kodama, T.; Tachibana, K.; Maruyama, K. A novel strategy utilizing ultrasound for antigen delivery in dendritic cell-based cancer immunotherapy, J Control Release,2009,133,198-205.
    [115]Zheng, X.; Vladau, C.; Zhang, X.; Suzuki, M.; Ichim, T. E.; Zhang, Z. X.; Li, M; Carrier, E.; Garcia, B.; Jevnikar, A. M.; Min, W. P. A novel in vivo siRNA delivery system specifically targeting dendritic cells and silencing CD40 genes for immunomodulation, Blood,2009,113,2646-54.
    [1161 Martino, S.; di Girolamo, I.; Tiribuzi, R.; D'Angelo, F.; Datti, A.; Orlacchio, A. Efficient siRNA delivery by the cationic liposome DOTAP in human hematopoietic stem cells differentiating into dendritic cells, J Biomed Biotechnol,2009,2009,410260.
    [117]Yoshikawa, T.; Imazu, S.; Gao, J. Q.; Hayashi, K.; Tsuda, Y.; Shimokawa, M.; Sugita, T.; Niwa, T.; Oda, A.; Akashi, M.; Tsutsumi, Y.; Mayumi, T.; Nakagawa, S. Augmentation of antigen-specific immune responses using DNA-fusogenic liposome vaccine, Biochem Biophys Res Commun,2004,325,500-5.
    [118]Yuba, E.; Kojima, C.; Sakaguchi, N.; Harada, A.; Koiwai, K.; Kono, K. Gene delivery to dendritic cells mediated by complexes of lipoplexes and pH-sensitive fusogenic polymer-modified liposomes, J Control Release,2008,130,77-83.
    [119]Weecharangsan, W.; Opanasopit, P.; Ngawhirunpat, T.; Apirakaramwong, A.; Rojanarata, T.; Ruktanonchai, U.; Lee, R. J. Evaluation of chitosan salts as non-viral gene vectors in CHO-K1 cells, Int J Pharm,2008,348,161-8.
    [120]Lavertu, M.; Methot, S.; Tran-Khanh, N.; Buschmann, M. D. High efficiency gene transfer using chitosan/DNA nanoparticles with specific combinations of molecular weight and degree of deacetylation, Biomaterials,2006,27,4815-24.
    [121]Dastan, T.; Turan, K. In vitro characterization and delivery of chitosan-DNA microparticles into mammalian cells, J Pharm Pharm Sci,2004,7,205-14.
    [122]Kim, T. H.; Nah, J. W.; Cho, M. H.; Park, T. G.; Cho, C. S. Receptor-mediated gene delivery into antigen presenting cells using mannosylated chitosan/DNA nanoparticles, J Nanosci Nanotechnol,2006, 6,2796-803.
    [123]Kim, T. H.; Jin, H.; Kim, H. W.; Cho, M. H.; Cho, C. S. Mannosylated chitosan nanoparticle-based cytokine gene therapy suppressed cancer growth in BALB/c mice bearing CT-26 carcinoma cells, Mol Cancer Ther,2006,5,1723-32.
    [124]Zhou, X.; Liu, B.; Yu, X.; Zha, X.; Zhang, X.; Chen, Y.; Wang, X.; Jin, Y.; Wu, Y.; Shan, Y.; Liu, J.; Kong, W.; Shen, J. Controlled release of PEI/DNA complexes from mannose-bearing chitosan microspheres as a potent delivery system to enhance immune response to HBV DNA vaccine, J Control Release,2007,121,200-7.
    [125]Ng, S. C.; Plamondon, S.; Kamm, M. A.; Hart, A. L.; A1-Hassi, H. O.; Guenther, T.; Stagg, A. J.; Knight, S. C. Immunosuppressive effects via human intestinal dendritic cells of probiotic bacteria and steroids in the treatment of acute ulcerative colitis, Inflamm Bowel Dis.
    [126]Kanazawa, T.; Takashima, Y.; Murakoshi, M.; Nakai, Y.; Okada, H. Enhancement of gene transfection into human dendritic cells using cationic PLGA nanospheres with a synthesized nuclear localization signal, Int J Pharm,2009,379,187-95.
    [127]Wang, C.; Ge, Q.; Ting, D.; Nguyen, D.; Shen, H. R.; Chen, J.; Eisen, H. N.; Heller, J.; Langer, R.; Putnam, D. Molecularly engineered poly(ortho ester) microspheres for enhanced delivery of DNA vaccines, Nat Mater,2004,3,190-6.
    [128]Thiele, L.; Merkle, H. P.; Walter, E. Phagocytosis and phagosomal fate of surface-modified microparticles in dendritic cells and macrophages, Pharm Res,2003,20,221-8.
    [1291 Ali, O. A.; Mooney, D. J. Sustained GM-CSF and PEI condensed pDNA presentation increases the level and duration of gene expression in dendritic cells, J Control Release,2008,132,273-8.
    [130]Cubillos-Ruiz, J. R.; Engle, X.; Scarlett, U. K.; Martinez, D.; Barber, A.; Elgueta, R.; Wang, L.; Nesbeth, Y.; Durant, Y; Gewirtz, A. T.; Sentman, C. L.; Kedl, R.; Conejo-Garcia, J. R. Polyethylenimine-based siRNA nanocomplexes reprogram tumor-associated dendritic cells via TLR5 to elicit therapeutic antitumor immunity, JClin Invest,2009,119,2231-44.
    [131]Mannherz, O.; Mertens, D.; Hahn, M.; Lichter, P. Functional screening for proapoptotic genes by reverse transfection cell array technology, Genomics,2006,87,665-72.
    [132]Okazaki, A.; Jo, J.; Tabata, Y. A reverse transfection technology to genetically engineer adult stem cells, Tissue Eng,2007,13,245-51.
    [133]Holladay, C.; Keeney, M.; Greiser, U.; Murphy, M.; O'Brien, T.; Pandit, A. A matrix reservoir for improved control of non-viral gene delivery, J Control Release,2009,136,220-5.
    [134]Lei, Y.; Segura, T. DNA delivery from matrix metalloproteinase degradable poly(ethylene glycol) hydrogels to mouse cloned mesenchymal stem cells, Biomaterials,2009,30,254-65.
    [135]Jang, J. H.; Bengali, Z.; Houchin, T. L.; Shea, L. D. Surface adsorption of DNA to tissue engineering scaffolds for efficient gene delivery, J Biomed Mater Res A,2006,77,50-8.
    [136]Vujanovic, L.; Ranieri, E.; Gambotto, A.; Olson, W. C.; Kirkwood, J. M.; Storkus, W. J. IL-12p70 and IL-18 gene-modified dendritic cells loaded with tumor antigen-derived peptides or recombinant protein effectively stimulate specific Type-1 CD4+T-cell responses from normal donors and melanoma patients in vitro, Cancer Gene Ther,2006,13,798-805.
    [1371 Tong, X. M.; Zheng, S. E.; Bader, A.; Yao, H. P.; Wu, N. P.; Altmeyer, P.; Brockmeyer, N. H.; Jin, J. Construction of expression vector of hTERT-hIL18 fusion gene and induction of cytotoxic T lymphocyte response against hTERT, Eur J Med Res,2008,13,7-14.
    [138]Frankenberger, B.; Regn, S.; Geiger, C.; Noessner, E.; Falk, C. S.; Pohla, H.; Javorovic, M.; Silberzahn, T.; Wilde, S.; Buchner, A.; Siebels, M.; Oberneder, R.; Willimsky, G.; Pezzutto, A.; Blankenstein, T.; Schendel, D. J. Cell-based vaccines for renal cell carcinoma:genetically-engineered tumor cells and monocyte-derived dendritic cells, World J Urol,2005,23,166-74.
    [139]Zhu, X. P.; Chen, Z. Z.; Hu, J. D.; Li, C. T.; Yang, T.; Xu, Z. S. [Induction of anti-lymphoma cytotoxic T cell effect by dendritic cells transfected with recombinant adenovirus vectors carrying survivin gene], Zhongguo Shi Yan Xue Ye Xue Za Zhi,2007,15,591-3.
    [140]Xiong, W.; Candolfi, M.; Liu, C.; Muhammad, A. K..; Yagiz, K.; Puntel, M.; Moore, P. F.; Avalos, J.; Young, J. D.; Khan, D.; Donelson, R.; Pluhar, G. E.; Ohlfest, J. R.; Wawrowsky, K.; Lowenstein, P. R.; Castro, M. G. Human Flt3L generates dendritic cells from canine peripheral blood precursors: implications for a dog glioma clinical trial, PLoS One,5, e11074.
    [141]Smits, E. L.; Anguille, S.; Cools, N.; Berneman, Z. N.; Van Tendeloo, V. F. Dendritic cell-based cancer gene therapy, Hum Gene Ther,2009,20,1106-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700