多相流颗粒运动特性的激光测试技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多相流在能源、环境和化工等领域应用广泛,但是由于多相流的复杂性,目前的测试技术还远远不能满足对多相流运动特性以及工业在线测量的需求。本文针对多相流研究和测试中的几个难点,对若干激光测试技术及其应用进行了研究。
     首先,把高速数字摄像技术应用到了冷态循环流化床稀相区固相颗粒的旋转和碰撞等微观层面运动特性的研究中。探讨了该测试系统进行实际气固流场中颗粒旋转测量可行性,并提出了四种颗粒转速的判别方法:旋转角度人工量取法,数圈法,基于转轴重建的转速算法和基于相关性分析的计算机自动识别法。其中转轴重建算法可确定流场中部分颗粒的转轴三维方向,并比较精确地测定其转速。而计算机自动识别算法主要针对旋转轴垂直或近似垂直于拍摄平面颗粒转速的测定;比较详细地分析了颗粒转速测量过程中的影响测量准确性和可信度的若干不确定因素;理论预测了流化床典型工况下颗粒最大转速;用颗粒轨迹验证法对所测颗粒转速的合理性进行了验证;提出了双帧频拍摄方法,有效地提高了颗粒转速测量范围。
     对一截面为200×200 mm高为4 m的冷态循环流化床稀相区的气固两相流进行了颗粒旋转和碰撞特性的实验研究。1)用统计的方法研究了影响颗粒旋转的因素,结果表明:在相同的流场区域中,小颗粒的平均转速高于大颗粒;同一粒径档的颗粒,平均水平横向运动速度大,颗粒的平均转速就高,但是平均垂直运动速度对颗粒转速影响较小;同一条件下,不规则颗粒的平均转速明显高于规则球形颗粒;随着流场区域颗粒碰撞频率的增加,颗粒的平均转速升高;2)对稀相区的颗粒平均转速空间分布特性进行了统计分析。研究表明,在同一工况下,稀相区横向截面上边壁区域的颗粒平均转速高于中心区域,在垂直高度方向,随着高度的增加,颗粒平均转速有降低的趋势。运行参数对颗粒平均转速空间分布的影响有:随着表观气速的增加,截面边壁区域的颗粒平均转速明显增加,但截面中心区域则无明显变化;循环物料量对颗粒平均转速分布的影响恰恰相反;而随着床料静止高度的增加,截面边壁和中心区域的颗粒平均转速均有所提高。3)对颗粒的碰撞率进行实验研究,结果表明,颗粒的碰撞率近似与颗粒浓度的平方成正比,其规律与其他学者通过分子动力学理论类比所得的碰撞率公式相符,但是需要附加一个修正系数,根据本实验的结果分析,该修正系数可取为0.42-0.68。另外,还对颗粒碰撞参数进行实验研究。
     其次,提出了一种便携式的和可用于在线测量的基于近后向散射的激光多普勒测量系统BLDMS,该技术基于多普勒原理测速和近后向散射光强测量粒径的原理。为了研究近后向散射测量不规则颗粒粒径分布的性能,分别进行了理论和实验研究。在理论模拟中,用散射响应带描述了实际不规则颗粒的散射响应特性,并用浮动系数k进行了表征。通过对单峰和双峰分布的多分散不规则颗粒群的详细模拟测试,表明了基于近后向散射的多普勒测量系统应用于不规则颗粒粒径分布的测试是可行的。在此基础上,自行搭建了实验系统,并利用该系统对玻璃珠和石英砂颗粒流进行了研究,主要实验内容包括转换矩阵和颗粒平均散射响应曲线的标定实验和已知颗粒群的粒径分布测试实验。结果表明,BLDMS能够很好地用于多相流中透明或者不透明不规则颗粒的速度、粒径和浓度分布的测试。
     最后,利用基于成像的激光相关测速技术ILCV对脉冲喷嘴出口附近高浓度的气液两相流速度场进行测试。用广义米氏理论的程序理论分析了ILCV光学系统,研究了颗粒经过测量体时产生的光信号的特点以及频谱分布,重点研究了ILCV测量体在光轴方向的有效长度。对ILCV信号处理进行研究,比较系统地研究窗函数、信号预平移、插值等辅助方法对数据处理的作用,相关性计算中各种参数的选取,以及信号的噪声、疏密等参数对计算结果的影响;搭建了实验测试平台和喷雾系统,对低速脉冲喷雾进行了详细测试,研究了不同脉冲宽度下的喷雾速度场以及喷嘴出口附近喷雾速度轴向和径向分布规律。一系列测试研究表明,ILCV可以很好地应用于喷嘴出口附近区域喷雾速度场的测量。
Multi-phase flows have wide applications in the fields of Energy, Chemical and Environmental engineerings. Examples are pneumatic conveying, fluidized beds, sprays, vertical risers, particle separation in cyclones, mixing devices, and others. Due to the complexity of themselves, however, the present measurement techniques have not been developed so far to meet all the demands in the dynamical researches of multi-phase flows and on-line and portable measurements. Concerning with some difficulties encountered in this field, this paper aims mainly to carry out studies of several laser-based measurement techniques and their applications in the multi-phase flows.
     First, a high-speed digital imaging system was used to visualize in a micro-scale level the motion behavior of spherical glass beads with an average diameter of about 0.5 mm in the upper dilute zone of a cold CFB riser with a dimension of 200 mm×200 mm×4 m(H). The particle rotation and collision motions were investigated. The high-speed digital imaging system is mainly composed of a high-speed digital camera, a high power laser and corresponding digital imaging processing procedures. Four kinds of judgement methods for particle rotation speed were presented. Three of them are manual determinations and the other is digital image processing method based on correlation analysis. Among them, the method based on reconstruction of rotation axis provides one to obtain simultaneously the direction of rotation axis and the relatively correct particle rotation speed. The method based on correltion analysis is only aimed to those particles whose rotation axes are perpendicular or nearly perpendicular to the object plane. The maximal possible rotation speeds for particles in CFB with typical operation conditions are theoretically predicted based on particle collision. The reliability of obtained particle rotation speeds was also verified by a validation method based on particle's trajectory. Meanwhile, a dual-frequency imaging method was presented, which has been shown to be effective to enlarge the measurable range of rotation speed under finite recording rates of the camera.
     Combined with statistical analysis, the characteristics of particle rotation and collision were carried out and the results are as follows: 1) the effects on particle rotation speed were studied. It is shown that the average rotation speed of small particles is higher than that of large ones in the same testing area at the same operation condition; for the particles within the same size range, some of which with relative higher horizontal translational velocity components may be found to be with higher rotation speeds statistically, but the particle's vertical translational velocity component may have a little effect on its rotation speed; the average rotation speed of irregular particles is much higher than that of spherical particles; and the collision rate in the testing area may take great effect on particle rotation; 2) the spatial distribution of average rotation speeds in the upper dilute phase zone of the operating CFB riser has been analyzed. It is shown that in the same working condition, the average rotation speed for particles near wall area is higher than that in the center area. And there is a decrease in the average rotation speed when the height of testing area increases, i.e. in the vertical direction. The effects of operation parameters on the spatial distribution of average rotation speeds have also been investigated. The results show that the increasing superficial gas velocity impoves the aveage rotation speed of particles near wall area but takes nearly no effects on that in the center area. The external solids mass flux, however, takes the opposite effect. And the average rotation speeds of particles in both areas are found to increase as the total amount of bed material increases; 3) the collision rate as well as collision properties is experimentally measured. The collision rate is found to be proportional to the square of particle number density, which coincides with the collision theory derived according to the analogy of kinetic theory of gases. It is also shown that, however, this theoretical model totally overestimates the real collision rates at all particle number densities investigated in the experiment. The author suggests that this discrepancy may be corrected by a coefficient a with values of 0.42-0.68. The measurement results of collision properties based on about 17 particle collision events agrees well with the Walton's hard-sphere collision model and the three collision parameters, i.e. the average coefficient of frictionμ, the normal and tangential coefficients of restitution e andβ_0, for the glass beads are measured.
     Then, to be capable of simultaneously measureing the velocity, size distribution, and density for irregular particles embedded in flows, a Backscatter Laser Doppler measurement system (BLDMS) based on near backward scattering mode was presented. The particle velocity is obtained by the well known Doppler Effect, while the near backward scattered powers are used to unfold particle size distribution. The feasibility and performance of particle size distribution measured by near backward scattering mode are intensively investigated both theoretically and experimentally. In the theoretical simulation, the scattering response character of irregular particles is described by using a response band with a floating coefficient K rather than a response curve. The simulation work is done for both typical unimodal and multi-modal size distributions, and the results verify the feasibility of the method. In the experiemental study, a measurement system of BLDMS with near backward scattering mode was established, using which preliminary experiments on both spherical glass beads and irregular quartz sands particulate flows were conducted. The experiments include the calibration experiement which provides the inversion matrix and the average scattered response function for particles and the verification experiment which measures the size distribution of the pre-known particulate flow. The results show that BLDMS is very suitable to conduct size distributuion measurements for irregular particles and therefore BLDMS is attractive as a portable and on-line measurement method.
     At last, an imaging-based Laser Correlation Velocimetry (ILCV) is presented to conduct velocity measurements of high density gas-liquid two-phase flow at the first break up zone of a pulsed spray. The imaging system is analyzed by using a rigorous generalized Lorenz-Mie theory (GLMT) algorithm and the light signal as well as its frequency spectrum obtained by ILCV system when a spherical particle passes through the measurement volumes is modeled. And also the effective length of the measurement volumes is studied. Signal processing methods concerning with ILCV are intensively investigated with several parameters in considerations. An ILCV experimental setup is established and with which a low-velcoity high-density gas-liquid flow very near to the pulsed injector exit is tested. A series of experiments show that ILCV can be well applied to the velocity measurements of high-density gas-liquid flows, especially for sprays.
引文
[1].吴学成,王勤辉,骆仲泱,方梦祥,岑可法.气化参数影响气流床煤气化的模型研究(Ⅱ)模型预测及分析.浙江大学学报(工学版),2004,38(11):1483-1489.
    [2].吴学成,王勤辉,骆仲泱,方梦祥,岑可法.气化参数影响气流床煤气化的模型研究(Ⅰ)模型建立及验证.浙江大学学报(工学版),2004,38(10):1362-1365&1386.
    [3].吴学成,王勤辉,骆仲泱,方梦祥,岑可法.不同常压流化床煤气化方案的模型预测Ⅱ-模型预测及分析.燃料化学学报,2004,32(3):292-296.
    [4].吴学成,王勤辉,骆仲泱,方梦祥,岑可法.不同常压流化床煤气化方案的模型预测Ⅰ-模型建立及验证.燃料化学学报,2004,32(3):287-291.
    [5].吴学成,王勤辉,骆仲泱,高琼,方梦祥,岑可法.高速数字摄影应用于流化床内颗粒旋转特性的测试.中国电机工程学报,2005,25(17):72-77.
    [6].骆仲泱,吴学成,王勤辉,高琼,方梦祥,岑可法.循环流化床中颗粒旋转特性.化工学报,2005,56(10):1869-1874.
    [7].王勤辉,高琼,石惠娴,吴学成,骆仲泱,岑可法.循环流化床中的颗粒团形成、结构及其运动.浙江大学学报(工学版),2006,40(1):118-122.
    [8]. Arastoopour H. Numerical simulation and experimental analysis of gas/solid flow systems: 1999 Fluor-Daniel Plenary lecture. Powder Technology, 2001, 119(2-3): 59-67.
    [9]. Benyahia S., Arastoopour H., Knowlton T. M., Massah H. Simulation of particles and gas flow behavior in the riser section of a circulating fluidized bed using the kinetic theory approach for the particulate phase. Powder Technology, 2000, 112(1-2): 24-33.
    [10]. Heinl E., Bohnet M. Calculation of particle-wall adhesion in horizontal gas-solids flow using CFD. Powder Technology, 2005, 159(2): 95-104.
    [11]. Singh P., Hesla T. I., Joseph D. D. Distributed Lagrange multiplier method for particulate flows with collisions. International Journal of Multiphase Flow, 2003, 29(3): 495-509.
    [12]. Sommerfeld M. Validation of a stochastic Lagrangian modelling approach for inter-particle collisions in homogeneous isotropic turbulence. International Journal of Multiphase Flow, 2001, 27(10): 1829-1858.
    [13]. Chert M., Kontomaris K., McLaughlin J. B. Direct Numerical Simulation of Droplet Collisions in a Turbulent Channel Flow. Part II: collision rates. International Journal of Multiphase Flow, 1999, 24(7): 1105-1138.
    [14]. Ling W., Chung J. N., Troutt T. R., Crowe C. T. Direct numerical simulation of a three-dimensional temporal mixing layer with particle dispersion. J. Fluid Mech., 1998, 358(10): 61-65.
    [15]. Chen M., Kontomaris K., McLaughlin J. B. Direct Numerical Simulation of Droplet Collisions in a Turbulent Channel Flow. Part I: collision algorithm. International Journal of Multiphase Flow, 1999, 24(7): 1079-1103.
    [16]. DANTECDYNAMICS. Laser Doppler Anemometry: Introduction to principles and applications.1999. http://www.dantecdynamics.com/Download/slideshow/LDA/Ida.zip.
    [17]. Kuroki H., Horio M. The Flow Structure of a Three-Dimensional Circulation Fluidized Bed Observed by the Laser Sheet Technique. Circulation Fluidized Bed Technology Ⅳ, Proc. 4th Int. Conf. Circulating Fluidized Beds, Oxford, 1993: 77-84.
    [18]. Horio M., Kuroki H. Three-dimensional flow visualization of dilutely dispersed solids in bubbling and circulating fluidized beds. Chemical Engineering Science, 1994, 49(15): 2413-2421.
    [19]. Kadambi J. R., Martin W. T., Amirthaganesh S., Wernet M. P. Particle sizing using particle imaging velocimetry for two-phase flows. Powder Technology, 1998, 100(2-3): 251-259.
    [20]. Miyazaki K., Chert G., Yamamoto F., Ohta J.-i., Mural Y., Horii K. PIV measurement of panicle motion in spiral gas-solid two-phase flow. Experimental Thermal and Fluid Science, 1999, 19(4):194-203.
    [21].石惠娴.循环流化床流动特性PIV测试和数值模拟[博士学位论文].杭州:浙江大学,2003.
    [22].康琦.体视3D-PIV技术及其初步应用[博士学位论文].北京:北京航空航天大学,1995.
    [23]. Brucker C. Study of the three-dimensional flow in a T-junction using a dual-scanning method for three-dimensional scanning-particle-image velocimetry (3-D SPIV). Experimental Thermal and Fluid Science, 1997, 14(1): 35-44.
    [24]. Pu Y., Meng H. An advanced off-axis holographic particle image velocimetry (HPIV) system. Experiments in Fluids, 2000, 29(2): 184-197.
    [25]. Pu Y., Song X., Meng H. Off-axis holographic particle image velocimetry for diagnosing particulate flows. Experiments in Fluids, 2000, 29(7): S117-S128.
    [26]. Pu S. L., Allano D., Patte-Rouland B., Malek M., Lebrun D., Cen K. F. Particle field characterization by digital in-line holography: 3D location and sizing. Experiments in Fluids, 2005, 39(1): 1-9.
    [27]. DANTECDYNAMICS. Principles of Phase Doppler Anemometry. 2000. http://www.dantecdynamics.com/Download/slideshow/PDA/pda.zip.
    [28]. Bachalo W. D., Houser M. J. Phase/Doppler spray analyzer for simultaneous measurements of drop size and velocity distributions. Opt. Eng., 1984, 23: 583-590.
    [29]. Durst F., Zaré M. Laser Doppler measurements in two-phase flows. Proceedings of LDA-75 Symposium, Technical University of Denmark, Copenhagen, 1975: 403-429.
    [30]. Schodl R., Rohle I., Willert C., Fischer M., Heinze J., Laible C., Schilling T. Doppler global velocimetry for the analysis of combustor flows. Aerospace Science and Technology, 2002, 6(7): 481-493.
    [31]. Ainsworth R. W., Thorpe S. J., Manners R. J. A new approach to flow-field measurement--A view of Doppler global velocimetry techniques. International Journal of Heat and Fluid Flow, 1997, 18(1): 116-130.
    [32]. Morrison G. L., Gaharan C. A., Deotte J. R. E. Doppler global velocimetry: problems and pitfalls. Flow Measurement and Instrumentation, 1995, 6(2): 83-91.
    [33]. Jones A. R., Parasram N. T., Taylor A. M. K. P. Numerical simulation of the sizing performance of the shadow Doppler velocimeter (SDV). Measurement Science and Technology, 2002, 13(3): 317-330.
    [34]. Hardalupas Y., Hishida K., Maeda M., Morikita H., Taylor A. M. K. P., Whitelaw J. H. Shadow Doppler technique for sizing particles of arbitrary shape. Applied Optics, 1994, 33(36): 8417-8426.
    [35]. Matsuura K., Komaki M., Ueyama K., Hironaga K. Shadow Doppler velocimetry with double fiber-array sensors. Experiments in Fluids, 2004, 36(1): 11-22.
    [36]. Morikita H., Taylor A. M. K. P. Application of shadow Doppler velocimetry to paint spray: potential and limitations in sizing optically inhomogeneous droplets. Meas. Sci. Technol., 1998, 9(2): 221-231.
    [37].浦世亮,浦兴国,袁镇福,岑可法,MEES L.,LEBRUN D.激光干涉气液两相流测量图像自动判读方法的研究.中国电机工程学报,2004,24(2):201-205.
    [38].浦兴国,浦世亮,袁镇福,岑可法.气液两相流速度及粒径分布激光干涉测量方法的研究.光学学报,2005,25(10):1334-1338.
    [39]. Glover A. R., Skippon S. M., Boyle R. D. Interferometric laser imaging for droplet sizing: a method for droplet-size measurement in sparse spray systems. Applied Optics, 1995, 34(36): 8409-8421.
    [40]. Lin S. M., Waterman D. R., Lettington A. H. Measurement of droplet velocity, size and refractive index using the pulse displacement technique. Measurement Science and Technology, 2000, 11(6): L1-L4.
    [41]. Cessou A., Meier U., Stepowski D. Applications of planar laser induced fluorescence in turbulent reacting flows. Measurement Science and Technology, 2000, 11 (7): 887-901.
    [42]. Koochesfahani M., Cohn R., MacKinnon C., Koochesfahani M. Simultaneous whole-field measurements of velocity and concentration fields using a combination of MTV and LIF. Measurement Science and Technology, 2000, 11(9): 1289-1300.
    [43]. Allen T. Particle size measurement. Vol 1. London: Chapman & Hall, 1997.
    [44]. Raphael M., Rohani S. On-line estimation of solids concentrations and mean particle size using a turbidimetry method. Powder Technology, 1996, 89(2): 157-163.
    [45].王乃宁,尉士民.排放源颗粒物浓度及粒径连续监测技术的研究.工程热物理学报,1998,20(2):238-241.
    [46]. Wang N. N., Wei J. M., Cai X. S., Zheng G., Yu X. H. Optical measurement of wet steam in turbines. J. Engineering for Gas Turbines and Power (ASME), 1998, 120(4): 867-871.
    [47].谭显祥,韩立石.高速摄影技术.北京:原子能出版社,1990.
    [48].冯文灏.工业测量.武汉:武汉大学出版社,2004.
    [49]. Cheung K., Ng W. B., Zhang Y. Three dimensional tracking of particles and their local orientations. Flow Measurement and Instrumentation, 2005, 16(5): 295-302.
    [50]. Ng W. B., Zhang Y. Stereoscopic imaging and reconstruction of the 3D geometry of flame surfaces. Experiments in Fluids, 2003, 34(4): 484-493.
    [51]. Carrel S., Ghassemzadeh M. R. Viscosity and spray formation studies of coal-oil mixtures. Fuel, 1981,60(6):529-533.
    [52].成晓北,黄荣华.柴油机燃油喷射雾化的PIV测量试验研究.燃烧科学与技术,2003,9(3):224-228.
    [53]. Chen J. C., Taniguchi M., Ito K. Observation of laser ignition and combustion of pulverized coals. Fuel, 1995, 74(3): 323-330.
    [54]. Anson D., Moles F. D., Street P. J. Structure and surface area of pulverized coal during combustion. Combustion and Flame, 1971, 16(3): 265-274.
    [55]. Ibrahim S. S., Hargrave G. K., Williams T. C. Experimental investigation of flame/solid interactions in turbulent premixed combustion. Experimental Thermal and Fluid Science, 2001, 24(3-4): 99-106.
    [56]. Werther J. Measurement techniques in fluidized beds. Powder Technology, 1999, 102(1): 15-36.
    [57].刘双科,徐旭常,邓国强,祁海鹰,陈昌和.高速摄像技术在循环床锅炉出口区域颗粒运动测量中的应用.流体力学实验与测量,2001,15(3):62-66.
    [58]. Noymer P. D., Hyre M. R., Glicksman L. R. The effect of bed diameter on near-wall hydrodynamics in scale-model circulating fluidized beds. International Journal of Heat and Mass Transfer, 2000, 43(19): 3641-3649.
    [59].孙金华,卢平,刘义.空气中悬浮金属微粒子的燃烧特性.南京理工大学学报(自然科学版),2005,29(5):582-585&622.
    [60].张建生,吕青,孙传东,卢笛,陈良益.高速摄影技术对水中气泡运动规律的研究.光子学报,2000,29(10):952-955.
    [61]. Cheng W., Murai Y., Sasaki T., Yamamoto F. Bubble velocity measurement with a recursive cross
    correlation PIV techniaue. Flow Measurement and Instrumentation. 2005. 16(1): 35-46.
    [62].郑水华.气固两相圆湍射流拟序结构的PIV测试及研究[硕士学位论文].杭州:浙江大学,2004.
    [63]. Zhang D. D., Xu H. Q., He F. Particle imaging velocimetry of instantaneous velocity and concentration distributions in gas-solid two-phase jet flows. J Ysinghua Univ(Sci & Tech), 2003, 43(11): 1491-1494.
    [64]. Xu H. Q., He W. Q., Jie L. L. The instantaneous measurements of particle concentration in gas-solid two phase flow using PIV technique. Experiments and Measurements in Fluid Mechanics,2003, 17(3): 53-56.
    [65]. Sun J., Dobashi R., Hirano T. Concentration profile of particles across a flame propagating through an iron particle cloud. Combustion and Flame, 2003, 134(4): 381-387.
    [66]. Sun J. H., Dobashi R., Hirano T. Temperature profile across the combustion zone propagating through an iron particle cloud. Journal of Loss Prevention in the Process Industries, 2001, 14(6): 463-467.
    [67].陈敏,何俊华,王锋,陈良益.气泡幕的相关测速技术.光电子激光,2005,16(10):1231-1234.
    [68].李桂春.风洞实验中高速摄影的应用.第二届全国高速摄影与光子学会议论文选集,乐山,1982:258-264.
    [69]. Goodall D. H. J. High speed cine film studies of plasma behaviour and plasma surface interactions in tokamaks. Journal of Nuclear Materials, 1982, 111-112:11-22.
    [70].杜长明.滑动弧放电等离子体降解气相及液相中有机污染物的研究[博士学位论文].杭州:浙江大学,2006.
    [71]. Rubinow S. I., Keller J. The transverse force on a spinning sphere moving in a viscous fluid. J. Fluid Mechnics, 1961, 11(2): 447-459.
    [72]. Macoll J. H. Aerodynamics of a spinning sphere. Journal of the Royal Aeronautical Society, 1928, 32: 777-798.
    [73]. Davies J. M. The aerodynamics of Golf balls. J. Applied Physics, 1949, 20: 821-828.
    [74]. Tsuji Y., Morkawa Y, Mizumo O. Experimental measurement of he Magnus force on a rotating sphere at low Reynolds numbers. J. Fluid Engineering, 1985, 107(3): 484-488.
    [75]. Oesterlé B., Dinh T. B. Experiments on the lift of a spinning sphere in a range of intermediate Reynolds numbers Experiments in Fluids, 1998, 25(1): 16-22.
    [76]. Niazmand H., Renksizbulut M. Surface effects on transient three-dimensional flows around rotating spheres at moderate Reynolds numbers. Computers & Fluids, 2003, 32(10): 1405-1433.
    [77]. Yuan Z. L., Ma M., Xu Y. Q. Study on Efect of particle rotation on fluidizing behavior using discrete numerical simulation method. J. Combustion Science and Technology, 2001, 7(3): 238-241 (in Chinese).
    [78]. Bagchi P., Balachandar S. Effect of free rotation on the motion of a solid sphere in linear shear flow at moderate Re. Physics of Fluids, 2002, 14(8): 2719-2737.
    [79]. Best J. L. The influence of particle rotation on wake stability at particle Reynolds numbers, ReP<300--implications for turbulence modulation in two-phase flows. International Journal of Multiphase Flow, 1998, 24(5): 693-720.
    [80]. Wang D. G., Satwinder S. S., Campbell C. S. Particle rotation as a heat transfer mechanism. International Journal of Heat and Mass Transfer, 1989, 32(8): 1413-1423.
    [81]. Jonathan M. B., Iain D. B. Particle rotation effects in rarefied two-phase plume flows. The 24th Rarified Gas Dynamics Conference, Bari, Italy, 2004. http://hpcc.engin.umich.edu/CFD/research/NGPD/Publications/rgd-24-burt.pdf.
    [82]. Peng X. J., Tomita Y., Tashiro H. Effect of particle-particle collision and particle rotation upon floating mechanism of coarse particles in horizontal pneumatic pipe. JSME international journal. Series B : Fluids and thermal engineering, 1994, 37(3): 485-490.
    [83]. Kajishima T. Influence of particle rotation on the interaction between particle clusters and particle-induced turbulence. International Journal of Heat and Fluid Flow, 2004, 25(5): 721-728.
    [84]. Sun J., Battaglia F. Effects of particle rotation on the hydrodynamic modeling of segregation in gas-fluidized beds. Proceedings of IMECE2004, 2004 ASME International Mechanical Engineering Congress & Exposition Anaheim, California, USA, November 13-19, 2004, 2004: IMECE2004-62316. http://www.me.iastate.edu/multipflow/Papers/IMECE2004-62316-final.pdf.
    [85]. Sun J., Battaglia F. Hydrodynamic modeling of particle rotation for segregation in bubbling gas-fluidized beds. Chemical Engineering Science, 2006, 61 (5): 1470-1479.
    [86]. Chegroun N., Oesterlé B. Etude numerique de la trainee, de la portance et du couple sur une sphere en translation et en rotation. Actes 11eme Congres Francais de Mecanque, Lille-Villeneuve d'Ascq, France, 1993: 81-84.
    [87]. Rice M. A., Willetts B. B., Mcewan I. K. Observations of collisions of saltating grains with a granular bed from high-speed film. Sedimentology, 1996, 43(1): 21-31.
    [88]. White B. R. Two-phase measurements of saltating turbulent boundary layer flow. International Journal of Multiphase Flow, 1982, 8(5): 459-473.
    [89]. White B. R., Schulz J. C. Magnus effect in saltation. J. Fluid Mechnics, 1977, 81(3): 497-512.
    [90].刘华信.固体燃料质点在旋风炉内运动规律性的探讨[硕士学位论文].杭州:浙江大学,1965.
    [91]. Smoluchowski M. V. Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Losungen. Z. Phys. Chem, 1917, 92: 129.
    [92]. Suaffman P. G., Turner J. S. On the collision of drops in turbulenct clouds. J. Fluid Mech., 1956, 1: 16-30.
    [93]. Abrahamson J. Collision rates of small particles in a vigorously turbulent fluid. Chemical Engineering Science, 1975, 30(11): 1371-1379.
    [94]. Sommerfeld M., Zivkovic G. Recent advances in the numerical simulation of pneumatic conveying through pipe system. In: Hirsch, ed. Computational Methods in Applied Science First European Computational Fluid Dynamics. Brussels, 1992:201-212.
    [95]. Oesterlé B., Petitjean A. Simulation of particle-to-particle interactions in gas solid flows. International Journal of Multiphase Flow, 1993, 19(1): 199-211.
    [96]. Foerster S. F., Louge M. Y., Chang H., Allia K. Measurements of the collision properties of small spheres. Physics of Fluids, 1994, 6(3): 1108-1115.
    [97]. Labous L., Rosato A. D., Dave R. N. Measurements of collisional properties of spheres using high-speed video analysis. Physical Review E, 1997, 56(5): 5717.
    [98]. Fohanno S., Oesterlé B. Analysis of the effect of collisions on the gravitational motion of large particles in a vertical duct. International Journal of Multiphase Flow, 2000, 26(2): 267-292.
    [99]. Derjaguin B. V., Muller V. M., Mikhovich N. S., Toporov Y. P. Influence of contact electrification on the collision of elastic particles with a rigid surface. Journal of Colloid and Interface Science, 1987. 118(2): 553-563.
    [100].张文斌,祁海鹰,程旭,由长福,徐旭常.应用PTV技术对颗粒碰撞规律的研究.工程热物理学报.2002.23(Suppl.):193-196.
    [101]. Sommerfeld M. Modelling of particle-wall collisions in confined gas-particle flows. International Journal of Multiphase Flow, 1992, 18(6): 905-926.
    [102]. Schade K.-P., Erdmann H.-J., Petrak D. Experimental investigation of the particle-wall collision under particular consideration of the wall roughness. Proc. ASME Summer Meeting, San Diego, CA, 1996: 759-766.
    [103]. Schade K.-P., Hadrich T. Investigation of influence o wall roughness on particle-wall collision. Proc. 3rd Int. Conf. on Multiphase Flow (ICMF'98), Lyon, France, 1998.
    [104]. Lorenz A., Tuozzolo C., Louge M. Y. Measurements of impact properties of small, nearly spherical particles. Experimental Mechanics, 1997, 37(3): 292-298.
    [105]. Gorham D. A., Kharaz A. H. Results of particle impact tests.Impact Research Group Report IRG13. Milton Keynes, UK: The Open University, 1999.
    [106]. Naqwi A. A. Sizing of Irregular Particles Using a Phase Doppler System. Particle and Particle Systems Characterization, 1996, 13(6): 343-349.
    [107].吕宏波.PDA技术及其在非理想球形粒子特性测量中应用的研究[D].天津:天津大学,2000.
    [108]. Bonin M. P., Queiroz M. A parametric evaluation of particle-phase dynamics in an industrial pulverized-coal-fired boiler. Fuel, 1996, 75(2): 195-206.
    [109]. Bonin M. P., Queiroz M. Local particle velocity, size, and concentration measurements in an industrial-scale pulverized coal-fired boiler. Combustion and Flame, 1991, 85 (1-2): 121-133.
    [110]. Bonin M. P., Malcolmson A. P., Fang T. C., Muzio L. J. Optical Diagnostics for process Control: Application of a laser-based technique for real-time analysis of particle flow from a noil-fired combustors. Air & Waist Management Association Conference on Optical Remote Sensing for Environmental and Process Monitoring, San Francisco, CA, 1995: A04.01.03.
    [111]. Ulrich R., Hamann O. Fiber-optic particle sensor operating at elevated temperatures. In: H. Markl, ed. In-situ measuring techniques and dynamic modeling for multiphase flow systems, SFB 238 Progress Report. Hamburg, 1996: 15-35.
    [112]. Shao S., Arastoopour H. The flight time technique for simultaneous measurements of particle flow parameters using a Laser Doppler Anemometer(LDA). Fluidization VIII. Tours, France, 1995: 593-602.
    [113]. Yurteri C. U. An investigation of transport processes involved in flue gas desulfurization[PhD Thesis]. Case Western Reserve University, 1998.
    [114]. Adrian R. J. Twenty years of particle image velocimetry. Experiments in Fluids, 2005, 39(2): 159-169.
    [115]. Wu Z., Zhu Z., Huang Z. An experimental study on the spray structure of oxygenated fuel using laser-based visualization and particle image velocimetry. Fuel, 2006, 85(10-11): 1458-1464.
    [116]. Lee K. H., Lee C. H., Lee C. S. An experimental study on the spray behavior and fuel distribution of GDI injectors using the entropy analysis and PIV method. Fuel, 2004, 83(7-8): 971-980.
    [117]. Doudou A. Turbulent flow study of an isothermal diesel spray injected by a common rail system. Fuel, 2005, 84(2-3): 287-298.
    [118]. Lee C. S., Park S. W. An experimental and numerical study on fuel atomization characteristics of high-pressure diesel injection sprays. Fuel, 2002, 81(18): 2417-2423.
    [119]. Tillwick J., Uhlenwinkel V., Bauckhage K. Analysis of the spray forming process using backscattering phase-Doppler anemometry. International Journal of Heat and Fluid Flow, 1999, 20(5): 530-537.
    [120]. Chaves H., Knapp M., Kubitzek A., Obermeier F. High speed flow measurements within an injection nozzle. Laser Anemometry Advances and Applications, 1993: 265-272.
    [121]. Beversdorff M., Forster W., Schodl R., Jentink H. W. In-flight laser anemometry for aerodynamic investigations on an aircraft. Optics and Lasers in Engineering, 1997, 27(6): 571-586.
    [122]. Brummund U., Scheel F. Characterization of a supersonic flowfield using different laser based techniques. Proc. 10th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, 2000. http://in3.dem.ist.utl.pt/downloads/lxlaser2000/pdf/12 3.pdf.
    [123]. Ferguson T. V., Mcglynn R. D. Supersonic turbine nozzle flow measurements. 19th Aerospace Testing Seminar, 2000. http://www.engineeringatboeing.com/dataresources/NozzleFlowMeasurements.pdf.
    [124]. Ottavy X., Trebinjac I., Vouillarmet A. Treatment of L2F anemometer measurement volume distortions created by curved windows for turbomachinery applications. Measurement Science and Technology, 1998, 9:1511-1521.
    [125]. Sivo J. M., Acosta A. J., Brennen C. E., Caughey Y. K., Ferguson T. V., Lee G. A. Laser velocity measurements in the leakage annulus of a whirling shrouded centrifugal pump. FED-Vol. 191, Laser Anemometry- 1994: Advances and Applications. ASME. 1994.
    [126].黄宁,郑晓静.风沙跃移运动中的Magnus效应.兰州大学学报(自然科学版),2001,37(3):19-25.
    [127].岑可法,樊建人.煤粉颗粒在气流中的受力分析及其运动轨迹的研究.浙江大学学报,1987,21(6):1-11.
    [128].肖美添,刘华信,朱艳.工业炉旋风预燃器煤粉颗粒运动轨迹.华侨大学学报(自然科学版),2001.22(3):303-308.
    [129]. Hoomans B. P. B., Kuipers J. A. M., Briels W. J., van Swaaij W. P. M. Discrete particle simulation of bubble and slug formation in a two-dimensional gas-fluidised bed: A hard-sphere approach. Chemical Engineering Science, 1996, 51(1): 99-118.
    [130]. Goldschmidt M. J. V., Beetstra R., Kuipers J. A. M. Hydrodynamic modelling of dense gas- fluidised beds: comparison and validation of 3D discrete particle and continuum models. Powder Technologosy, 2004, 142(1): 23-47.
    [131].袁竹林,马明,徐益谦.离散数值模拟颗粒自转对流化床内颗粒流态的影响.燃烧科学与技术,2001,7(3):238-241.
    [132].岑可法,樊建人.工程气固多相流动的理论及计算.杭州:浙江大学出版社,1990.
    [133].Crowe C.,Sommerfeld M.,Tsuji Y.Multiphase flow with droplets and particles.New York:CRC Press,1998.
    [134].施学贵.冷态气-固两相流激光全息实验研究[博士学位论文].北京:清华大学,1988.
    [135].施学贵,徐旭常,冯俊凯.颗粒在湍流气流中运动的受力分析.工程热物理学报,1989,10(3):320-325.
    [136]. Lee H.-Y., Hsu I.-S. Investigation of Saltating Particle Motions. Journal of Hydraulic Engineering, 1994, 120(7): 831-845.
    [137]. Lee H. Y., Hsu I. S. Particle spinning motion during saltating process. Journal of Hydraulic Engineering, 1996, 122(10): 587-590.
    [138].惠遇甲,胡春宏.水流中颗粒跃移的运动学特征.水利学报,1991,(12):59-67.
    [139].黄国栋.“香蕉球”的动力学分析.大学科技,1989:18-20.
    [140].亢力强,郭烈锦.风沙跃迁中颗粒冲击起动的数值模拟.自然科学进展,2005,15(2):252-256.
    [141].亢力强,郭烈锦.风沙跃移中颗粒与多粒径床面碰撞的数值模拟.工程热物理学报,2006,27(1):82-84.
    [142]. Hui Y., Hu E. Saltation characteristics of particle motions in water. Shuili Xuebao, 1991, (12): 59-64(in Chinese).
    [143]. Tashiro H., Peng X., Tomita Y. Numerical prediction of saltation velocity for gas-solid two-phase flow in a horizontal pipe. Powder Technology, 1997, 91(2): 141-146.
    [144]. Kang L., Guo L. Eulerian-Lagrangian simulation of aeolian sand transport. Powder Technology, 2006, 162(2): 111-120.
    [145]. Nalpanis P., Hunt J. C. R., Barrett C. F. Saltating particles over flat beds. J. fluid Mechanics, 1993, 251: 661-685.
    [146]. Barkla H. M., Auchterlonie L. J. The magnus or robins effect on rotating spheres. J. Fluid Mech., 1971, 47(3): 437-448.
    [147].由长福,祁海鹰,徐旭常.煤粉颗粒所受Magnus力的数值模拟.中国工程热物理学报,2001,22(5):625-628.
    [148].袁竹林,徐益谦.从软、硬球模型探讨颗粒自转对流化状态的影响.工程热物理学报,2001,22(3):363-366.
    [149]. Lun C. K. K., Liu H. S. Numerical simulation of dilute turbulent gas-solid flows in horizontal channels. International Journal of Multiphase Flow, 1997, 23(3): 575-605.
    [150]. Ding J., Gidaspow D. A bubbling fluidization model using kinetic theory of granular flow. AIChE Journal, 1990, 36(4): 523-538.
    [151].万晓涛,郑雨,魏飞,金涌.循环流化床提升管气固湍流的计算流体力学模拟-K-e-K p-εp-(?)5参数双流体模型.化工学报,2002,53(5):461-468.
    [152].曹玉春,李晓东,严建华,池涌,岑可法.管式布风流化床密相区气固流动特性数值模拟.浙江大学学报(工学版),2005,39(6):795-800.
    [153]. Nieuwland J. J., Annaland M. v. S., Kuipers J. A. M., Swaaij W. P. M. v. Hydrodynamic modeling of gas/particle flows in riser reactors. AIChE Journal, 1996, 42(6): 1569-1582.
    [154]. I-kenya C. M., Sinclair J. L. Effects of particle-phase turbulence in gas-solid flows. AIChE Journal, 1997, 43(4): 853-869.
    [155]. Jenkins J. T., Zhang C. Kinetic theory for identical, frictional, nearly elastic spheres. Physics of Fluids, 2002, 14(3): 1228-1235.
    [156]. Goldschmidt M. J. V., Kuipers J. A. M., van Swaaij W. P. M. Hydrodynamic modelling of dense gas-fluidised beds using the kinetic theory of granular flow: effect of coefficient of restitution on bed dynamics. Chemical Engineering Science, 2001, 56(2): 571-578.
    [157]. Vainshtein P., Fichman M., Shapiro M., Moldavsky L., Gutfinger C. Fluidized bed in a confined volume. International Journal of Multiphase Flow, 1999, 25(6-7): 1431-1456.
    [158]. Goldshtein A., Shapiro M. Mechanics of collisional motion of granular materials. Part 1: general hydrodynamic equations. J. Fluid Mech., 1995, 282:75-114.
    [159]. Goldshtein A., Shapiro M., Moldavsky L., Fichman M. Mechanics of collisional motion of granular materials. Part 2: wave propagation through vibrofluidized granular layers. J. Fluid Mech., 1995, 287: 349-382.
    [160]. Ouyang J., Li J. Discrete simulations of heterogeneous structure and dynamic behavior in gas-solid fluidization. Chemical Engineering Science, 1999, 54(22): 5427-5440.
    [161]. Ouyang J., Li J. Particle-motion-resolved discrete model for simulating gas-solid fluidization. Chemical Engineering Science, 1999, 54(13-14): 2077-2083.
    [162]. Glowinski R., Pan Y. W., Hesla T. I., Joseph D. D., Periaux J. A Fictitious Domain Approach to the Direct Numerical Simulation of Incompressible Viscous Flow past Moving Rigid Bodies: Application to Particulate Flow. Journal of Computational Physics, 2001, 169(2): 363-426.
    [163]. Tsuji Y., Tanaka T., Yonemura S. Cluster patterns in circulating fluidized beds predicted by numerical simulation (discrete particle model versus two-fluid model). Powder Technology, 1998, 95(3): 254-264.
    [164].樊建人,姚军,张新育,岑可法.气固两相流中颗粒-颗粒随机碰撞新模型.工程热物理学报,2001,22(5):629-632.
    [165]. Wassen E., Frank T. Simulation of cluster formation in gas-solid flow induced by particle-particle collisions. International Journal of Multiphase Flow, 2001, 27(3): 437-458.
    [166]. Seibert K. D., Bums M. A. Simulation of fluidized beds and other fluid-particle systems using statistical mechanics. AIChE Journal, 1996, 42(3): 660-670.
    [167]. Kroger C., Drossinos Y. A random-walk simulation of thermophoretic particle deposition in a turbulent boundary layer. International Journal of Multiphase Flow, 2000, 26(8): 1325-1350.
    [168]. Chen X. Q., Pereira J. C. F. Efficient computation of particle dispersion in turbulent flows with a stochastic-probabilistic model. International Journal of Heat and Mass Transfer, 1997, 40(8):1727-1741.
    [169]. Berlemont A., Desjonqueres P., Gouesbet G. Particle lagrangian simulation in turbulent flows. International Journal of Muitiphase Flow, 1990, 16(1): 19-34.
    [170].欧阳洁,孙国刚,李静海.气固两相流模拟的随机离散模型.数值计算与计算机应用,2003,(2):88-100.
    [171]. Lun C. K. K. Numerical simulation of dilute turbulent gas-solid flows. International Journal of Multiphase Flow, 2000, 26(10): 1707-1736.
    [172]. Yonemura S., Tanaka T., Tsuji Y. Cluster formation in gas-solid flow predicted by the DSMC method. Gas-particle flows, ASME/FED, 1993, 166: 303-309.
    [173]. Tanaka T,, Yonemura S., Tsuji Y. Effect of particle properties on the structure of cluster. Gas- oarticle flows, AS/VIE/FED, 1995, 228: 297-302.
    [174].赵海波,柳朝晖,郑楚光,陈胤密,章骥.气固两相流中颗粒碰撞的Monte-Carlo数值模拟.计算力学学报,2005,22(3):299-304.
    [175]. Wang S., Liu H., Lu H., Liu W., Ding J., Li W. Flow behavior of clusters in a riser simulated by direct simulation Monte Carlo method. Chemical Engineering Journal, 2005, 106(3): 197-211.
    [176]. Triesch O., Bohnet M. Measurement and CFD prediction of velocity and concentration profiles in a decelerated gas-solids flow. Powder Technology. 2001.115(2): 101-113.
    [177].仇轶,由长福,祁海鹰,徐旭常.多相流动的直痿数值模拟进展.力学进展,2003,33(4):507-517.
    [178]. Hu H. H., Joseph D. D., Crochet M. J. Direct simulations of fluid particle motions. Thero. Comp. Fluid Dyn., 1992, 3(5): 285-306.
    [179]. Pan T. W., Joseph D. D., Bai R., Glowinski R., Sarin V. Fluidization of 1204 spheres: simulation and experiment. J. Fluid Mech., 2002, 451: 169-191.
    [180]. Dong Z., Liu X., Wang X., Li F., Zhao A. Experimental investigation of the velocity of a sand cloud blowing over a sandy surface. Earth Surface Processes and Landforms, 2004, 29(3): 343-358.
    [181]. Tanaka T., Tsuji Y. Numerical simulation of gas-solid two-phase flow in a vertical pipe: on the effect of inter-particle collision. In: Stock D. E., ed. Gas-solid Flows: ASME, 1991: 123-128.
    [182].刘安源,刘石.流化床内颗粒碰撞传热的理论研究.中国电机工程学报,2003,23(3):161-165.
    [183]. Sun J., Chen M. M. A theoretical analysis of heat transfer due to particle impact. International Journal of Heat and Mass Transfer, 1988, 31(5): 969-975.
    [184]. Delvosalle C., Vanderschuren J. Gas-to-particle and particle-to-particle heat transfer in fluidized beds of large particles. Chemical Engineering Science, 1985, 40(5): 769-779.
    [185]. Hu K. C., Mei R. Particle collision rate in fluid flows. Physics of Fluids, 1998, 10(4): 1028-1030.
    [186]. Alipchenkov V. M., Zaichik L. I. Particle collision rate in turbulent flow. Fluid Dynamics, 2001, 36(4): 608-618.
    [187]. Zaichik L. I., Simonin O., Alipchenkov V. M. Two statistical models for predicting collision rates of inertial particles in homogeneous isotropic turbulence. Physics of Fluids, 2003, 15(10): 2995-3005.
    [188]. Kruis F. E., Kusters K. A. The collision rate of particles in turbulent flow. Chemical engineering Communications, 1997, 158: 201-230.
    [189]. Mei R., Hu K. C. On the collision rate of small particles in turbulent flows. J. Fluid Mech., 1999, 391: 67-89.
    [190]. Williams J. J. E., Crane R. I. Particle collision rate in turbulent flow. International Journal of Multiphase Flow, 1983, 9(4): 421-435.
    [191]. You C., Zhao H., Cai Y., Qi H., Xu X. Experimental investigation of interparticle collision rate in particulate flow. International Journal of Multiphase Flow, 2004, 30(9): 1121-1138.
    [192].蔡毅,赵海亮,由长福,祁海鹰,徐旭常.颗粒碰撞率的实验研究.工程热物理学报,2004,25(6):974-976.
    [193]. Tsuji Y., Kawaguchi T., Tanaka T. Discrete particle simulation of two-dimensional fluidized bed. Powder Technology, 1993, 77(1): 79-87.
    [194]. Tsuji Y., Tanaka T., Ishida T. Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe. Powder Technology, 1992, 71(3): 239-250.
    [195]. Wang L.-P., Wexler A. S., Zhou Y. On the collision rate of small particles in isotropic turbulence. I. Zero-inertia case. Physics of Fluids, 1998, 10(1): 266-276.
    [196]. Goldschmidt M. J. V., Beetstra R., Kuipers J. A. M. Hydrodynamic modelling of dense gas- fluidised beds: Comparison of the kinetic theory of granular flow with 3D hard-sphere discrete particle simulations. Chemical Engineering Science, 2002, 57(11): 2059-2075.
    [197]. Mikami T., Kamiya H., Horio M. Numerical simulation of cohesive powder behavior in a fluidized bed. Chemical Engineering Science, 1998, 53(10): 1927-1940.
    [198]. Kawaguchi T., Tanaka T., Tsuji Y. Numerical simulation of two-dimensional fluidized beds using the discrete element method (comparison between the two- and three-dimensional models). Powder Technology, 1998, 96(2): 129-138.
    [199]. Gera D., Gautam M., Tsuji Y., Kawaguchi T., Tanaka T. Computer simulation of bubbles in large- particle fluidized beds. Powder Technology, 1998, 98(1): 38-47.
    [200]. Lun C., Savage S. B. A simple kinetic theory for granular flow of rough, inelastic, spherical particles. Journal of Applied Mechanics, 1987, 54(54): 47-53.
    [201]. Lun C. K. K., Bent A. A. Numerical simulation of inelastic frictional spheres in simple shear flow. J. Fluid Mech., 1994, 258: 335-353.
    [202]. Helland E., Occelli R., Tadrist L. Computational study of fluctuating motions and cluster structures in gas-particle flows. International Journal of Multiphase Flow, 2002, 28(2): 199-223.
    [203]. Helland E., Occelli R., Tadrist L. Numerical study of cluster formation in a gas-particle circulating fluidized bed. Powder Technology, 2000, 110(3): 210-221.
    [204]. Maw N., Barber J. R., Fawcett J. N. The Oblique Impact of Elastic Spheres. Wear, 1976, 38: 101-114.
    [205]. Luding S. Granular materials under vibration: Simulations of rotating spheres. Physical Review E, 1995, 52(4): 4442-4457.
    [206]. Wang Y., Mason M. T. Two-dimensional rigid-body collisions with friction. J. Applied Mech., 1992, 59: 635-642.
    [207].饶江,葛满初,徐建中,杨乃爽,毛靖儒,宫武旗,邹林,张玮.固体颗粒与通道壁面相互作用的实验研究.工程热物理学报,2003,24(1):134-136.
    [208]. Kharaz A. H., Gorham D. A., Salman A. D. Accurate measurement of particle impact parameters. Measurement Science and Technology. 1999. 10(1): 31-35.
    [209].岑可法,倪明江,骆仲泱,严建华,池涌,方梦祥,李绚天,程乐鸣.循环流化床锅炉理论设计与运行,第一版.北京:中国电力出版社,1998.
    [210].连瑞梅.三维图形的几何变换及其变换矩阵.潍坊学院学报,2005,5(4):76-78.
    [211]. Amir A. Naqwi F. D. Light Scattering Applied to LDA and PDA Measurements. Part 1: Theory and numerical treatments. Particle and Particle Systems Characterization. 1991, 8(1-4): 245-258.
    [212].陈杨,陈荣娟,郭颖辉.MATLAB 6.X图形编程与图像处理.西安:西安电子科技大学出版社,2002.
    [213].Rafael C.G.美.数字图像处理(第二版).北京:电子工业出版社,2003.
    [214]. Adrian R. J. Bibliography of particle velocimetry using imaging methods: University of Illinois at Urbana-Champaign, 1996. 817.
    [215]. Yamamoto F., Iguchi M., Ohta J., Szajner A. Fundamentals and Applications of Particle-Imaging Velocimetry. Proceedings of International Conference on Fluid Engineering, Kwanju, Korea, 1994.
    [216]. Yamamoto F., Uemura Y., Yian H., Ohmi K. Three-Dimensional PTV Based on Binary Cross-correlation Method. JSME Int. J., 1993, 36(2): 279-284.
    [217]. Yamamoto F., Wada A., Iguchi M., Ishikawa M. Discussion of the cross-correlation methods for PIV. J. Flow Visualization Image Process, 1996, 3: 65-78.
    [218]. Ishikawa M., Yamamoto F. A novel PIV System Using Parallel Processing of Flow Analysis and Image Analysis. Proceedings of International Conference on Fluid Engineering, 1997: 657-662.
    [219]. Guezennee Y. G., Brodkey R. S., Trigui N., Kent J. C. Algorithm for fully automated three-dimensional particle tracking velocimetry. Experiments in Fluids, 1994, 17:209-219.
    [220]. Kasagi N., Nishino N. Probing Turbulence with Three-dimensional Particle Tracking Velocimetry. Experimental Thermal and Fluid Science, 1991, 4: 601-612.
    [221]. Nishino N., Kasagi N., Hirata M. Three-Dimensional Particle Tracking Velocimetry Based on Automated Digital Image Processing. Journal of fluid Science, 1991, 4:601-612.
    [222]. Dennis S. C. R., Singh S. N., Ingham D. B. The steady flow due to a rotating sphere at low and moderate Reynolds numbers. J. Fluid Mech., 1980, 101(2): 257-279.
    [223]. Breach D. R., Chester W. On the flow past a sphere at low Reynolds number (Incompressible viscous fluid flow past sphere at low Reynolds number, evaluating stream function and drag on sphere). J. Fluid Mech., 1969, 37: 751-760.
    [224]. Abraham F. F. Functional Dependence of Drag Coefficient of a Sphere on Reynolds Number. Physics of Fluids, 1970, 13(8): 2194-2195.
    [225]. Pruppacher H. R., Steinberger E. H. An Experimental Determination of the Drag on a Sphere at Low Reynolds Numbers. Journal of Applied Physics, 1968, 39(9): 4129-4132.
    [226]. Rimon Y., Cheng S. I. Numerical Solution of a Uniform Flow over a Sphere at Intermediate Reynolds Numbers. Physics of Fluids, 1969, 12(5): 949-959.
    [227]. Hamielec A. E., Hoffman T. W., Ross L. L. Numerical solution of the Navier-Stokes equation for flow past spheres: Part I. Viscous flow around spheres with and without radial mass efflux. AIChE Journal, 1967, 13(2): 212-219.
    [228]. Karanfilian S. K., Kotas T. J. Drag on a sphere in unsteady motion in a liquid at rest. J. Fluid Mech., 1978, 87: 85-96.
    [229].樊建人,岑可法.在脉动气流中煤粉颗粒群运动时阻力系数的数值计算.浙江大学学报,1986,20(6):17-26.
    [230].肖海涛,祁海鹰,由长福,徐旭常.循环流化床气固拽力模型.计算物理,2003,20(1):25-30.
    [231].由长福,祁海鹰,徐旭常.稠密气固两相流中单颗粒所受气动力的数值模拟.工程热物理学报,2002,23(1):103-106.
    [232]. Beard K. V., Pruppacher H. R. A Determination of the Terminal Velocity and Drag of Small Water Drops by Means of a Wind Tunnel. Journal of the Atmospheric Sciences, 1969, 26(5): 1066-1072.
    [233]. Beard K. V., Pruppacher H. R. A Wind Tunnel Investigation of the Rate of Evaporation of Small Water Drops Falling at Terminal Velocity in Air. Journal of the Atmospheric Sciences, 1971, 28(8): 1455-1464.
    [234]. Lin C. J., Peery J. H., Schowalter W. R. Simple shear flow round a rigid sphere: inertial effects and suspension rheology. J. Fluid Mechnics, 1970, 44(1): 1-17.
    [235]. Nirschl H., Dwyer H. A., Denk V. Three-dimensional calculations of the simple shear flow around a single particle between two moving walls. Journal of Fluid Mechanics Digital Archive, 1995, 283: 273-285.
    [236]. Bretherton F. P. The motion of rigid panicles in a shear flow at low Reynolds number. Journal of Fluid Mechanics Digital Archive, 1962, 14: 284-304.
    [237]. Dandy D. S., Dwyer H. A. A sphere in shear flow at finite Reynolds number: effect of shear on particle lift, drag, and heat transfer. Journal of Fluid Mechanics Digital Archive, 1990, 216: 381-410.
    [238]. Kondratev L. V., Shor V. V. Investigation of gas-particle turbulent pipe flow with allowance for collisions with the wall and particle rotation. Fluid Dynamics, 1990, 25(1): 46-53.
    [239]. Kartushinsky A., Michaelides E. E. Particle-laden gas flow in horizontal channels with collision effects. Powder Technology, In Press, Corrected Proof.
    [240]. Hagesaether L., Jakobsen H. A., Svendsen H. F. Theoretical analysis of fluid particle collisions in turbulent flow. Chemical Engineering Science, 1999, 54(21): 4749-4755.
    [241]. Durst F., Zaré M. Laser Doppler measurements in two phase flows. Proc. LDA-Symp., Copenhagen, 1975: 403-429.
    [242]. Damaschke N., Gouesbet G., Gréhan G., Mignon H., Tropea C. Response of phase Doppler Anemeometer systems to nonspherical panicles. Applied Optics, 1998, 37(10): 1752-1761.
    [243]. Mignon H., Gréhan G., Gouesbet G., Xu T. H., Tropea C. Measurement of cylindrical panicles with phase Doppler anemometry. Appl. Opt., 1996, 35(25): 5180-5190.
    [244]. Yoon J.-H., Lee S.-J. Stereoscopic PIV measurements of flow behind an isolated low-speed axial-fan. Experimental Thermal and Fluid Science, 2004, 28(8): 791-802.
    [245]. Ortiz-Villafuerte J., Schmidl W. D., Hassan Y. A. Rocking motion, trajectory and shape of bubbles rising in small diameter pipes. Experimental Thermal and Fluid Science, 2001, 25(1-2): 43-53.
    [246]. Stella A., Guj G., Kompenhans J., Richard H., Raffel M. Three-components Panicle Image Velocimetry measurements in premixed flames. Aerospace Science and Technology, 2001, 5(5): 357-364.
    [247]. Brucker C. Study of the three-dimensional flow in a T-junction using a dual-scanning method for three-dimensional scanning-particle-image velocimetry (3-D SPIV). Experimental Thermal and Fluid Science, 1997, 14(1): 35-44.
    [248]. Brucker C. 3D scanning PIV applied to an air flow in a motored engine using digital high-speed video. Measurement Science and Technology, 1997, 8(12): 1480-1492.
    [249]. Pan G., Meng H. Digital holography of particle fields: reconstruction by use of complex amplitude. Applied Optics, 2003, 42(5): 827-833.
    [250]. Pan G., Meng H. Digital holographic PIV for 3D flow measurement. 2002 ASME International Mechanical Engineering Congress & Exposition, New Orleans, Louisiana, November, 17-22, 2002: 1-7.
    [251]. Pan G., Meng H. Digital in-line holographic PIV for 3D paniculate flow diagnostics. 4th International Symposium on Particle Image Velocimetry, Gottingen, Germany, September, 17-19, 2001:PIV'01 Paper 1008.
    [252]. Sakharov A. N., Shifrin K. S. Determination of the average size and concentration of suspended particles from intensity fluctuations of transmitted light. Optics and Spectroscopy, 1975, 39(2):208.
    [253].周洁.基于光学波动法和相关原理的颗粒测量及多波长火焰温度分析[博士学位论文].杭州:浙江大学,2001.
    [254].蔡小舒,潘咏志,吴伟亮,欧阳新,苏明旭,俞基安,胡杰.电厂煤粉粒径、浓度和速度的在线测量枯术研究.动力工稗.1999.19(6):456-470.
    [255]. Allano D., Gouesbet G., Grehan G., gisiecki D. Droplet sizing using a top-hat laser beam technktue. Journal of Physics D: Applied Physics, 1984, 17(1): 43-58.
    [256]. Fissan H., Helsper C., Kasper W. Calibration of Optical Particle Counters with Respect to Particle Size. Particle and Particle Systems Characterization, 1984, 1(1-4): 108-111.
    [257]. Gréhan G., Gouesbet G. Simultaneous measurements of velocities and sizes of particles in flows using a combined system incorporation a top-hat beam technique. Applied Optics, 1986, 25(19): 3527-3538.
    [258]. Hess C. F. Nonintrusive optical single-particle counter for measuring the size and velocity of droplets in a spray. Applied Optics, 1984, 23(23): 4375.
    [259]. Hess C. F. A technique to measure the size of particles in laser Doppler velocimetry applications. Proc. of the International Symp. on Laser Anemometry, 1985:119-125.
    [260]. Hess C. F. An instrument to measure the size and velocity of particles in particle laden flows. AIAA/SAE/ASME/ASEE 21th Joint Propulsion Conference, Monterey, California, 1985: AIAA-85-1443.
    [261]. Hess C. F. An instrument to measure the size, velocity and concentration of particles in a flow. Proceeding of an international symposium on optical particle sizing: theory and practice, Rouen, France, May 12-15, 1987: 271-282.
    [262]. Hirleman E. D., Holve D. J., Hovenac E. A. Calibration of single particle sizing velocimeters using photomask reticles. Proc. 4th Int. Syrup. On Application of Laser Anemometry to Fluid Mechanics, Lisbon, Portugal, 1988: 6.10.
    [263]. Holve D., Self S. A. Optical particle sizing for in situ measurements, Part 1. Applied Optics, 1979, 18(10): 1636-1645.
    [264]. Holve D., Self S. A. Optical particle sizing for in situ measurements, Part 2. Applied Optics, 1979, 18(10): 1646-1652.
    [265]. Maeda M., Hishida K. Application of top-hat laser beam to particle sizing in LDV system. Proceeding of an international symposium on optical particle sizing: theory and practice, Rouen, France, May 12-15, 1987: 431-441.
    [266]. Marple V. A., Rubow K. L. Aerodynamic particle size calibration of optical particle counters. Journal of Aerosol Science, 1976, 7(5): 425-428.
    [267]. Marple V. A., Rubow K. L. A portable optical counter system for measuring dust aerosols. American Industrial Hygiene Association Journal, 1978, 39(3): 210-218.
    [268]. Wang J. C. F., Hencken K. R. In situ particle size measurements using a two-color laser scattering technique. Applied Optics, 1986, 25(5): 653-657.
    [269]. Yule A. J., Ereaut P. R., Ungut A. Droplet sizes and velocities in vaporizing sprays. Combustion and Flame, 1983, 54(1-3): 15-22.
    [270]. Holve D. J. Transit timing velocimetry (TTV) for two-phase reacting flows. Combustion and Flame, 1982, 48: 105-107.
    [271]. Quintanilla M., Frutos A. M. Holographic filter that transforms a Gaussian beam into a uniform beam. Applied Optics, 1981, 20(5): 879-880.
    [272].沈熊.激光多普勒测速技术及应用,第一版.北京:清华大学出版社,200 4.
    [273]. Yeh Y.,Cummins H.Z.Loca'lized fluid flow measurements with an He-Ne laser spectrometer. Applied Physics Letters,1964,4(10):176-178.
    [274]. Killinger R.T.,Zerull R. H. EffectS of sbape and orjentatjon to be considered for optjcal particle sizing.Proceeding of an interDational sympOsium on optical particle sizing:theory and practice, Rouen,France,MaV 12-15,1987.
    [275]. Barber P.W.,HilI S. C. Effects of particIe noDsphericity on light-scattering.Proceedings of an intematioilal symposium on optical Particle Sizing:TheOry and Practice,Rouen,France,May 12-15,1987.1987:43-53.
    [276]. Bottlinger M.,UmhaHer H.Scattered light particle size counting analysis:influence of shape and structure.Proceedings of an international symposium on Optical Partic Je Sizing:Theory and Practice,Rouen,Frarice,May 12-15,1987,1987:363-369.
    [277]. Gebhart J.,Ariselm A.Effect of particle shape on the response of single particle optical counfters. Proceedings of an jnternational symposjnm on Optical Particle Sizing:Theory and Pragtice,Rouen, France,May 12-15,1987,1987:393-409.
    [278]. Gréhan G., Gousebet G., Naqwi A., Durst F. Trajectory Ambiguities in Phase Doppler Systems: Study of a near forward and a near-backward geometry. 1994, 11(2): 133-144.
    [279]. Gréhan G., Gousebet G., Naqwi A., Durst F. Particle Trajectory Effects in Phase Doppler Systems: Computations and experiments. 1993, 10(6): 332-338.
    [280]. Gouesbet G., Maheu B., Grehan G. Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation. J. Opt. Soc. Am. A, 1988, 5(9): 1427-1443.
    [281]. Bultynck H., Gouesbet G., Gréhan G. A miniature monoblock backward phase-Doppler unit. Measurement Science and Technology, 1998, 9(2): 161-170.
    [282]. Blondel D., Bultynck H., Gouesbet G., Gréhan G. Phase Doppler Measurements with Compact Monoblock Configurations. Particle & Particle Systems Characterization, 2001, 18(2): 79-90.
    [283]. Blondel D. Conception et réalisation d'une sonde de métrologie optique pour l'étude de milieux industriels complexes[PhD Thesis]. Rouen, France: Université de Rouen, 1999.
    [284]. Bultynck H. Développements de sondes laser Doppler miniatures pour la mesure de particules dans des écoulements réels complexes[PhD Thesis]. Rouen, France: Université de Rouen, 1998.
    [285]. Lading L. Analysis of signal-to-noise ratio of the laser Doppler velocimeter. Optical and Quantum Electronics, 1973, 5(2): 175-187.
    [286]. Werther J., Hage B., Rudnick C. A comparison of laser Doppler and single-fibre reflection probes for the measurement of the velocity of solids in a gas-solid circulating fluidized bed. Chemical Engineering and Processing, 1996, 35(5): 381-391.
    [287]. Ibsen C. H., Solberg T., Hjertager B. H., Johnsson F. Laser Doppler anemometry measurements in a circulating fluidized bed of metal particles. Experimental Thermal and Fluid Science, 2002, 26(6-7): 851-859.
    [288]. Wang T., Lin Z. J., Zhu C. M., Liu D. C., Saxena S. C. Particle velocity measurements in a circulating fluidized bed. AIChE Journal, 1993, 39(8): 1406-1410.
    [289]. Li B., Liang J.-W., Yin C.-Y. Study on the measurement of in-plane displacement of solid surfaces by laser Doppler velocimetry. Optics & Laser Technology, 1995, 27(2): 89-93.
    [290]. Matsubara K., Stork W., Wagner A. Simultaneous measurement of the velocity and displacement of the moving rough surface by a laser Doppler velocimeter. Applied Optics, 1997, 36(19): 4516-4520.
    [291]. Truax B. E., Demarest F. C., Sommargren G. E. Laser Doppler velocimeter for velocity and length measurement of moving surface. Applied Optics, 1984, 23: 67-43.
    [292]. Gasparetti M., Revel G. M. The influence of operating conditions on the accuracy of in-plane laser Doppler velocimetry measurements. Measurement, 1999, 26(3): 207-220.
    [293]. Roehle I. Three-dimensional Doppler Global Velocimetry in the flow of a fuel spray nozzle and in the wake region of a car. Flow Measurement and Instrumentation, 1996, 7(3-4): 287-294.
    [294].袁镇福,王晓东,周洁,浦兴国,岑可法.光学信号互相关法测量两相流颗粒流速的试验研究.热力发电,2003,(3):47-50.
    [295].周洁,袁镇福,岑可法,浦兴国,蔡小舒.光信号互相关测量两相流中颗粒流动速度的研究.中国电机工程学报,2003,23(1):185-188.
    [296]. Chaves H., Kirmse C., Obermeier F. Velocity measurements of dense diesel fuel sprays in dense air. Atomization and Sprays, 2004, 14: 589-609.
    [297]. Chaves H., Obermeier F. Correlation between light absorption signals of vavitating nozzle flow within and outsizde of the hole of a transparent diesel injection nozzle. ILASS-Europe, 1998: 224-229.
    [298]. Kirmse C., Chaves H., Obermeier F. Korrelationsvelocimetrische untersuchungen des dieselstrahls einer common-rail-einspritzung. Proceedings of the 2002 Fall Technical Conference of The ASME Internal Combustion Engine Division: Design, Application, Performance and Emissions of Modern Internal Combustion Engine Systems and Components, 2002.
    [299]. Kirmse C., Chaves H., Obermeier F. Spray velocity measurements of a common rail injection system at high gas density by correlation velocimetry. 19th Annual Meeting of the Institute for Liquid Atomization and Spray System (Europe), Nottingham, 2004: 260-265.
    [300]. Leick P., Bittlinger G., Tropea C. Velocity measurements in the near nozzle region of common rail diesel sprays at elevated back-pressures. 19th Annual Meeting of the Institute for Liquid Atomization and Spray System (Europe), Nottingham, 2004: 296-301.
    [301]. Leick P., Bittlinger G., Tropea C. Velocity Measurements in the primary-breakup region of diesel sprays at elevated back-pressures. Proc. FISITA World Automotive Congress, Barcelona, Spain, 2004: 353-382.
    [302]. Schugger C., Renz U. Influence of spray velocity and structure on the air entrainment in the primary breakup zone of high pressure diesel sprays. ASME2002, ICE-Vol. 39, Design, Application, Performance and Emissions of Modern Internal Combustion Engine Systems and Components, 2002: 281-288.
    [303]. Ren K. F., Lebrun D., Ozkul C., Kleitz A., Gouesbet G., Grehan G. On the measurements of particles by imaging methods : theoretical and experimental aspects. PARTEC, 4th International Congress of optical Particle Sizing, Nurnberg, Germany, 21-23, Mars, 1995: 97-106.
    [304]. Ren K. F., Lebrun D., Ozkul C., Kleitz A., Gouesbet G., Grehan G. On the measurements of particles by imaging methods : theoretical and experimental aspects. Part. Part. Syst. Charact., 1996, 13: 156-164.
    [305]. Girasole T., Ren K. F., Lebrun D., Belaid S., Gouesbet G., Grehan G. Particle imaging : GLMT simulation. J. of Visualization, 2000, 3(2): 195-202.
    [306].石顺祥,张海兴,刘劲松.物理光学与应用光学.西安:西安电子科技大学出版社,2000.
    [307]. Fincham A. M., Spedding G. R. Low cost, high resolution DPIV for measurement of turbulent fluid flow. Experiments in Fluids, 1997, 23(6): 449-462.
    [308]. Pust O. Direct Cross-Correlation compared with FFT-based Cross-Correlation. Proceedings of the 10th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, 2000. http://in3.dem.ist.utl.pt/downloads/lxlaser2OOO/pdf/13_2.odf.
    [309].程佩青.数字信号处理教程(第二版).北京:清华大学出版社,2002.
    [310].李有法.数值计算方法.北京:高等教育出版社,1996.
    [311].陈白欣,李宏伟.周期性瞬态喷雾中粒子速度的LDV测量研究.内燃机学报,1992,13(3):44-50&66.
    [312].顾善建,范全林.气泡喷嘴下游雾化与流场特性的研究.燃烧科学与技术,1996,2(4):365-371.
    [313]. Ng W. B., Zhang Y. Stereoscopic visualization and reconstruction of turbulent flames. Stereoscopic Displays and Virtual Reality Systems X, Santa Clara, CA, USA, 2003: 327-335. http://link.aip.or/link/?PSI/5006/327/1
    [314]. Ng W. B., Zhang Y. Stereoscopic imaging and computer vision of impinging fires by a single camera with a stereo adapter. International Journal of Imaging Systems and Technology, 2005, 15(2): 114-122.
    [315]. Kandlikar M., Ramachandran G. Inverse meathods for analysing aerosol spectrometer measurements: a critical review. Journal of Aerosol Science, 1999, 30(4): 413-437.
    [316].王乃宁.颗粒粒径的光学测量技术及应用,第一版.北京:原子能出版社,2000.
    [317]. Dellago C., Horvath H. On the accuracy of the size distribution information obtained from light extinction and scattering measurements--I. Basic considerations and models. Journal of Aerosol Science. 1993.24(2): 129-141.
    [318].郑刚,王乃宁.用Powell法求颗粒尺寸分布.上海机械学院学报,1993,15(1):27-32.
    [319]. Kaijser T. A simple inversion method for determining aerosol size distributions. Journal of Comnutational Physics. 1983.52(1): 80-104.
    [320].蔡小舒,卫敬明.光全散射测粒方法的实验研究.上海机械学院学报,1992,14(4):83-88.
    [321]. Ramachandran G., Leith D. Extraction of aerosol-size distributions from multispectral light extinction data. Aerospace Science and Technology, 1992, 17(4): 303-325.
    [322]. Benjamin B.-D. A., Herman M. Method for determining particle size distribution by nonlinear inversion of backscattered radiation. Applied Ootics. 1985.24(7): 1037-1042.
    [323].徐峰,蔡小舒,苏明旭,赵志军,李俊峰.独立模式算法求解颗粒粒径分布的研究.中国激光,2004,31(2):223-228.
    [324]. Cai X. S., Wang N. N. Determination of particle size distribution using the light extinction method. Advanced powder technology, 1992, 3(3).
    [325]. Twomey S. Comparison of constrained linear inversion and an iterative nonlinear algorithm applied to the indirect estimation of particle size distributions. Journal of Computational Physics, 1975, 18(2): 188-200.
    [326]. Phillips D. L. A technique for the numerical solution of certain integral equations of the first kind. J. Ass. Como. Math.. 1962.9(1): 84-97.
    [327]. Twomey S. Introduction to the mathematics of inversion in remote sensing and indirect measurements. New York: Elsevier, 1977.
    [328]. Markowski G. R. Improving Twomey's algorithm for inversion of aerosol measurement data. Aerospace Science and Technology, 1987, 7(2): 127-141.
    [329]. Rizzi R., Guzzi R. Aerosol size spectra from spectral extinction data: the use of a linear inversion method. Appl. Opt, 1982,21(9): 1578-1587.
    [330]. Wahba G. Practical approximate solutions to linear operator equations when the data are noisy. SIAM J. Numer. Anal., 1977,14(4): 651-667.
    [331]. Golub G. H., Heath M., Wahba G. Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics, 1979,21: 215-223.
    [332]. Crump J. G., Seinfeld J. H. A new algorithm for inversion of aerosol size distribution data. Aerosol Sci. Technol., 1982, 1(1): 15-34.
    [333]. Hansen P. C, O'Leary D. O. The use of the L-curve in the regularisation of discrete ill-posed problems. SIAM J. Numer. Anal., 1993, 14: 1487-1503.
    [334]. Lloyd J. J., Taylor C. J., Lawson R. S., Shields R. A. The use of the L-curve method in the inversion of diffusion battery data. Journal of Aerosol Science, 1997, 28(7): 1251-1264.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700