相关测速技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
声相关计程仪利用“波形不变性原理”进行测速,是一种适合装备在潜艇及自主水下运载器的导航设备,相比于声多普勒计程仪而言,由于采用垂直向下发射宽波束,不但可以得到更强的回波信号,而且在相同换能器尺寸的前提下,可以采用更低的工作频率以减少海水吸收和传播损失,从而使相关计程仪要比多普勒计程仪作用距离远得多。声相关计程仪的研究对维护我国的海洋权益,科学开发海岛、利用海洋资源具有重要意义。
     论文根据声相关计程仪的工作原理进行仿真系统的总体方案设计,将系统仿真分为海底回波仿真、波形设计、海底探测、换能器基阵设计、构造代价函数及寻优算法等若干模块,模块化的设计理念有利于系统的维护及今后向硬件平台的移植。
     论文根据单脉冲发射体制对相位编码的要求,采用截短的Gold序列平衡码作为子码,构成所需位数的长码,所产生编码的自相关函数具有双相关峰特性,这与双脉冲发射的测速体制相对应,解决了双脉冲发射体制测速中脉冲宽度和脉冲发射间隔时间之间的矛盾。论文将Kirchhoff海底散射模型和混响网络模型相结合,实现了海底回波信号的仿真。利用时-空相关函数,推导出一维到三维船速,采用平面阵进行接收时,两基元接收回波相关性最大的条件,该结论对声相关计程仪回波信号的仿真及平面阵测速研究具有一定的理论指导意义。
     换能器基阵结构设计在声相关测速技术中具有重要地位,由于测速原理是根据接收换能器基元之间形成的不同位置矢量而不是不同的基元位置来提高测速的空间分辨力,因此换能器基阵结构设计实际上是在保证阵列孔径利用率一定的前提下,能够采用尽量少的换能器基元实现声相关测速的需求。论文根据声相关计程仪的测速特点,研究了一维、二维基阵的设计方法,在借鉴传统的约束最小冗余线阵概念的基础上,重新定义了冗余因子、建立理想位置矢量图模型、提出位置矢量覆盖率等概念,进而实现了适合应用于声相关测速需求的二维基阵的快速设计。
     针对海底混响回波信号具有“拖尾”的特性,论文研究了冲激响应具有二阶导数特性的匹配滤波器,补偿了传播损失对信号幅度衰减的影响,提高了检测概率,同时采用脉冲压缩技术,提高了距离分辨力,冲激响应具有二阶导数特性的匹配滤波器设计与脉冲压缩技术相结合,解决了测量深度、幅度衰减和距离分辨力之间的矛盾。论文在利用理论和数据协方差矩阵构成似然函数作为寻优代价函数的基础上,提出了一种有界的单纯形算法与模式算法相结合的混合算法,理论上证明了该算法的收敛性,并将自适应模拟退火算法引入到声相关计程仪测速中,从而提高了声相关计程仪的测速精度。
The principle of“waveform invariance”is used for the velocity measurement among acoustic correlation log (ACL), which is suitable to be equipped on submarines and autonomous underwater vehicles (AUV). The ACL has striking advantages compared with the acoustic Doppler log (ADL). It can work with a single beam pointing directly down at the sea bed and the return signal is much larger than from the ADL because of the normal incidence. Furthermore the beam can be fairly broad and, for the same size of transmit transducer, this enables the use of lower acoustic frequencies for which the attenuation is less. The ACL has the potential therefore for operating on the sea bed echoes at much greater depths than is possible with the ADL. The design and utilization of ACL become more and more important both for the defense of the national ocean sofereignty and for the scientific research and exploitation of islands and ocean rescource.
     In this dissertation, the overall scheme of the ACL simulation system is planned based on the principle of“waveform invariance”. The whole system is divided into several modules, including seabed reverberation simulation module, waveform design module, bottom tracking module, transducer arrays design module, velocity measurement and optimization algorithm module. The final goal of the module design and research in ACL simulation system is developing a suit of software used in the whole design processing and the migration to hardware platform.
     According to the single transmitted pulse system in this dissertation, the truncating Gold sequences which contains the same number of 0’s and 1’s are used as code subsections to form the encoded pulse. The pulse coding technique used involves pseudo-random codes which are now generated by a new optimal code finding program. The nature of the coded pulse is such that the autocorrelation function of the pulse possesses a temporal autocorrelation peak at a predetermined time lag so as to achieve the same function as a repetitive pulse system. Thus, the trade-off between impulse width and pulse interval time has been obtained. A realization of the seafloor reverberation simulation based on the Kirchhoff approximation scattering model and the network model was presented. On the basis of the field investigation and research results of others, the case of a plane array is analyzed from one dimensional to three dimensional velocity and sufficient conditions to keep the normalized space-time correlation function of reverberation close to 1 are obtained. The conclusion provides guidance for the application to the seafloor reverberation simulation and the velocity measurement.
     The design method of transducer arrays assembly plays a key role in the velocity measurement for the ACL. The purpose is to make better use of the array aperture and fully utilization of sensors because spatial discrimination depends on differences in hydrophone locations rather than hydrophone locations. A design method of one dimension and two dimension arrays for the ACL is studied in this dissertation. Based on the method of restricted minimum-redundancy linear array (RMRLA), the redundancy factor is redefined, an ideal positional vector map is built, the conception of positional vector coverage rate is proposed and a fast two-dimensional arrays design method is obtained.
     By taking the second derivative of the filtered signal with respect to time in literature [75], the sonar system will compensate for signal losses due to spreading. As a result, the detection probability will increase although the seafloor reverberation signal is extremely slow-decaying. With the combination of the matched filtering method mentioned above and the pulse compress method, the dissertation solves the conflicting problems among ocean depth, range resolution and amplitude attenuation. Based on the likelihood function proposed as the cost function which is constructed by a model covariance matrix and a sample one, one of the main contributions of this dissertation is a hybrid algorithm being put forward and the convergence being proved. The algorithm is combined of the simplex method and the pattern search method for bound constrained function minimization which comes from the two subclasses of the direct search methods (DSM). Based on the study on the classical simulated annealing (CSA), which is a method of finding a global minimin, another main contribution is the adaptive simulated annealing (ASA) algorithm being proposed to improve the precision of measure velocity.
引文
1 高百敏.船舶计程仪.人民交通出版社,1986:1~4
    2 P.N.Denbigh. Ship Velocity Determination by Doppler and Correlation Techniques. IEE Proceeding, Vol.131, Part F, No.3, June 1984: 315~326
    3 Steven E.Bradley. U.S. Patent No. 5,315,562. Correlation Sonar System. Issued May 24,1994
    4 G.Griffiths, S.Bradley, G.Watson and B.Dupee. Acoustic Correlation Sonar for Vertical Profiling of Ocean Currents to a Range of 1Km. IEE Proceeding Radar Sonar, Vol.143, No.3, June 1996:177~183
    5 F.R.Dickey, W.C.Bookheimer and K.W.Rhoades. Implementation and Testing of a Deep Water Correlation Velocity Sonar. Offshore Technology Conference, 2003:437~446
    6 Gwyn Griffiths, Steven E. Bradley and Simon Ruiz. Deep Water Bottom-Track Ship's Velocities from an Acoustic Correlation Current Profiler. Proceedings IEEE Conference Oceans'97
    7 Dan Johnson, Steve Eppig. Aided Inertial Navigation Systems For Underwater Vehicles. Unmanned Untethered Submersible Technology, Proceedings of the 1987 5th international symposium, 1987: 265~282
    8 F.R.Dickey. The correlation aircraft navigator, a vertically beamed doppler radar. Proceeding of the National Conference on Electronics, 1958:17~18
    9 F.R.Dickey Jr. Velocity measuring system. U.S. Patent No. 3,147,477, 1964
    10 Koschmeder, R.F. CORAN(A correlation velocity sensor), Proc. IEEE, National Aerospace and Electronics Conference, 1976:2~5
    11 Snyder, F.B. Correlation velocity sensor. Bicentennial National Aerospace Symposium on New Frontiers in Aerospace Navigation. 1976:97~101
    12 F.R.Dickey and Edward, J.A. Velocity measurement using correlation sonar. IEEE Position Location and Navigation Symposium. 1978
    13 P.N. Denbigh. A design study for a correlation log to measure speed at sea. Journal Navigation ,1982:160~184
    14 Yves Doisy. General Motion Estimation from Correlation Sonar. IEEE Journal of Oceanic Engineering, Vol. 23, No. 2, April 1998:127~140
    15 Yingbo Hua, Tapan K.Sarkar, Donald D.Weiner. An L-Shaped Array for Estimating 2-D Directions of Wave Arrival. IEEE Transactions on Antennas and Propagation, vol.39,No.2,1991:143~146
    16 Robinson, Henry. Transducer for Acoustic Correlation Velocity Log[P]. WO 97/47990.1997
    17 Brian L Grose. The application of the correlation sonar to underwater vehicle navigation. EDO corporation
    18 B.Woodward. Under Water Navigation with an Acoustic Correlation Log. IEE Proceeding, Vol.134, 1986: 106~110
    19 P Boltryk, M Hillt, A Keary, B Phillips, H Robinson and P White. Improvement of velocity estimate resolution for a Correlation Velocity Log using surface fitting methods. Oceans 2002, Biloxi, USA, 2002:1840~1848
    20 Bryan.Woodward, William.Forsy and Simon.K.Hole. Estimating Back Scattering Strength for a Correlation Log. IEEE Journal of Oceanic Engineering, Vol.19, No.3, July 2003: 476~483
    21 Simon K.Hole et al.Design Constraints and Error Analysis of the Temporal Correlation Log. IEEE Journal of OE. Vol.17, No.3,July,1992
    22 B. Woodward, S.K. Hole and W. Forsythe. Transducer design for a correlation log ultrasonics. 1993:21~23
    23 ZHU Weiqing, WANG Changhong. Method and system for measuring the velocity of a vessel relative to the bottom using velocity measuring correlation sonar. C.N. Patent No: WO2004083891, 2004
    24 王长红,朱敏,何平.声相关流速剖面仪(ACCP)原理样机研制.声学技术.1999, 18(A11): 189~190
    25 王长红,邱薇,汪玉玲.大深度声相关流速剖面仪样机研制.声学技术.2002, 21(z2):421~422
    26 冯雷,王长红,邱薇等.声相关流速剖面仪船速测量性能分析.声学技术.2003, 22(z2):382~385
    27 冯雷,王长红,汪玉玲等.相关测速声纳工作原理及海试验证.声学技术.2005,24 (2): 70~75
    28 Weiqing ZHU, Changhong WANG, Ping HE. IOA-1 Acoustic Correlation Current Profiler (ACCP). Oceans 2000 MTS/IEEE Conference and Exhibition, 2000, 2:777~779
    29 Wei-Qing ZHU, Chang-Hong WANG, Yong HUANG. Theoretical model and error analysis of acoustic correlation current profiler (ACCP). OCEANS'99 MTS/IEEE. Riding the Crest into the 21st Century. 1999(1):382~385
    30 朱维庆,冯雷,王长红等.声相关载体速度测量理论和信号处理方法.声学学报.2006,31(4):289~296
    31 郭纪捷,荀俊姑,徐正高.声相关海流剖面(ACCP)测量的流速估值方法.海洋技术.2001,20(1):93~96
    32 尤百琴.声相关三维测速技术研究获新进度.海洋测绘.2001,(1):8
    33 潘德明,陈福如.声相关二维测速技术研究.舰船科学技术.1999,(3):157~158
    34 张德明.JX-1 型声相关计程仪的研制.声学技术.1990,(4):18
    35 张殿伦,田坦,卢逢春.声相关测速技术仿真与试验研究.哈尔滨工程大学学报.2003,(4):415~418
    36 张殿伦.舰船声学测速技术研究.哈尔滨工程大学博士学位论文.2001:1~7
    37 J. A. Edward. Remote measurement of water currents using a correlation sonar. J. Acoust. Soc. Amer., 1979, 66(Supplt):557
    38 艾宇慧,周瑜丽,岳沛等.m 序列扩频谱水声通信研究.哈尔滨工程大学学报.2000,21(2):15~18
    39 索 南 仁 欠 . 二 元 有 限 域 上 的 n 次 不 可 约 多 项 式 . 青 海 师 范 大 学 学报.2006(1):14~15
    40 查光明.扩频通信.西安市:西安电子科技大学出版社,1991:196~198
    41 Urick R. J. Principles of underwater sound, 3d edition. McGraw-Hill Book Company, 1983:190
    42 王 新 晓 , 黄 建 国 , 张 群 飞 . 海 洋 混 响 仿 真 技 术 研 究 . 声 学 与 电 子 工程.2002(3):27~30
    43 蔡平,梁国龙,葛凤翔.界面混响信号的仿真研究.哈尔滨工程大学学报.2000,21(4):31~35
    44 C. McKinney and C. Anderson. Measurements of backscattering of sound from the ocean bottom. J. Acoust. Soc. Am., vol. 36, 1964:158~163
    45 Rebecca M. Gott and Andrew B. Martinez. Consideration in the Modelling of seafloor. IEEE,1993
    46 P. Schippers, ALMOST, an Acoustic Propagation Model, UDT Conference Book of Proceedings, 26-28 October 1998, London, UK
    47 Pierre D. Mourad and Darrell R. Jackson. High Frequency Sonar EquationModels for Bottom Backscatter and Forward Loss. IEEE OCEAN’89. New York, 1989:1168~1175
    48 Hines P C. Theoretical model of acoustic backscatter from a smooth seabed. J Acoust Soc Am. 1990(88):324~334
    49 Rough Seabed With a Random Sediment Layer Overlying an Elastic Basement. IEEE Journal of Oceanic Engineering, vol. 27(4), 2002:853~861
    50 Robert F. Gragg, Daniel Wurmser, and Roger C. Gauss. Small-slope scattering from rough elastic ocean floors:General theory and computational algorithm. J. Acoust. Soc. Am. 110 (6), December 2001:2878~2901
    51 N. R. Chpman, K. Stinson, S . Levy, J. Cabrera,and D. W. Oldenburg. Estimation of the Elastic Properties of Seafloor Sediments by Inversion of Precritical Reflection Data. IEEE Journal of Oceanic Engineering, vol. 13(4), 1988:215~221
    52 F. G. Bass and I. M. Fuks. Wave Scattering From Statistically Rough Surfaces. New York: Tergamon, 1979
    53 C. Eckart. The scattering of sound from the sea surface. J. Acoust. Soc. Amer., vol. 25(3),1953:566~570
    54 Paul C. Hines and Dale D. Ellis. High-Frequency Reverberation in Shallow Water. IEEE Journal of Ocean Engineering.vol.22(2),1997:292~298
    55 Giovanni Picardi, Roberto Seu, Stefano G. Sorge, and Manuel Martin Neira. Bistatic Model of Ocean Scattering. IEEE Transactions on Antennas and Propagation, vol.46(10), October 1998:1531~1541
    56 Kevin L. Williams and Darrell R. Jackson. Bistatic bottom scattering: Model, experiments, and model/data comparison. J. Acoust. Soc. Am. 103 (1), January 1998:169~181
    57 Kevin L. Williams, Darrell R. Jackson, Eric I. Thorsos, Dajun Tang, and Kevin B. Briggs. Acoustic Backscattering Experiments in a Well Characterized Sand Sediment: Data/Model Comparisons Using Sediment Fluid and Biot Models. IEEE Journal of Ocean Engineering, vol. 27(3), 2002:376~387
    58 Francine Desharnais and Dale D. Ellis. Data-Model Comparisons of Reverberation at Three Shallow-Water Sites. IEEE Journal of Ocean Engineering, vol. 22(2), April 1997:309~316
    59 APL-UW High-Frequency Ocean Environmental Acoustic Models Hand book. APL-UWTR 9407, Oct. 1994
    60 Jackson D R, Winebrenner D P, Ishimaru A. Application of the composite roughness model to high-frequency bottom backscattering. J Acoust Soc Am.1986,79:1410~1422
    61 A.D.Waite. Sonar for Practicing Engineering(Third Edition). Published by John Wiley & Sons,Ltd., 2002:3~4
    62 王炳辉,陈敬军.声纳换能器的新进展.声学技术.2004(1):67~71
    63 J. Arsac. Nouveau reseau pour l'observation adioastronomique de la brillance sur le soleil a 9350 Mc/s. Compt. Rend. Acad. Sci (Paris) 240:942~945 (Feb. 1955)
    64 Alan T. Moffet. Minimum - Redundancy Linear Arrays. IEEE Transactions on antennas and propagation, 1968,AP-16 (2):172~175
    65 S.W. Lang, G.L. Duckworth, and J.H. McClellan. Array design for MEM and MLM array processing. Proc. ICASSP-81, 1981:145~148
    66 刘学斌,季飞,韦岗 . 一种简单快捷的完全可扩展线阵设计 . 电视技术.2005,2:32~34
    67 金梁,王雪明,姚敏立.基于最小冗余线阵的谱相关共轭循环 MUSIC 算法.信息工程学院学报. 1999,18(3):4~7
    68 姚敏立,金梁,殷勤业.一种基于最小冗余线阵的时空共轭循环谱相关ESPRIT 算法.电子科学学刊.2000,22(1):35~41
    69 于波,杨莘元.基于约束最小冗余线阵的 TLS-ESPRIT 快速算法.应用科技.2004,31(5): 34~36
    70 R. N. Bracewell. Radio astronomy techniques. Handbuch der physik, vol. 54. Berlin,1962:42~129
    71 倪 明 , 李 秀 林 , 张 仁 和 等 . 全 光 光 纤 水 听 器 系 统 海 上 试 验 . 声 学 学报.2004,29(6):539~543
    72 张 叔 英 , 李 允 武 . 悬 浮 泥 沙 声 学 观 测 的 原 理 分 析 . 声 学 学报.1999,24(3):269~274
    73 Joel Young, Fran Rowe, Blair Brumley, and Steve Bradley. Trends In Acoustic Velocity Log Technology at RD Instruments. IEEE,1998:89~101
    74 胡 伟 文 , 苑 秉 成 . 基 于 Matlab 的 基 阵 方 向 性 研 究 . 计 算 机 仿真.2004,21(4):25~27
    75 Kent L.Denes.Bottom Tracking System. Patent No. 5,122,990. Issued Feb. 1,1991
    76 Robert Michael Lewis, Virginia Torczon, Michael W. Trosset. Direct Search Methods: Then and Now. Journal of Computational and Applied Mathematics, 2000:1~16
    77 Hassan Shekarforoush, Marc Berthod, Josiane Zerubia. Direct Search Generalized Simplex Algorithm for Optimizing Non-linear Functions. Rapport de recherché, April 1995:1~23
    78 A. S. Rykov. Simplex direct search algorithms. Automation And Robot Control, 1980:784~793
    79 R. Hooke and T. A. Jeeves. Direct search solution of numerical and statistical problems. Journal of the Association for Computing Machinery, 1961:212~229
    80 M. J. Box. A new method of constrained optimization and a comparison with other methods. Comput. J.,1965:42~52
    81 J. A. Nelder and R. Mead. A simplex method for function minimization. Comput. J., 1965:308~313
    82 M. J. D. Powell. An efficient method for finding the minimum of a function of several variables without calculating derivatives. Comput. J., 1964:155~162
    83 H. H. Rosenbrock. An automatic method for finding the greatest or least value of a function. Comput. J., 1960:175~184
    84 W. I. Zangwill. Minimizing a function without calculating derivatives. Comput. J., 1967:293~296
    85 G. E. P. Box and K. B. Wilson. On the experimental attainment of optimum conditions. J.Roy. Statist. Soc. Ser. B, XIII 1951:1~45
    86 R. Hooke and T. A. Jeeves. “Direct search” solution of numerical and statistical problems. J. Assoc. Comput. Mach., 1961:212~229
    87 W. Spendley, G. R. Hext, and F. R. Himsworth. Sequential application of simplex designs in optimization and evolutionary operation. Technometrica, 1962:441~461
    88 J. E. Dennis, Jr., and V. Torczon. Direct search methods on parallel machines, SIAM J.Optim., 1991:448~474
    89 V. Torczon. On the convergence of the multidirectional search algorithm. SIAM J. Optim., 1991:123~145
    90 董加礼.工程运筹学.北京工业大学出版社,1988:144~145
    91 John H.Mathews. Numerical Methods Using Matlab. Electric Industry Press, 2002:301
    92 William H. Press, Saul A. Teukolsky, William T. Vetterling, Brian P. Flannery. Numerical recipes in C: the art of scientific computing. Cambridge University Press New York, NY, USA,1992
    93 Yuguang Huang,W.F. McColl. An Improved Simplex Method for Function Minimization.P:1702~1705
    94 Jeffrey C. Lagarias, James A. Reeds, Margaret H. Wright, Paul E. Wright. Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions. SIAM Journal of Optimization, 1988:112~147
    95 V. J. Torczon. Multi-Directional Search: A Direct Search Algorithm for Parallel Machines. Ph.D. thesis, Tech. Report TR90-7, Department of Computational and Applied Mathematics, Rice University, Houston, TX, 1990
    96 Mordecai Avriel. Nonlinear Programming: Analysis and Methods. Prentice-Hall, Englewood Cliffs, NJ,1976
    97 Paul Tseng. Fortified-Descent Simplicial Search Method: A General Approach. SIAM J. OPTIM. Vol.10, 1999:269~288
    98 David. R. Crane, Barry. M. Norman. Comparing Acoustic Doppler Current Profilers. International Underwater System Design, Vol. 19, No. 2, 1997:5~10
    99 A.D. Bethke. Genetic Algorithms as Function Optimizers. Ph.D. Thesis, Department of Computer and Communication Sciences, University of Michigan, Ann Arbor, MI, (1981)
    100 S. Kirkpatrick, C.D. Gelatt, M.P. Vechhi. Optimization by Simulated Annealing. Science, 220, 1983:671~680
    101 Lester Ingber, Bruce Rosen. Genetic Algorithms and Very Fast Simulated Reannealing: A Comparison. Mathematical and Computer Modelling, 16(11) 1992: 87~100
    102 L. Ingber. Very fast simulated re-annealing. Mathl. Comput. Modelling,1989,12(8):967~973
    103 N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller. Equation of state calculations by fast computing machines. J. Chem. Phys. 1953,21(6):1087~1092
    104 S. Kirkpatrick, C.D. Gelatt, M.P. Vechhi. Optimization by Simulated Annealing. Science, 220, 1983:671~680
    105 郭茂祖,姜俊峰,李静梅.模拟退火算法中冷却调度选取方法的研究.计算机工程.2000(9):63~66
    106 S. Geman and D. Geman, Stochastic relaxation, Gibbs distribution and the Bayesian restoration in images, IEEE Trans. Patt. Anal. Mac. Int. 1984,6(6), 721~741
    107 H. Szu and R. Hartley, Fast simulated annealing, Phys. Lett. 1987:157~162
    108 Basu A and Frazer L. Rapid determination of the critical temperature in simulated annealing inversion. Science,1990:1409~1412
    109 Press W H, Vetterling W T, Teukolsky S A and Flannery B P. Simulated annealing optimization over continues space. Computers in Physics,1991:426~429
    110 Xin Yao. A New Simulated Annealing Algorithm. International Journal of Computer Mathematics, 1995:161~168

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700