基于地磁信息的新型测速方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对水下潜航器的长航时、高精度自主导航需求,提出一种基于地磁信息的新型相关测速方法——地磁测速。论文深入研究了地磁测速中的关键技术:时间序列相似性搜索算法、地磁测量技术、地磁数据插值技术和地磁测速系统的误差分析技术。通过仿真及模拟实验,验证了本文研究成果的正确性和技术可行性。
     本文的主要研究工作如下:
     1、论文通过分析地磁场的物理特征,介绍了地磁场的构成以及不同磁场模型。结合地磁物理场和相关测速技术的特点,进一步给出了地磁测速的基本原理,指出了地磁测速研究的关键技术。
     2、论文介绍了几种常用的时间序列相似性搜索算法,通过仿真分析了距离测度法、相似性函数法、变换域法在地磁测速中的适应性,验证了离散傅里叶变换法对地磁测速具有良好的适应性和有效性。
     3、论文分析了地磁测速系统的误差来源,研究了各种误差对地磁测速的影响,并针对不同误差提出了相应的误差抑制技术。给出了传感器间距、采样率、相关序列长度等参数的优化设计方法,并提出抗野值的滑动平均地磁数据预处理技术,将几种常用的空间插值算法应用到地磁测速中,通过仿真验证了误差抑制技术的有效性。
     4、建立了一套地磁测速实验系统,通过地面实验,验证了地磁测量技术、地磁数据插值技术和相关分析算法的有效性;验证了地磁测速的可行性以及地磁测速系统的性能指标。论文研究表明:地磁测速是一种有效可行的自主式测速方法,具有全天候、全范围、隐蔽性好和误差不随时间累积等优点。该方法为水下潜航器实现长航时、高精度的自主导航提供了一种新的思路。
A new correlation velocity measurement based on geomagnetic data is proposed, which aims at satisfying requirements of autonomous navigation system with long endurance and high precision. This thesis lucubrates the key technologies of the geomagnetic velocity measurement system, including time series similarity searching algorithm, geomagnetic measurement techniques, geomagnetic data interpolation techniques and error analysis techniques of the geomagnetic velocity measurement system, and makes some research achievement. At the end of the thesis, the correctness and technical feasibility of the results are verified by the geomagnetic velocity measurement experiments.
     The researches of this thesis are as follows:
     1. By analyzing the physical characteristics of the geomagnetic field, the composition of the geomagnetic field and different geomagnetic field models are introduced. The basic principle and key technology of the geomagnetic velocity measurement are proposed based on the character of the geomagnetic field and correlation velocity measurement techniques.
     2. Several traditional searching algorithm of time siries are introduced, and the suitability of three kinds of methods in geomagnetic velocity measurement, which include distance measurement algorithm, maximum coefficient algorithm, frequency domain algorithm, is analyzed, and the suitability and effectiveness of DFT are verified.
     3. The thesis analyses the origin of the error in the geomagnetic velocity measuement system, and the effects of each error are studied. The corresponding error control techniques are proposed. The optimization design method of sensor distance, sample rate and correlation length is given. A data preprocessing method is proposed, in which the outliers are restrained by moving average. Several spatial interpolation methods are used in the geomagnetic velocity measurement system. The effectiveness of the error control techniques is verified by simulation.
     4. A geomagnetic velocity measurement system is set up in this thesis. The feasibility of geomagnetic measurement techniques, geomagnetic data interpolation techniques, the analysis method of the correlation algorithm and the error depressing techniques are verified by land experiment. The result shows that geomagnetic velocity measurement is an effective and feasible autonomous method with good hideness and no accumulation error caused by time. In conclusion, the geomagnetic velocity measurement method proposed in this paper provides a new idea for underwater vehicles to implement automatic navigation with long endurance and high precision.
引文
[1] D.H.Titterton, J.L.Weston. Strapdown Inertial Navigation Technology[M]. London,United Kingdom; The Institution of Electrical Engineers. 1997: 1 4.
    [2]彭富清.地磁模型与地磁导航[J].海洋测绘, 2006,26(2): 73 75.
    [3]路红山,张京伟,李四娣,唐滢.新概念潜艇及其技术展望[J].中国舰船研究,2008,3(3): 77 80.
    [4]孙碧娇,何静.美海军无人潜航器关键技术综述[J].鱼雷技术,2006,14(4): 7 10.
    [5]沈楠,李新星,王春雷.浅析美军无人潜航器信息作战能力现状及发展趋势[J].水雷战与舰船防护,2007,15(2): 39 42.
    [6] Healey A J, Good M R. NPS AUV II autonomous underwater vehicle testbed Design and experimental verification[J]. Naval Engineers Journal, 1992,104(3): 191 202.
    [7] YUHJ. Design and control of autonomous underwater robots: a survey[J]: Autonomous Robots, 2000,(8): 7 24.
    [8] Hays, Schmidt. A Submarine Navigator for the 21st Century[J]. IEEE, 2002,7251(4): 179 188.
    [9]郝燕玲,赵亚凤,胡峻峰.地磁匹配用于水下载体导航的初步分析[J].地球物理学进展, 2008,23(2): 594 598.
    [10]陈瑞,满家刚.巡航导弹地磁匹配精度需求分析[J].现代防御技术, 2008,36(2): 51 55.
    [11] Polvani. Magnetic Guidance of Autonomous Vehicles[J]. IEEE, 1986,2363(0): 1407 1412.
    [12] Tyrén C. Magnetic Anomaliea as a Reference for Ground speed and Map matching Navigation[J]. Journal of Navigation, 1982,35(2): 242 254.
    [13] Tyrén C. Magnetic Terrain Navigation[C]: proceedings of the Int Symp on Unmanned Untethered Submerible Technology, Marine Systems Engineering Laboratory, University of New Hampshire, 1987.
    [14]穆华,任治新,胡小平.船用惯性/地磁导航系统信息融合策略与性能[J].中国惯性技术学报, 2007,15(3): 322 326.
    [15]晏登洋,任建新,宋永军.惯性地磁组合导航技术研究[J].机械与电子, 2007,12(1): 19 22.
    [16] Patent. France;“Systeme de mesure de vitesse a magnetometer”, CSF Compagnie de Generale de Telegraphie Sans FIL resident en France (Seine), 1964.
    [17] Patent. United States, Geomagnetic Velocimeter. #4509131
    [18] Goldenberg F. Geomagnetic Navigation beyond Megnetic Compass[C]: proceedings of the PLANS, San Diego, California, 2006.
    [19]徐荃安.相关流量测量技术[M].天津:天津大学.1988
    [20] Marashdeh Q, Teixeira F L. Sensitivity matrix calculation for fast 32D electrical capacitance tomography (ECT) of flow systems. IEEE Transactions on Magnetics, 2004,40(2): 1204 1207.
    [21] C C Chen, H C Andrews. Target motion induced radar imaging[J]. IEEE Transactions on Aerospace and Electronic System. 1980, 16(1).
    [22] Gwyn Griffiths, Steven E, Bradley and Simon Ruiz. Deep Water Bottom Track Ship’s Velocities from an Acoustic Correlation Current Profiler. Proceedings IEEE Conference Oceans’97 MTS/IEEE, Conference Proceedings, Halifax, Canada, 1404 1410.
    [23] Beversdorff M, Forster W, Schodl R, Jentink H W. Inflight laser anemometry for aerodynamic investigations on an aircraft. Optics and Lasers in Engineering, 1997, 27(6): 571 586.
    [24] STENCEL M.Signal Parameterization vs. Ortogonalization on Example of Vehicle’s Magnetic Signature Recognition[C].∥IMTC 04, Proceedings of the 21st IEEE 2004: 1416 14181.
    [25] Carus C J, Withanawasam L S. Vehicle detection and compass applications using AMR magnetic sensors[EB/OL]. (1999 05)[2005 08 10].http: //www.honeywell.com.
    [26] Graziano Cerri. Measurement of magnetic fields radiated from ESD using field sensors[J]. IEEE Transactions on Electromagnetic Compatibility, 2001 (3).
    [27] A Study on the Measuring Device of Muzzle Velocity Using Magnetic Field Gradient Sensor.
    [28]金隐华.非晶态行驶速度与方向固态传感器[J].电子技术应用, 1994,9: 12 17.
    [29]王力宝,战永红,程翥,路君里,皇甫堪.声相关计程仪测速技术[J].舰船电子对抗, 2008,31(5): 98 101.
    [30]陈敏,何俊华,王峰,陈良益.气泡幕的相关测速技术[J].电子激光, 2005,16(10), 1232 1234.
    [31]吴学成,王勤辉等.用于高浓度气液两相流的成像相关测速技术[J].化工学报, 2008,59(1): 38 44.
    [32]冯雷,王长红,汪玉玲,邱薇.相关测速声纳工作原理及海试验证[J].声学技术, 2005,6(2): 74 75.
    [33]王文合,李国璋,石志勇.视频测速的算法改进及测速误差分析[J].自动测量与控制, 2007, 26(1): 58 60.
    [34]刘天佑.位场勘探数据处理新方法[M].北京:科学出版社, 2006.
    [35]徐文耀.地磁学[M].北京;地震出版社. 2003.4: 47 89.
    [36]徐文耀,张满莲,林云芳,曾小苹.中低纬度区变化地磁场的结构分析[J].地球物理学报, 1990,33(1): 12 21.
    [37]徐元芳,王月华,安振昌. 1950 1985年中国地磁长期变化的模型和分析[J].地球物理学报, 1992,35(6): 740 747.
    [38]王赤,陈金波,王水.地球变化磁场的分形和混沌特征[J].地球物理学报, 1995,38(1): 16 24.
    [39]徐文耀.中国地磁学研究的进展[J].地球物理学报, 1994,37(1): 284 294.
    [40]管志宁.地磁场与磁力勘探[M].北京;地质出版社. 2005.
    [41] S. Macmillan, J.M. Quinn. The 2000 revision of the joint UK/US geomagnetic field models and an IGRF2000 candidate model[J]. Earth, Planets and Space, 2000: 1149 1162.
    [42]安振昌.地磁场区域模型与全球模型的比较和讨论[J].物探与化探, 1991,15(4): 248 254.
    [43]徐宝慈,李春华,张贵宾,杨惠心.球谐、频谱分析在雅鲁藏布江大拐弯地区地磁研究中的应用[J].物探与化探, 1988,12(5): 371 377.
    [44]韩少红.区域地磁测量的研究与应用[D].硕士学位论文.郑州:解放军信息工程大学, 2004.
    [45]安振昌.地磁场模型和冠谐分析[J].地球物理学进展, 1992,7(3): 73 80.
    [46]任来平,张襄安.海洋磁力测量系统误差来源分析[J].海洋测绘, 2004, 24(5): 5 8.
    [47] Ioannidis G. Identification of a Ship or Submarine from its Magnetic Signature[J].IEEE.Transactions on Aerospace and Electronic Systems,1997,(3): 327 329.
    [48]邢西淳,毛娟等.小波变换在地磁数据分析中的应用[J].地震地磁观测与研究, 2005,26(2): 38 42.
    [49] Agrawal R, Faloutsos C, Swami A.Efficient similarity search in sequence databases[C]//Lomet D.Proceedings of the 4th International Conference of Foundations of Data Organization and Algorithms(FODO). Chicago, Illinois.Springer Verlag, 1993: 69 84.
    [50] Popivanov I, Miller R.Similarity search over time series data using wavelets [C]//Proceedings of the 18th International Conference on Data Engineering, San Jose, CA, 2002:212 221.
    [51] Perng C S,Wang H X, Zhang S R.Landmarks: A new model for similarity basedpattern in time series databases [C]. //Proceedings of the 16th IEEE International Conference on Data Engineering, EI Segundo, CA, 2000: 675 693.
    [52] Keogh E, Chakrabarti K, Pazzani M. Dimensionality reduction for fast similarity search in large time series databases[J]. Journal of Knowledge and Information Systems, 2001, 3(3): 263 286.
    [54]李爱国,覃征.大规模时间序列数据库降维及相似搜索[J].计算机学报, 2005,28(9) : 1467 1475.
    [55]曾海泉,宋扬,申展等.基于互关联后继树的时间序列相似性查询[J].计算机研究与发展, 2004,41(2):325 332.
    [56] Jialing C, James C.H.C,et a1. CT and PET 1ung image regstration and fusion in radiotherapy treatment p1anning using the chamfer matching method[J]. Int.J.Radiation Oncology Biol.Phys, March, 1999,43(4): 883 891.
    [57]张宇,刘雨东,计钊等.向量相似度方法[J].声学技术, 2009,28(4): 532 535.
    [58]郑烇,朱明等.相似时间序列的快速检索算法[J].小型微型计算机系统,2004,5,25(5): 785 788.
    [59]陶跃华.基于向量的相似度方案[J].云南师范大学学报, 2001,21(5): 17 19.
    [60] Zhao C J, Shi W K, Deng Y. A new Hausdorff distance for image matching. Pattern Recognition Letters, 2005,26(5): 581-586.
    [61] Park S C, Lim S H, Sin B K, Lee S W. Tracking nonrigid objects using probabilistic Hausdorff distance matching. Pattern Recognition, 2005,38(12): 2373-2384.
    [62] Vivek E P, Sudha N. Robust Hausdorff distance measure for face recognition. Pattern Recognition, 2007,40(2): 431-442.
    [63] Azencott R, Durbin F, Paumard J. Multiscale identication of building in compressed large aerial scenes[C]. In: Proceedings of the 13th International Conference on Pattern Recognition. Vienna, Austria: IEEE, 1996. 974-978
    [64] Sim D G, Kwon O K, Park R H. Object matching algorithms using robust Hausdorff distance measures. IEEE Transactions on Image Processing, 1999,8(3): 425 429.
    [65] Lin K H, Guo B F, Lam K M, SiuWC. Human face recognition using a spatially weighted modified Hausdorff distance[C]. In: Proceedings of 2001 International Symposium on Intelligent Multimedia, Video and Speech Processing. Hong Kong, China: IEEE, 2001. 477 480.
    [66]黄华,颜恺,齐春.基于相似度加权的自适应HD算法[J].自动化学报, 2009,35(7): 882 887.
    [67] Agrawal R, Faloutsos, Swami. Efficient similarity search in sequence databases[C]. In: D lomet ed. Proceeding of the 4th International Confererce of Foundations of Data Organization and Algorithms(FODO), 1993: 69 84.
    [68] Agrawal R, Lin K I, Saw hney H S, et al. Fast similarity search in the p resence of noise, scaling and translation in time series databases[J]. Proc 1995 Int Conf Very Large Data Bases(VLDB). Zurich, 1995: 490 501.
    [69]郑烇,郑,朱明等.相似时间序列的快速检索算法[J].小型微型计算机系统,2004,25(5): 785 788.
    [70] Y L Wu, D Agrawal, A E Avvadi. A comparison of DFT and DWT based similalrity search in time series databases[C]. In: Proceedings of the 9th International Conference on Information Knowledge Management CIKM 2000.
    [71]王正明,易东云.测量数据建模与参数估计[M].长沙:国防科技大学出版社, 1996.
    [72]张琦,潘孟春,吴美平.地磁辅助导航中的潜艇干扰磁场[J].中国惯性技术学报, 2009,17(3): 293 296.
    [73]张文博,李凯,朱尤攀等.光电稳定跟踪平台中微机电陀螺滤波方法研究[J].红外技术, 2006,28(5):249 252.
    [74]沈一鹰,冉启文,刘永坦.改进的格拉布斯准则在信号检测门限估值中的应用[J].哈尔滨工业大学学报,1999,31(3): 111 113.
    [75]肖艳军,李建勋.抗野值多速率模型及交互式状态估计[J].上海交通大学学报, 2005,39(9): 1106 1112.
    [76] Angiulli F, Basta S, Pizzuti C. Distance Based Detection and Prediction of Outliers [C]. IEEE Transactions on Knowledge and Data Engineering, 2006: 145 160.
    [77]林沂,晏磊,童庆禧.水下地磁导航实时量测野值的离线模式辨识[J].武汉理工大学学报, 2008,30(9): 112 115.
    [78]胡佳飞,陈棣湘,潘孟春,张琦.水下地磁测量中干扰消除方法的研究[J].计量技术, 2008,11: 29 31.
    [79] Husar R B, Falke S R. Uncertainty in the spatial interpolation of PM 10 monitoring data in Southern California[EB/OL]. http: //capita Wustl edu/ CAPITA /CapitaReports/Ca Interp/Ca IN TERP. HTML, 1997 03 03/1999 10 25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700