山葵黑根病菌拮抗菌的筛选、鉴定及防治研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
山葵,属十字花科多年生草本植物,产于日本富士山和台湾阿里山,是生产芥末的主要原料,沿海人们喜食生鱼片,以芥末为佐餐,被日本人民称为生活必需品。美国,加拿大,澳洲也有出口,因此市场销售量大。近年国外研究发现:山葵还具有杀菌防病、防腐利尿、发汗、清血、增进食欲、减脂和软化血管的功能,从而更增加了山葵的需求。因此,种植山葵有很好的经济社会效益。近年山葵已在大陆大量种植,我省青城、邛崃、雅安、乐山、绵阳、凉山等地区都建有种植基地,全国种植面积不下数十万亩。但其植株被一种黒根病感染,黑根病病原菌为一种丝状真菌——墨入菌(Phoma wasabiae Yokogi)引起。凡感染黒根病的山葵其产值下降50%以上。
     本研究用稀释分离法对成都、简阳、雅安等地区的农田、自然保护区的13个土壤样品进行放线菌和细菌的分离,共分离到放线菌119株,细菌67株。以山葵墨入菌为供试菌,采用点对峙培养筛选法对分离到的101株放线菌,57株细菌进行初筛,结果显示,对山葵墨入菌具有拮抗活性的放线菌38株,细菌10株。再通过打孔法复筛,得到产生抑菌圈最大的菌株SA2。
     根据传统的表型分类、生理分类,化学分类和现代16S rDNA序列分析的分子分类方法,即多相分类,对拮抗菌株SA2进行形态特征,生理生化特征分析以及16S rDNA序列分析。SA2为产芽胞细菌,周身鞭毛,芽胞中生,椭圆形,菌呈短杆状,菌体长1.9-2.8μm,宽0.6-1.1μm,具有运动性。LB培养基斜面30℃培养72h后,菌落呈乳白色,产生折皱。以16S rDNA序列为基础构建了包括14株相关种属细菌在内的系统发育树,其中,与芽孢杆菌属细菌有很高的同源性(92%-98.3%),与苏云金芽胞杆菌(Bacillus thuringiensis)十分接近,序列相似性值98.3%。
     通过对平板对峙筛选的最强拮抗菌S11,S13,SA2,SA16进行室内盆栽试验,选取盆栽试验效果最好的菌株SA2进行田间试验。试验地选在成都市都江堰龙池镇的山葵种植场黑根病发病率在50%以上的场地。盆栽试验结果表明:SA2拮抗细菌菌株对山葵黑根病有良好的防治效果,对山葵黑根病的防效为85.57%。山葵种植1,3,5个月后,SA2对黑根病防效分别为74.12%,76.57%和78.98%,有较好的防治效果,且随时间的延长而增加。
Wasabi is the main material of mustard's production, growing in Fuji in Japan and Ali Mountain in Taiwan, which is necessity of Japanese. And it is exported to American, Canada and Australia. So there is a large demand for it. According to recent abroad studies, scientists found wasabi has the functions of sterilization, protection from illness, antisepsis, diuresis, diaphoresis, clearing blood, whetting appetite, decreasing fat and intenerating blood vessel. Therefor, the need of wasabi is increasing and it is a farm produce which will bring great profits. Recent years wasabi has cropped largely in mainland of China, there are fields of wasabi in Qingcheng, Leshan, Mianyang Sichuan province. But its individual plant is infected by phoma wasabiae Yokogi. If the plants were infected, the production value would reduce more than 50%.
     In our study, soil samples were gathered from wasabi fields in Oingcheng Chengdu, from which 101 actinomyces strains and 57 bacterial strains were isolated by tube dilution assay. With phoma wasabiae Yokogi as the tested stain, 38 antibiotic actinomyces stains and 10 bacterial strains were screened out by hyphal extension inhibition assay. And with the best antibiosis against phoma wasabiae Yokogi, bacterium SA2 strain was resceened from these strains through aperture-strikeing method.
     Traditional phenotype classification, chemotaxonology, and moderm molecular taxonology were used to study the strain SA2. It was identified as Bacillus thuringiensis by morphological, cultural physiological, biochemical characteristics, and 16S rDNA sequences analysis.
     Because of good antibiosis against phoma wasabiae Yokogi, SA2, S11, S13, SA16 were used to control the disease in the potted plant. The tests exhibited that SA2 had the highest control efficacy. And the next field text of SA2 indicated that SA2 could control the disease and the control efficacy reached 78.98%. The antifungal strains in the study were well worth developing and applying for the biocontrol of the disease..
引文
1.罗朝村,胡敏夫.台湾山葵栽培与病害管理.农药世界.1991,1(89):82-84.
    2.何万兴,吴志平,宁红四川山葵病虫害调查.西南农业学报.2005,18(1):63-65
    3. Shik Shina, Hideki Masuda, Kinae. Naohide. Bactericidal activity of wasabi (Wasabia japonica) against Helicobacter pylori. International Journal of Food Microbiology 2004, (94): 255- 261
    4.胡敏夫,罗朝村.山葵主要病虫害及防治方法.兴农杂志.1991,(271):45-48
    5.张富丽,宁洪,张敏.山葵墨入病菌生物学特性研究..植物保护.2004,30,(4):45~48
    6.戈峰,曹东风,李典谟.我国化学农药使用现状、问题及其减少对策.中国无公害农业的发展策略和途径.北京:中国农业出版社.1998,39-45.
    7. Scher FM and Baker R. 1982. Effect of Pseudomonas and a synthesis iron chelator on induction of soil suppressiveness to Fusarium wilt pathogens. Phytopathology. 72: 1576-73.
    8. Kim-DalSoo; Cook-RJ; Weller-DM; Kim-DS. Bacillus sp. L324-92 for biological control of three root diseases of wheat grown with reduced tillage. Phytopathology. 1997, 87: 5, 551-558.
    9. Handelsman, J.,and E. V. Stabb. 1996. Biocontrol of soilborne plant pathogens. Plant Cell 8:1855-1869.
    10. DiPietro A, Lorito M and Hayes CK. 1993. Endochitinase from Gliocladium virens: Isolation, characterization, and synergistic antifungal activity in combination with gliotoxin. Phytopathology, 83:308-313.
    11.杨文博,冯波,佟树敏.链霉菌S01菌株几丁质酶对植物病原真菌的拮抗作用.微生物学通报.1997,24(4):224-227.
    12. De la Cruz. J., Pintor-Toro. J. A., Benitez. T. and Hobell. A. 1995. Purification and characterization of an endo-β-1, 6-glucanase from Trichoderma harzianum that is related to its mycoparasitism. J. Bacteriol. 177. 1864-1871.
    13. D Valois, K Fayad, T Barasubiye, M Garon, C Dery, R Brzezinski and C Beaulieu, Glucanolytic antinomycetes antagonistic to phytophthora fragariae var. rubi, the causal agent of raspberry root rot. Appl. Environ. Microbiol., May 1996, 1630-1635, vol62, No. 5.
    14.蒋细良,谢德龄.农用抗生素的作用机理.生物防治通报.1994,10(2):76-81.
    15.王岳,方金瑞主编.抗生素.科学出版社.1988.
    16.[日]田中信男著.《抗菌素的作用机制》翻译组译.抗菌素的作用机制-抗菌和抗癌作用的分子生物学.科学出版社.1977.
    17. Davies JE. 1990. What are antibiotics? Archaic functions for modern activities. Mol. Microbiol. 4: 1227—1232.
    18.魏美玉,张时兴,周桂珍,严成灼.山葵黑心病诊断和防治试验.福建农业科技.2002, 5:33-34
    19.H.C.叶高罗夫 著,冯明霞,周本励 译.抗生菌的分离及其抗菌效能的生物学检定.人民卫生出版社.1965.
    20.姜成林,徐丽华著.微生物资源学.科学出版社.1997.
    21.[日]土壤微生物研究会编.土壤微生物实验法.科学出版社.1983。
    22.阮继生,刘志恒,梁丽糯,杨德成 编著.放线菌研究及应用.科学出版社.1990.
    23. John N. Porter. Culture conditions for antibiotic-producing microorganisms, p. 3-8. In Hash, J. H. (ed.), Methods in enzymology, vol. 43. Academic press, New York. San Francisco-London. 1975
    24.周德庆,主编.微生物学实验手册.上海科学技术出版社.1986.
    25.方中达 编.植病研究方法.农业出版社.1979.
    26. Cook RJ, and Backer KF 1983. The role of bacteria in the biological control of plant pathogens. Ann. Phytopathol. Soc. St. Paul. MN
    27. Cook, R. J. 1993. Making greater use of introduced microorganisms for biological control of plant pathogens. Annu. Rev. Phytopathol. 31:53-80.
    28. Handelsman, J.,and E. V. Stabb. 1996. Biocontrol of soilborne plant pathogens. Plant Cell 8:1855-1869
    29.祖若夫,胡宝龙,周德庆 编著.微生物学实验教程.复旦大学出版社.1993.
    30. Mckeen CD, Reilly CC and Pausey PL. 1986. Production and partial characterization of antifungal substances antagonistic to Monlinia fructicola from Bacillus subtilis Phytopathology. 76: 136-39.
    31. Emmert EAB, and Handelsman J. 1999. Biocontrol of plant disease: a (gram-) positive perspective, FEMS Microbiology Letters 171: 1—9.
    32. Marten-P; Smalla-K; Berg-G. Genotypic and phenotypic differentiation of an antifungal biocontrol strain belonging to Bacillus subtilis. Journal of Applied Microbiology. 2000, 89: 3, 463-471.
    33. Zheng-XY; Sinclair-JB. The effects of traits of Bacillus megaterium on seed and root colonization and their correlation with the suppression of Rhizoctonia root rot of soybean. BioControl. 2000, 45: 2, 223-243.
    34. Kim-DalSoo; Cook-RJ; Weller-DM; Kim-DS. Bacillus sp. L324-92 for biological control of three root diseases of wheat grown with reduced tillage. Phytopathology. 1997, 87: 5, 551-558.
    35. Beatty-PH, Jensen-SE. Paenibacillus polymyxa produces fusaricidin-type antifungal antibiotics active against Leptosphaeria maculans, the causative agent of blackleg disease of canola. Canadian Journal of Microbiology. 2002, 48: 2, 159-169.
    36.李湘民,华菊玲,罗任华,许志刚。水稻主要病害拮抗细菌的筛选与鉴定.江西农业学报.2000,12(3):32-35.
    37.郭坚华,潘登明,任欣正。抗青枯生防菌拮抗物性质的初步研究.南京农业大学学报.1994,18(2):59-62.
    38.董春,董成刚,赵青峰,曾宪铭.利用拮抗细菌防治烟草青枯病初步研究.广东农业科学.1996,5:28-30.
    39.梅汝鸿,徐维敏著.植物生态学.中国农业出版社.1998.48-51.
    40. Loper, J. E. (1988). Role of fluorescent siderophore in biological control of pythium ultimum by a Pseudomonas fluorescents strain. Phytopathology. 78: 166-172
    41. Weller, D. M. and Cook, R. J. (1983). Suppression of take-all of wheat by seed treatments with fluorescent pseudomonas. Phytopathology. 73: 463-469
    42. Kerr A. 1980. Biological control of crown gall through production of agrocin 84. Plant Disease 64: 25-30.
    43. Stromberg KD, Kinkel LL, Leonard KJ. 2000. Interactions between xanthomonas translucens pv. Translucens, the causal agent of bacterial leaf positive bacteria. Bacterial rev. 40: 722-756.
    44. Ladha JK, Bbarraquio WL, and Watanabe I. 1983. Isolation and Identification of Nitrogen fixing enterobacter cloaeae and Klebsiella planticola associated with rice plants. Can. J. Microbioll. 29: 1301-1308.
    45. Chung DY, Kyeremen AG and Gunji Y, et al, 1999, Identification and cloning of an Erwinia carotovora subSp carotovora bacteriocin regulator gene by insertional mutagensis. J. Bacteriol 181: 1953—1957.
    46. Prebrazhenskaya T P. Taxonmy problems of genus Actinmyces(Streptomyces)[A].In: The Biology of The posium on Taxonmy(eds.)Prauser H, Jena 1986: 55-66.
    47. Colwell R R. J Bacteriol. 1970, 104: 410-433.
    48.马利,张利平,赵刚勇.放线菌的多相分类法.河北省科学院学报.2004,21(1):46-51
    49.[美]J.萨姆布鲁克,E.F.弗里奇,T.曼尼阿蒂斯 著.金冬雁,黎孟枫 等译.分子克隆实验指南(第二版).科学出版社.1998.
    50.R.E.布坎南,N.E.吉本斯等(中国科学院微生物研究所译).1984.伯杰细菌鉴定手册(第八版).北京:科学出版社.
    51.R.E.戈登,W.C.海恩斯,C.H.N.帕格(蔡妙英等译).1983.芽孢杆菌属.北京:农业出版社.
    52.东秀珠,蔡妙英等编著.常见细菌系统鉴定手册.2001.科学出版社。
    53. Saito H and Miura K. Preparation of transforming DNA by phenol treatment. Biochem. Biopbys. Acta., 1963, 72: 619-629.
    54. Sambrook J, Fritsch EF and Maniatis T. Molecular Cloning: A Laboratory Manual, 2nd ed. New York: Cold Spring Harbor Laboratory Press. 1989.
    55.焦振泉,刘秀梅 综述,孟昭赫 审校.16S rRNA序列同源性分析与细菌系统分类鉴定.国外医学卫生分册.1998,25(1):12-16.
    56.徐瑞富,刘鸣韬.植物病害生物防治中存在的问题及对策.河南职技师院学报.1999, 27(2):23-25
    57.周文强,樊慧梅.拮抗微生物在生物防治中的研究进展.辽宁农业科学.2005(5):32-34
    58.胡燕梅,杨龙.利用微生物防治植物病害的研究进展.中国生物防治.2006,22(增刊):190-193
    59.程亮,游春平,肖爱萍.拮抗细菌的研究进展.江西农业大学学报.2003,25(5):732-737
    60.张丽萍.张贵云.微生物农药研究进展.北京农业科学.2000,(4):22-24
    61.陈志谊.微生物农药在植物病虫害防治中的应用及发展策略.江苏农业科学.2001,4:39-42
    62.李本金,童川拉,谢世勇.荸荠枯萎病拮抗菌的筛选和利用.江西农业大学学报.2003,25:61-64
    63.杜荣骞.生物统计学.北京:高等教育出版社,1999
    64.纪明山,王英姿,程根武.西瓜枯萎病拮抗菌株筛选及田间防效试验.中国生物防治.2002,18(2):71-74
    1.赵继红,李建中.农用微生物杀菌剂研究进展农药.农药.2003,42(5):6-8.
    2.程序,曾晓光,王尔大.可持续农业导论.北京:中国农业出版社,1997.
    3.彭好文,黎起秦,林纬.生物防治研究及其应用概况.广西农业生物科学.2004,23(2):170-174.
    4.戈峰,曹东风,李典谟.我国化学农药使用现状、问题及其减少对策.中国无公害农业的发展策略和途径.北京:中国农业出版社,1998,39-45.
    5. Cook RJ, and Backer KF 1983. The role of bacteria in the biological control of plant pathogens. Ann. Phytopathol. Soc. St. Paul. MN.
    6.鲁素云.植物病害生物防治学.北京:农业大学出版社,1993.
    7. Handelsman, J., and E. V. Stabb. 1996. Biocontrol of soilborne plant pathogens. Plant Cell 8: 1855-1869
    8. Tang W, Cook RJ, and Rovira A. 1996. Advances in biological control of plant disease. China Agricultural University Press.
    9. Emmert EAB, and Handelsman J. 1999. Biocontrol of plant disease: a (gram-) positive perspective, FEMS Microbiology Letters 171: 1—9.
    10.夏如冰.中国生物防治科技的发展及其动因初探.中国农史.2002,21(3):27-36.
    11.沈寅初,张一宾.生物农药.北京:化学工业出版社,2000.
    12.程亮,游春平,肖爱萍.拮抗细菌的研究进展.江西农业大学学报.2003,25(5):732-737.
    13.梅汝鸿,徐维敏著.植物生态学.中国农业出版社.1998.48-51.
    14. Cook RJ, Weller DM. 1987. Management of take-all in Consecutive crops of wheat or barley. Innovative Approaches to plant Disease Control New York: Wiley. pp41-76.]
    15. Loper. J. E., and M. D. Henkels. 1997. Availability of iron to Pseudomonas fluorescens in rhizosphere and bulk soil evaluated with an ice nucleation reporter gene. Appl. Environ. Microbiol. 63: 99-105.
    16. Schippers B, Bakker AW and Bakker PH. 1987. Interactions of deleterious and beneficial Rhizosphere microorganisms and the effects of cropping practice. Ann. Rev. Phytopathology. 25: 339-58.
    17. Godfrey-SAC, Silby-MW, Falloon-PG, Mahanty-HK. Biological control of Phytophthora megasperma var. sojae, causal agent of Phytophthora rot of asparagus, by Pseudomonas aureofaciens PA147-2: a preliminary field trial. New Zeal and Journal of Crop and Horticultural Science. 2000, 28: 2, 97-103.
    18. Howie WJ and Suslow TV. 1991. Role of antibiotic biosynthesis in the inhibition of Pythium ultimun in the cotton spermosphere and rhizosphere by Pseddomonas fluorescens. Mol. Plant-Microbe Interact. 4: 393-399.
    19. Sivakumar-G; Sharma-RC; Rai-SN. Biocontrol of banded leaf and sheath blight of maize by peat based Pseudomonas fluorescens formulation. Indian Phytopathology. 2000, 53: 2, 190-192.
    20. Thrane-C; Nielsen-TH; Nielsen-MN; Sorensen-J; Olsson-S. Viscosinamide-producing Pseudomonas fluorescens DR54 exerts a biocontrol effect on Pythium ultimum in sugar beet rhizosphere. FEMS-Microbiology-Ecology. 2000, 33: 2, 139-146.
    21. Schippers B. 1993. Exploitation of microbial mechanisms to promote plant health and plant growth. Phytopathology, 21: 275-79.
    22. Parke JL. Rand RE, and Joy AE et al., 1991. Biological control of Pythium damping-off and Aphanomyces root rot of peas by application of Pseudomonas cepacia or P. Fluorescens to seed. Plant Dis. 75: 987-992.
    23. Xu GW and Gross DC. 1986. Selction of fluorescent Pseudomonads antagonistic to Erwinia carotovora and suppressive of potato seed piece decay. Phytopathology. 76: 414-22.
    24.张中鸽,彭于发,黄大昉等.1995.荧光93菌剂防治小麦全蚀病使用技术及田间效果.见:植物病虫害生物学研究进展(何礼远主编).中国农业科技出版社.pp354—360.
    25. Mckeen CD, Reilly CC and Pausey PL. 1986. Production and partial characterization of antifungal substances antagonistic to Monlinia fructicola from Bacillus subtilis. Phytopathology. 76: 136-39.
    26. Marten-P; Smalla-K; Berg-G. Genotypic and phenotypic differentiation of an antifungal biocontrol strain belonging to Bacillus subtilis. Journal of Applied Microbiology. 2000, 89: 3, 463-471.
    27. Zheng-XY; Sinclair-JB. The effects of traits of Bacillus megaterium on seed and root colonization and their correlation with the suppression of Rhizoctonia root rot of soybean. BioControl. 2000, 45: 2, 223-243.
    28. Kim-DalSoo; Cook-RJ; Weller-DM; Kim-DS. Bacillus sp. L324-92 for biological control of three root diseases of wheat grown with reduced tillage. Phytopathology. 1997, 87: 5, 551-558.
    29. Beatty-PH, Jensen-SE. Paenibacillus polymyxa produces fusaricidin-type antifungal antibiotics active against Leptosphaeria maculans, the causative agent of blackleg disease of canola. Canadian Journal of Microbiology. 2002, 48: 2, 159-169.
    30. Pichard-B; Thouvenot-D. Effect of Bacillus polymyxa seed treatments on control of black-rot and damping-off of cauliflower. Seed Science and Technology. 1999, 27: 2, 455-465.
    31.郭坚华,潘登明,任欣正.抗青枯生防菌拮抗物性质的初步研究.南京农业大学学 报.1994,18(2):59-62.
    32.董春,董成刚,赵青峰,曾宪铭.利用拮抗细菌防治烟草青枯病初步研究.广东农业科学.1996,5:28-30.
    33.陈志谊,许志刚,陆凡,刘永锋,陈毓苓.拮抗细菌B-916培养液对水稻纹枯病菌的抗生活性及其抗菌物质的研究.江苏农业学报.2000,16(3):148-152.
    34.廖晓兰,罗宽.油菜花上细菌的分离及其对菌核菌的拮抗作用.湖南农业大学学报.2000,16(4):296-298.
    35.戴晓燕,关桂兰.两株对辣椒疫霉菌有拮抗作用的拮抗菌分泌蛋白的研究.中国生物防治.1999,15(2)81-84.
    36. Turner JT and Backman PA. 1991. Factors relating to peanut yield increase after seed treat with Bacillus subtilis. Plant Disease. 75: 347-53.
    37.姜成林,徐丽华著.微生物资源学.科学出版社.1997.
    38.梅汝鸿等.1989.增产菌.农业出版社.
    39.陈志谊,Mew TW.1998.在水稻生态系统中纹枯病拮抗细菌的分布和种类.中国水稻科学.12:35-39.
    40.陈志谊,许志刚,高泰东等.2000.水稻纹枯病拮抗细菌的评价与利用.中国水稻科学.14:98-102.
    41. Tanaka, Y. T., and S. Omura. Agroactive compounds of microbial origin. Annu. Rev. Microbiol. 1993. 47:57-87
    42. Okami, Y., and K. Hotta. 1988. Search and discovery of new antibiotics, p. 33-67. In M. Goodfellow, S. T. Williams, and M. Mordaski (ed.), Actinomycetes in biotechnology. Academic Press, London, United Kingdom.
    43. Hayakawa, M., K. Ishizawa, and H. Nonomura. 1988. Distribution of rare actinomycetes in Japanese soils. J. Ferment. Technol. 66: 367-373.
    44. Jiang, C. L., and L. H. Xu. 1996. Diversity of aquatic actinomycetes in lakes of the middle plateau, Yunnan, China. Appl. Environ. Microbiol. 62: 249-253
    45. Kim, B. S., J. Y. Lee, and B. K. Hwang. 1998. Diversity of actinomycetes antagonistic to plant pathogenic fungi in cave and sea-mud soils of Korea. J. Microbiol. 36: 86-92.
    46. Xu, L. H., Q. R. Li, and C. L. Jiang. 1996. Diversity of soil actinomycetes in Yunnan, China. Appl. Environ. Microbiol. 62: 244-248
    47. Suzuki, K., K. Nagai, Y. Shimizu, and Y. Suzuki. 1994. Search for actinomycetes in screening for new bioactive compounds. Actinomycetology 8: 122-127.
    48. Shomura, T. 1993. Screening for new products of new species of DactyTosporangium and other actinomycetes, Actinomycetology 7:88-98.
    49. El-Tarabily-KA; Hardy-GE-St-J; Sivasithamparam-K; Hussein-AM; Kurtboke-DI. The potential for the biological control of cavity-spot disease of carrots, caused by Pythium coloratum, by streptomycete and non-streptomycete actinomycetes. New-Phytologist. 1997,137:3, 495-507.
    50. Yamaguchi Isamu,微生物来源农药的最新进展,国外医药抗生素分册,1990,11(2):137-140.
    51.沈寅初.井岗霉素研究开发25年.植物保护.1996(4):44-45.
    52.周启,王道本.农用抗生素和微生物杀虫剂.北京:中国农业出版社.1995.
    53. Hjeljord, L, and A. Tronsmo. 1998. Trichoderma and Gliocladium in biocontrol:an overview, p.135-151 InC.P.Kubicek, and G.E.Harman (ed.), Trichoderma and Gliocladium. Taylor & Francis, Ltd., London, United Kingdom.
    54.赵雷.木霉菌生物学特性及拮抗机制研究概况.山东科学.1996,9(2):59-62.
    55.林福呈,陈振明,李德葆.1998.毛壳菌(Chaetomium)及其生防作用,生命科学探索与进展.480-484.杭州大学出版社.
    56. Prasad-RD; Rangeshwaran-R, An improved medium for mass production of the biocontrol fungus Trichoderma harzianum. Journal of Mycology and Plant Pathology. 2000, 30: 2, 233-235
    57. Mathivanan-N; Srinivasan-K; Chelliah-S, Field evaluation of Trichoderma viride Pers. ex. S. F. Gray and Pseudomonas fluorescens Migula against foliar diseases of groundnut and sunflower. Journal of BiologicalControl. 2000, 14:1, 31-34.
    58. Brown-HL: Bruce-A: Staines-HJ. Assessment of the biocontrol potential of a Trichoderma viride isolate part II: protection against soft rot and basidiomycete decay. International Biodeterioration and Biodegradation. 1999, 44:4, 225-231.
    59. Elad Y, and Baker R.1985. The role of competition for iron and carbon in suppression of chlamydospoore germination of Fusarium spp. By Pseudomonas spp.Phytopathology. 75:1053—59.
    60. Koch. E. 1999. Evaluation of commercial products for microbial control of soil-brone plant diseases. Criop Protection, 18,119-125.
    61. Chet I. and Baker, R. 1981. Isolation and biocontrol potential of Trichoderma hamntum from soil naturally suppressive to Rhizoctonia solani. Phytopathology. 71:286-90.
    62. Chet I.1987. Trichoderma-Application, mode of action, and protential as a biocontrol angent of soilborne plant pathogenic fungi. In: Innovative approach to plant disease control(ed:Cbet I),pp137--156. NowYork, John Wiley and Sons.
    63. Biswas-KK; Chitreswar-Sen; Sen-C. Management of stem rot of groundnut caused by Sclerotium rolfsii through Trichoderma harzianum. Indian Phytopathology.2000, 53:3, 290-295.
    64. Ram-D; Kusum-Mathur; Lodha-BC; Webster-J; Mathur-K Evaluation of resident biocontrol agents as seed treatments against ginger rhizome rot. Indian-Phytopathology. 2000, 53:4,450-454.
    65. Sivan A, and Chet I. 1989. The possible role of competition between Tichoderma hazianum and Fusarium oxysporium on rhizosphere colonization. Phytopathology. 79:1998-203.
    66.李良.1986.用木霉防治白绢病.植物保护.(2):19-20.
    67.马辉刚.木霉素防治番茄灰霉病田间实验.植物保护.1998(2):18.
    68.王革,周晓罡,方敦煌,李天飞.木霉拮抗烟草赤星病菌菌株的筛选及拮抗机制.烟草科技.2000,3:45-47.
    69.茆振川.木霉菌培养液对苹果腐烂病菌的拮抗作用.河北果树.2000,(3):15-16.
    70.韦善君,李国庆,姜道宏,王道本.黄色蠕形霉对棉花上几种病原菌拮抗作用的研究.华中农业大学学报.1999.18(1):16-19.
    71.何迎春,高必达,立枯丝核菌的生物防治.中国生物防治.2000,16(1):31-34.
    72.张秀华,李国玄.烟花草花叶病毒株若毒系得诱变和性质研究.植物病理学报.1980,10(1):49-53.
    73. Grant TJ. And Costa AS.A mild strain of the tristeza virus of citrus Phytopathology. 1951, 41: 114.
    74.邵碧英,吴祖建,林奇英.烟草花叶病毒弱毒株筛选及交互保护作用.福建农业大学学报.2001,30(3):297-303.
    75.田波.植物病毒生物防治途径的探讨.生物防治通报.1985,(2):41-45.
    76. Tagg JR 1992. Bacteriocins of gram-positive bacteria; an opinion regarding their nature, nomenclature and numbers. In: Bacteriocins, microcins and lantibiotics (eds:James R, Lazdunski C, Pattus F) Springer-Verlag, New York. Pp33-35.
    77. Riley MA. 1998. Molecular mechanisms of bacteriocin evolution. Ann. Rev. Genet., 32:255-278.
    78. Konisky, J. 1982. colicin and other bacteriocins with established modes of action. An. Rev. Microbiol. 36:125-144.
    79. Jack RW, Tagg JR. and Ray, B. 1995. Bacteriocins of gram-positive bacteria. Microbiol. Rev., 59:171-200.
    80. Klaenhammer, T. R. 1993. Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol. Rev. 12:39-86.
    81. Hansen, JN. Chung YJ, Liu Wet al., 1997. Biosynthesis and machanism of action of nisin and subtilin. In:Nisen and novel lantibiotics(ed:Jung G and Sahl HG),pp287—302. Escom Publishers, Leiden, The Netherlands.
    82. Ruhr E. Sahl H-G. Mode of action of the peptide antibiotic nisin and influence on the membrane potential of whole cells and on lytoplasmic and artificial membrane vesicles. [J]. Antimicrob Agents Chemother. 1985.27(5):84.
    83. Sahl, HG. 1995. Gene-encoded antibiotics made in bacteria. In: Antimicrobial petides (ed: Marsh J, and Goode JA) Wiley, Chichester, pp27—42.
    84.蒋细良,谢德龄.农用抗生素的作用机理.生物防治通报.1994,10(2):76—81.
    85.王岳,方金瑞主编.抗生素.科学出版社.1988.
    86.[日]田中信男著.《抗菌素的作用机制》翻译组译.抗菌素的作用机制-抗菌和抗癌作用的分子生物学.科学出版社.1977.
    87.Yamaguchi Isamu,微生物来源农药的最新进展,国外医药抗生素分册,1990,11(2):137-140.
    88.谢德龄,倪楚芳,朱昌雄等.中生菌素(农抗751)防治白菜软腐病的效果试验初报.生物防治通报.1990.6(2):74-75.
    89.孔建等.生物防治通报.1993,9(3):133-137.
    90. Mulya K, Watanabe M, Goto M. Suppression of bacterial wilt disease of tomato by root-dipping with Pseudomons fluorescens pfG32-the role of antibiotie substances and siderophore production. Annals of the Phytopathological Society of Japan. 1996,62(2): 134-140
    91. Dunne C, Delancy I, Fenton A. The biotechnology and application of Pseudomonas inoculants for the biocontrol of phytopathogens. Biology of Plant-Microbe interactions. 1996.
    92. 唐文华,曾广然.1988.植物病害的生物防治.见中国生物防治(主编:包建中、古德样), pp493-570. 山西科学技术出版社.
    93. Ghisalberti, E. L., and G. Y. Rowland. 1993. Antifungal metabolites froM Trichoderma hatzianum. J. Nat. Prod. 56:1799-1804.
    94. Wilhite SE, Lumsden RD and Straney DC. 1994. Mutational analysis of gliotoxin production by the biocontrol fungus Gliocladum virens in relation to suppression of Pythium damping-off. Phytopathology, 84:816-821.
    95. Kloepper JW,Leong J, and Teinze M et al., 1980. Pseudomonas siderophores: A mechanism explaining disease-suppressive soil. Curr. Microbil. 4:317-20.
    96. Neilands JB, and Nakamura K. 1991. Detection, determination, isolation, characterization and regulation of micriobial iron chelates. In:CRC handbook of microbial iron chelates (ed:Winkelmann),pp-14. CRC Press, London, BuyerJS and Leong J. 1986. Iron transport-mediated antagonism between plant growth-promoting and plant-deleterious Pseudomonas strains. J. Biol. 261:791-94.
    97. Leong, J. 1986. Siderophores: their biochemistry and possible role in the biocontrol of plant pathogens. Annu. Rev. Phytopathol. 24:187—209.
    98. Scher FM and Baker R. 1982. Effect of Pseudomonas and a synthesis iron chelator on induction of soil suppressiveness to Fusarium wilt pathogens. Phytopathology. 72: 1576-73.
    99. Cook RJ, Weller DM. 1987. Manaaement of take-all in Consecutive crops of wheat or barley. Innovative Approaches toplant Disease Control New York: Wiley. pp41-76.]
    1O0. Loper. J. E., and M. D. Henkels. 1997. Availability of iron to Pseudomonas fluorescens in rhizosphere and bulk soil evaluated with an ice nucleation reporter gene. Appl. Environ. Microbiol. 63:99-105.
    1O1. Singh-M; Singh-RP; Chaube-HS; Griensven-LJLD-van (Editor). Siderophore producing bacteria as potential biocontrol agents of mushroom diseases. Science and cultivation of edible fungi. Proceedings of the 15th International Congress on the Science and Cultivation of Edible Fungi, Maastricht, Netherlands, 15-19 May. 2000, 577-585.
    102. Van Dijk KV, and Nelson EB. 1997a. Fatty acids uptake and beta-oxidation by Enterobacter cLoacaeis necessary for seed rot suppression of Pythium ultimum Phytopathology. 87:100-102.
    103. Van Dijk KV, and Nelson EB. 1997b. Inactivation of seed exudates stimulants of Pythium ultimum sporangium germination by biocontrol strain of Enterobacter cToacae and other seed-associated bacteria. Soil Boil and Biochem. 29: 31-355.
    104.王未名,陈建爱,孙永堂等.六种土传病原真菌被木霉抑制作用机理的初步研究.中国生物防治.1999,(3):142-143.
    1O5. Simon, A., and K. Sivasitbamparan. 1989. Pathogen suppression: a case study of Gaeumannomyces graminis var. tritici in soil. Soil Biol. Biochem. 21:331-337.
    106.陈志谊.微生物农药在植物病虫害防治中的应用及发展策略.江苏农业科学.2001,(4) :39-42.
    107.林晃.我国农作物病虫害生物防治的新进展.植保技术与推广.1995,(3):30-31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700