高密度PZT95/5陶瓷的冲击相变及放电性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用PZT 95/5陶瓷在冲击波作用下发生铁电三角相(F_R)→反铁电正交相(A_O)的相变、瞬间去极化、释放陶瓷电极表面束缚的电荷,在微秒量级输出大电流的性能研制的新型脉冲能源,在美国、英国及俄罗斯等国家的高新技术上已得到了应用。研究PZT 95/5铁电陶瓷冲击相变及相变导致的放电性能,对拓展该材料在冲击波条件下的使用有重要价值。同时,由于该冲击相变发生在弹性区内,相变过程受材料本构关系影响较大,有关实验方法和诊断技术的研究报道较少、难度较大,因此PZT 95/5陶瓷的冲击相变研究对发展材料弹性区内冲击相变的实验研究方法、建立包含相变的本构模型有积极意义。
     本文以国产高密度(7.76 g/cm~3)PZT 95/5陶瓷作为研究对象,在一级气体炮上开展了一维应变平面冲击波加载实验。
     通过研究冲击波传播过程中陶瓷的Hugoniot性能、高压声速及冲击去极化释放的电性能,提出了一种弹性区不可逆相变本构模型,深入分析了相变与冲击轴向应力、冲击释电的关系。本文的主要工作及创新点归纳如下:
     1.在逆向碰撞实验中,使用含熔石英窗口的激光速度干涉测量技术(VISAR),精确测试了0.48-3.78 GPa压力范围内PZT 95/5陶瓷的轴向应力-粒子速度Hugoniot关系。与未极化陶瓷在弹性区的线性冲击轴向应力-粒子速度Hugoniot关系明显不同的是,弹性区内极化陶瓷的冲击轴向应力-粒子速度Hugoniot关系可以用三段式折线表示。综合Setchell(J Appl Phys,2003,94(1)573)对PZT 95/5陶瓷屈服起始应力和Avdeev(Phys Rev B,2006,73:064105)对PZT 95/5陶瓷F_R→A_O相变前后晶格参数变化的研究结果,得到了国产高密度PZT 95/5陶瓷在大约0.5-2.0 GPa应力范围发生了弹性区一级结构相变的结论。研究结果为建立弹性应力区内包含相变的材料的本构关系奠定了基础。
     2.利用上述逆向碰撞实验中得到的PZT 95/5陶瓷粒子速度剖面,计算了在弹性区内的纵波声速。结果表明,PZT 95/5陶瓷在弹性区内的纵波声速随冲击加载应力的增加而增大。纵波声速随冲击加载应力的变化的斜率因相变而发生拐折,也可以用三段折线描写。
     3.对国产高密度PZT 95/5陶瓷的相变引起的去极化过程和电流释放性能进行了研究。首先,通过比较冲击释放剩余极化强度P_(rs)与陶瓷的初始剩余极化强度P_r,确定了该陶瓷材料相变起始应力为(0.30±0.15)GPa,相变完成应力为(1.90±0.15)GPa。实验结果表明:在陶瓷相变区内,冲击轴向应力幅值越大,电流幅值越大。其次,对于完全相变后的PZT 95/5陶瓷,研究了外电路负载对陶瓷电流输出性能的影响。通过等效电路的计算分析,并经实验验证表明:完全相变后的PZT 95/5陶瓷可等效为脉冲恒流源,释放的电流为恒定值;释放的电流受外电路的RLC负载参数影响:电感负载导致电流幅值增加,波形振荡;纯电阻负载的电流幅值稳定,电流响应时间随负载电阻的增加而增加。
     4.在高密度PZT 95/5陶瓷Hugoniot性能、声速、弹性模量的实验研究基础上,将唐志平等人提出的描写一维应力加载下弹性区不可逆相变本构模型拓展到本文研究的一维应变加载条件下,建立了PZT 95/5陶瓷F_R→A_O相变本构模型:
     式中,σ_A、ε_A分别表示相变起始点的冲击轴向应力和应变,σ_B、ε_B分别表示相变完成点的冲击轴向应力和应变。根据本文对国产高密度PZT 95/5陶瓷实验的研究结果,σ_A=0.23 GPa,ε_A=1.48×10~(-3),σ_B=1.94 GPa,ε_B=1.34×10~(-2)。
     5.根据实验测量的PZT 95/5陶瓷在相变过程中释放的电荷,提出了用冲击相变过程中陶瓷的A_O相的体积分数ξ来描述陶瓷的动态相变特性,A_O相的体积分数ξ定义为陶瓷冲击释放的剩余极化强度P_(rs)和陶瓷初始剩余极化强度P_r的比值。由于F_R相和A_O相的密度已知,相变过程中A_O相的质量分数可以通过体积分数ξ确定。结合实验测得的PZT 95/5陶瓷的σ-u Hugoniot性能和电释放性能,描写国产高密度PZT 95/5陶瓷的A_O相体积含量ξ随冲击轴向应力σ的变化的关系式如下:
     根据相变体积含量关系式,极化高密度PZT 95/5陶瓷的相变起始应力为0.23 GPa,相变结束应力为1.94 GPa。
     综上所述,本文发展了一种一维应变条件下研究弹性区相变材料的本构关系的实验研究方法,并确定了国产高密度PZT 95/5陶瓷的冲击相变动力学模型。本实验研究方法采用逆向碰撞实验技术和带窗VISAR测试技术,用于获取“样品/透明窗口界面”的粒子速度和冲击加载下的声速。本方法可用于其它材料的本构关系及低压相变研究。本研究获得的国产高密度PZT 95/5陶瓷的冲击动力学参数、冲击相变动力学特性,对于拓展该材料的应用,具有重要价值。
The polarized PZT 95/5 ferroelectric ceramics with a rhombohedral structure (F_R) will transform into the antiferroelectric phase with an orthorhombic structure(A_O) when subjecting to proper shock loadings. This Phase transition will result in a rapidly depolarizing process, in which the dramatic releasing of the surface charges bounded in the ceramics happens. This kind of ceramics has been successfully used in the United States, United Kingdoms and Russia as the promising pulsed power supplies to provide large amplitude current. Studies of the phase transition mechanism and electric current generation behavior are of essential importance for exploiting and developing applications of the materials. Furthermore, the accurate identify of the F_R to A_O phase transition is also a challenge to the experimental researchers, both in method and diagnosis techniques, for it occurs below the Hugoniot elastic limits of the ceramics and the phase transition process would be seriously affected by its constitutive behavior, and the construction of the constitutive relations in the elastic stress region involving phase transition is not yet an easy job.
     In this paper, the domestic PZT 95/5 ceramic with a density of 7.76g/cm~3 was chosen as our test sample and the one-stage gas gun at LSD was used as the planar shock-loading tools to create the one-dimensional strain states in the ceramics. Based on the measured Hugoniot data, the sound velocities at the Hugoniot states and the depoling current profiles determined from the experiments, a constitutive model involving the irreversible phase transition in the elastic stress region was proposed; behavior of the phase transition related with the shock loading stresses and the shock-depoling properties was carefully analyzed. Main results are as follows:
     1. The axial stress(σ) to particle velocity(u) relation, i.e. the Hugoniot of the polarized high density PZT 95/5 ceramics at stresses ranging from 0.48 GPa to 3.78 GPa, were measured via reverse-impact experiments, by using the VISAR instrumentation techniques coupled with a fused quartz window. The elasticσ-u Hugoniot of the polarized ceramics behaves totally different from that of the un-polarized ones in that the former can be characterized by a three-sections broken-line while the latter is linear. These results provided a basis for establishing a constitutive relation involving the phase transition in the elastic stress regions. In reference to the dynamic yielding threshold stress data for low density PZT 95/5 ceramics by Setchell et al and to the crystal lattice parameter changes before and after the phase transition by Avdeev et al, it is concluded that the phase transformation of domestic high density PZT 95/5 is a first order phase transition occurring in the stress region, roughly from about 0.5 GPa to about 2.0 GPa.
     2. Sound velocities were calculated from the particle velocity profile of PZT 95/5 ceramic, which is obtained from the reverse-impact experiments. Result shows that the longitudinal sound velocity increase with shock stress, it can also be expressed by a three-sections broken line. It is the phase transition that results in the inflections in the slopes of the sound velocity versus stress curve.
     3. Shock-induced depoling process and electric current releasing of the high density PZT 95/5 ceramics were studied. Firstly, the current-releasing behavior in the phase transition stress region was studied by comparing the released polarization (P_(rs)) under shock compression and the initial remanent polarization (P_r). Results show that the magnitude of the current released increases with the shock stress. Analysis of the current data further confirms that the phase transition should start at stress about 0.30±0.15 GPa and almost complete at 1.90±0.15 GPa. Secondly, the influence of the circuit loads on the output currents at stresses where phase transition completes was discussed. Analyses of the equivalent circuit and the experiment results show that the current magnitude will keep constant when phase transition has completed. The current in circuit will only be influenced by RLC loads such that: the inductance loads will induce a rising current magnitude and a oscillatory profile, the pure resistance loads will induce a stable current output and the response time will increase with the resistance magnitude.
     4. By using the experiment data of the Hugoniot, the sound velocity ,and the elastic modulus at ambient conditions for the high density PZT 95/5 ceramics, and by expanding Tang Zhiping's irreversible phase transition model for 1-D stress loading conditions to 1 -D strain conditions of this study, a new constitutive model for F_R→A_O phase transition of the high density PZT 95/5 ceramics was proposed: whereσ_A andε_A are threshold stress and strain, andσ_B andε_B are ending stress and strain of the phase transition, respectively. All of them were determined from F_R→A_O phase transition experiment:σ_A=0.23 GPa,ε_A=1.48×10~(-3),σ_B=1.94 GPa,ε_B=1.34×10~(-2).
     5. Based on the experimentally measured electric charges released during the phase transition, a volume fraction function,ξof the A_O phase due to the phase transition is introduced to describe the dynamic phase transition behavior by definition, the volume fraction fuctionξcan be expressed as the ratio of the released polarization P_(rs) to the remanent polarization P_r Since the density of the F_r phase and A_O phase have been precisely determined, the mass fraction change of the A_O phase due to the phase transition can easily be calculated from the volume fractionξ. By combination of theσ-u Hugoniot and the measured electric charges released, the volume fraction parameterξcan further be expressed as the function of the shock stress (σ) such that:This also implies that the phase transition of the polarized high density PZT 95/5 ceramics initiates at stress of 0.23 GPa and completes at 1.94 GPa.
     In conclusion, a method for studying experimentally the constitutive relations under 1-D strain condition and a model for describing the dynamic phase transition behavior of the domestic high density PZT 95/5 ceramics have been developed. The method mainly includes two basic experimental techniques-the reverse impact techniques and the VISAR instrumentation techniques coupled with a transparent window, to obtain the particle velocity profile at the sample-window interface and the sound velocity profile of the sample under shock loadings. These methods should be applicable to other materials for constitutive measurement and phase transition study. The authors believe that the shock dynamic parameters and the characteristics of the shock-induced phase transition of the domestic high density PZT 95/5 ceramics obtained in this study would be of practical importance in open up its new applications.
引文
1 许煜寰.铁电与压电材料[M].科学出版社,1978
    2 钟维烈.铁电体物理学[M].科学出版社,1998
    3 Neilson F W. Ferromagnetic and Ferroelectric Explosive-Electric On Shot Explosive Electric Transducers[J]. 1956, SCTM230B-56-51
    4 Neilson F W, Effects of Strong Shocks in Ferroelectric Material[J]. Bull Am Phys Soc, 1957,2:302
    5 S E Whitcomb. Survey of Possible Explosive-Electric Energy Transducers[J]. 1958, SCTM 231-58-(51)
    6 Halpin W J. Current from a Shock-Loaded Short-Circuited Ferroelectric Ceramic Disk[J]. J Appl Phys, 1966; 37(1): 153-163
    7 Novitsky Ye Z, Sadunov V D, Karpenko G Ya. Behaviour of Ferroelectrics in Shock Waves[J].Russian: FGV, 1978; 14(4): 115-129
    8 Bauer F, Vollrath K, Eyraud L, et al. Ferroelectric energy conversion with PZT ceramics under shock loading[J]. J Am Ceram Soc, 1980; 63:268-271
    9 Fleddermamm Charles B, Nation J A. Ferroelectric sources and their application to pulsed power:A Review. IEEE TRANSACTIONS ON PLASMA SCIENCE[J], 1997;25(2):212-220
    10 Voigt J A, Sipola D L, Ewsuk K G, et al. Solution Synthesis and Processing of PZT materials for Neutron Generator applications. Sandia National Laboratories Report No. Sandia Report 98-2750, 1998
    11 Voigt J A, Gregory E K, Jill G S, et al. PZT 95/5 material development for neutron generator applications. Sandia Report 2001-0030P, Issue 1, February 2001
    12 Pin Yang, Moore R H, Lockwood S J. Chem-Prep PZT 95/5 for Neutron Generator Applications:The Effect of Pore Former Type and Density on the Depoling Behavior of Chemically Prepared PZT 95/5 Ceramics. Sandia Report 2003-3866, October 2003
    13 Lockwood S J, Rodman E D, Deninno S M, et al. Chem-Prep PZT 95/5 for Neutron Generator Applications: Production Scale-up Early History. Sandia Report 2003-0943, March 2003
    14 Deguchi K, Landolt-Bornstein. New Series on Crystals and Solid State Physics[A], Group Ⅱ,28/a,ed. by T Mitsui and E Nakamura, Springer-Verlag, Berlin. 1990
    15 Bruce A Tuttle, James E Smay, Joseph Cesarano, et al. Robocast Pb(Zr_(0.95)Ti_(0.05))O_3 Ceramic Monoliths and Composites[J]. J Am Ceram Soc, 2001; 84(4):872~874
    16 Sipola D L, Voigt J A, Lockwood S J, et al. Chem-Prep PZT 95/5 for Neutron Generator Applications: Particle Size Distribution Comparison of Development and Production-Scale Powders. Sandia Report 2002-2065, July 2002
    17 Haun M J, Furman E, Jang S J, et al. Thermodynamic theory of the lead zirconate-titanate solid solution system[J], part I: phenomenology. Ferroelectrics, 1989; 99:13-25
    18 Carabatos-Nedelec C, Harrad I E, Handerek J, et al. Structural and spectroscopic studies of niobium doped PZT 95/5 ceramics[J]. Ferroelectrics, 1992; 125: 483-488
    19 Fritz I J, Keck J D. Pressure-temperature phase diagrams for several modified lead zirconate ceramics[J]. J Chem Solids, 1978; 39:1163-1167
    20 Bruce A T, Pin Y, John H G, et al. Pressure-Induced Phase Transformation of Controlled-Porosity Pb(Zr_(0.95)Ti_(0.05))O_3 Ceramics[J]. J Am Ceram Soc, 2001; 84(6): 1260-1264
    21 Brannon R M, Montgomery S T, Aidun J B, et al. Macro- and meso-scale modeling of PZT ferroelectric ceramics[A]. In: M D Furnish, N N Thadhani, Y Horie, eds. Shock compression of condensed matter-2001[C], 2002:197-200
    22 M Avdeev, J D Jorgensen, S Short, et al. Pressure-induced ferroelectric to antiferroelectric phase transition in Pb_(0.99)(Zr_(0.95)Ti_(0.05))_(0.08)Nb_(0.2)O_3[J]. Phys Rev B, 2006; 73: 064105
    23 战略核力量-俄罗斯武器和技术装备.[M]21世纪百科全书。
    24 #12
    25 Ken Frazier. `Pathfinders`: Neutron generators qualified; Sandia teams meet final deadline,celebrate. Sandia Lab News,2001,53(1): 1-5
    26 王永令.PZT(Nb-I)相变铁电陶瓷材料研制报告.中科院上海硅酸盐研究所,鉴定会技术总结报告,1985
    27 Yu-Jinchang. A TEM Study of Crystal and Domain Structures of Nb-Doped 95/5 PZT Ceramics [J]. Appl Phys, 1982; A29:237-244
    28 鲍忠兴,顾惠成等.PZT95/5铁电陶瓷在高压下的压缩率与相变[J].高压物理学报,1987;1(2)
    29 张砚宇,杜金梅,袁万宗等.低密度PZT-95/5陶瓷流体静压相变实验研究[J].高压物理学报,2002;16(4):291-296
    30 刘利,韩钧万.PZT95/5压电陶瓷的冲击波活化改性研究[J].高压物理学报,1996,10(3):199-208
    31 王军霞,杨世源,贺红亮等.合成和烧结工艺对PZT95/5陶瓷致密化影响的研究[J].中国陶瓷工业,2005,12(2):6-10
    32 王军霞,杨世源,贺红亮等.冲击波合成Pb(Zr_(0.95)Ti_(0.05))O_3粉体的结构和特性[J].硅酸盐学报,2005,33(6):718-722
    33 章冠人.冲击波作用铁电体的击穿电压[J].爆轰波与冲击波,1992;(2)
    34 温殿英,林其文.冲击波压缩PZT-95/5铁电陶瓷的电介质击穿[J].高压物理学报,1998;12(3)
    35 贺元古,张亚洲,李传胪.PZT 95/5铁电陶瓷击穿的统计分析[J].高电压技术,2001;27(2):24-25
    36 张福平,贺红亮,杜金梅等.PZT 95/5铁电陶瓷晶粒度对冲击波作用下击穿电压的影响[J].无机材料学报,2005,20(4):1019-1024
    37 贺元吉,张亚洲,李传胪.爆电换能的理论分析[J].国防科技大学学报,2000;22(增刊):189-194
    38 贺元吉,张亚洲,李传胪.PZT95/5铁电陶瓷脉冲源用于nF电容器充电[J].高电压技术,2004,30(4):34-35
    39 林其文等.铁电体爆电换能器的匹配研究[J].高压物理学报,1988;2(2)
    40 贺元吉,张亚洲,李传胪.冲击波加载下PZT95/5铁电陶瓷电响应的数值模拟[J].高压物理学报,2000;14(3):13-14
    41 贺元吉,张亚洲,李传胪.冲击压力作用下PZT 95/5铁电陶瓷电响应的理论分析[J].功能材料与器件学报,2001;7(2):15-19
    42 林其文.冲击波加载铁电体的电响应研究[J].爆炸与冲击,1984;8(1)
    43 袁万宗.铁电陶瓷剩余极化强度与纵向压电应变常数之间的线性关系[J].爆轰波与冲击波,1995
    44 刘高旻,袁万宗等.冲击波作用下PZT-95/5陶瓷Pr-d_(33)关系实验研究[A].见:96中国材料研讨会论文集(材料设计与加工)[C],中国材料研究会,化学工业出版社,1997
    45 杜金梅.封装介质对铁电体冲击去极化影响的研究[D].硕十学位论文,中国工程物理研究院,2000
    46 Du-JM, Yuan-WZ, Dong-QD,et al. Effects of Lateral Rarefaction Wave on Phase-Transition of PZT-95/5 Ceramics Under Shock-Wave[J]. FERROELECTRICS, 2001; 254(1-4): 329-335
    47 杜金梅,张毅,张福平等.冲击加载下PZT 95/5铁电陶瓷的脉冲大电流输出特性[J].物理学报,2006;55(5):2584-2588
    48 张福平,张毅,杜金梅等.斜入射冲击波加载下PZT 95/5铁电陶瓷的放电特性研究[J].高压物理学报,2006,20(2):217-219
    49 刘高旻,张毅,杜金梅等.PZT 95/5-2Nb铁电陶瓷脉冲换能电输出研究[J].功能材料与器件学报,2007;13(4):371-374
    50 刘雨生,刘高旻,张福平等.不同加载压力下PZT95/5铁电陶瓷放电特性研究[J].压电与声光,2008,30(1):58-60
    51 刘高旻,谭华,袁万宗等.冲击加载下PZT-95/5陶瓷铁电-反铁电相变实验研究[J].高压物 理学报, 2002; 16(3): 231-235
    
    52 刘高旻. PZT 95/5陶瓷冲击相变压力实验研究[D]. 硕士论文,中国工程物理研究院,2002
    
    53 Reynolds C E, Seay G E. Two-wave shock structures in the Ferroelectric Ceramics Batium Titanate and Lead Zirconate Titanate[J]. J Appl Phys, 1962; 33(7):2234
    
    54 Doran D G. Shock-wave compression of Barium Titanate and 95/5 Lead Zirconate Titanate[J]. J Appl Phys, 1968; 39(1):40-47
    
    55 Dick J J, Vorthman J E. Effect of electrical state on mechanical and electrical response of a ferroelectric ceramic PZT 95/5 to impact loading[J]. J Appl Phys, 1978; 49(4): 2494-2498
    
    56 Fritz I J. Uniaxial-stress effects in a 95/5 lead Zirconate titanate ceramic[J]. J Appl Phys. 1978; 49(9): 4922-4928
    
    57 Chhabildas L C. Dynamic shock studies of PZT 95/5 ferroelectric ceramic. Sandia National Laboratories Report No. SAND84-1729,1984
    
    58 Chhabildas L C, Carr M J, Kunz S C, et al. Shock-recovery experiments on PZT 95/5[A]. In: Y M Gupta, ed. Shock Waves in condensed matter-1985[C], 1986: 785-790
    
    59 Furnish M D, Robbins J, Trott W M, et al. Multi-dimensional validation impact tests on PZT 95/5 and ALOX[A]. In: M D Furnish, N N Thadhani, Y Horie, eds. Shock compression of condensed matter-2001[C], 2002: 205-208
    
    60 Furnish M D, Chhabildas L C, Setchell R E, et al. Dynamic electromechanical characterization of axially poled PZT 95/5[A]. In: M D Furnish, L C Chhabildas, R S Hixson, eds. Shock compression of condensed matter-1999[C], 2000:975-978
    
    61 Montgomery S T. Analysis of transitions between ferroelectric and anti-ferroelectric states under conditions of uniaxial strain[A]. In: Y M Gupta, ed. Shock Waves in condensed matter-1985[C], 1986: 179-184
    
    62 Setchell R E, Chhabildas L C , Furnish M D, et al. Dynamic electromechanical characterization of the ferroelectric ceramic PZT 95/5[A]. In: Schmidt, Dandekar, Forbes, eds. Shock compression of condensed matter-1997[C],1998: 781-784
    
    63 Setchell R E, Montgomery S T, Chhabildas L C, et al. The effects of shock stress and field strength on shock-induced depoling of normally poled PZT 95/5[A]. In: M D Furnish, L C Chhabildas, R S Hixson, eds. Shock compression of condensed matter-1999[C], 2000: 979-982
    
    64 Setchell R E, Tuttle B A, Voigt J A, et al. Effects of initial porosity on the shock response of normally poled PZT 95/5[A]. In: M D Furnish, N N Thadhani, Y Horie, eds. Shock compression of condensed matter-2001[C], 2002: 209-212
    
    65 Setchell R E. Recent progress in understanding the shock response of ferroelectric ceramics[A]. In: M D Furnish, N N Thadhani, Y Horie, eds. Shock compression of condensed matter-2001[C], 2002: 191-196
    
    66 Setchell R E, Bruce A T, J A Voigt. Effects of micro-structural variables on the shock wave response of PZT 95/5. SAND2003-0537, February 2003
    
    67 Setchell R E. Shock wave compression of the ferroelectric ceramic Pb_(0.99)(Zr_(0.95)Ti_(0.05))_(0.98)Nb_(0.02)O_3: Hugoniot states and constitutive mechanical properties[J]. J Appl Phys, 2003; 94(1): 573-588
    
    68 Setchell R E, Shock wave compression of the ferroelectric ceramic Pb_(0.99)(Zr_(0.95)Ti_(0.05))_(0.98)Nb_(0.02)O_3: Micro-structural effects[J]. J Appl Phys, 2007; 101: 053525
    
    69 Halpin W J. Resistivity estimates for some shocked ferroelectrics[J]. J Appl Phys, 1968; 39(8): 3821-3826
    
    70 Lysne P C, Percival C M. Electric energy generation by shock compression of ferroelectric ceramics: Normal-mode response of PZT 95/5[J]. J Appl Phys, 1975; 46(4): 1519-1525
    
    71 Lysne P C. Dielectric properties of shock-wave-compressed PZT 95/5[J]. J Appl Phys, 1977; 48(3): 1020-1023
    
    72 Linde R K. Depolarization of Ferroelectrics at High Strain Rates[J]. J Appl Phys, 1967; 38(12): 4839-4842
    
    73 Lysne P C, L C Bartel. Electromechanical response of PZT 65/35 subjected to axial shock loading[J]. J Appl Phys, 1975; 46( 1 ):222-229
    
    74 Setchell R E. Shock wave compression of the ferroelectric ceramic Pb_(0.99)(Zr_(0.95)Ti_(0.05))_(0.98)Nb_(0.02)O_3: Depoling currents[J]. J Appl Phys, 2005; 97: 01350701-01350716
    
    75 Montgomery S T, Keck J D. Presented at the APS Topical Conference on Shock Compression of Condensed Matter, Williamsburg, VA, 1991 (unpublished)
    
    76 Demmie P N. Modeling and Simulation of Explosively Driven Electromechanical Devices[A]. In: M D Furnish, N N Thadhani, Y Hore, eds. Shock compression of Condensed Matter-2001[C], 2002:311-315.
    
    77 Advanced Simulation and Computing (ASCI) Program Plan. 2002-2003. SAND2002-2940P, DOE/DP/ASC-2002-ASCI-prog, 2002
    
    78 Montgomery S T, R M Brannon, J Robbins, et al. Simulation of the effects of shock stress and electrical field strength on shock-induced depoling of normally poled PZT 95/5[A]. In: M D Furnish, N N Thadhani, Y Horie, eds. Shock compression of condensed matter-2001 [C], 2002: 201-204
    
    79 王礼立.应力波基础(第二版)[M].国防工业出版社.2005
    1 Schardin H. Jahrbuch Der Deutsche Akademie Der Luft-fahrforschung. 1941:314
    2 Bancroft D, Peterson E L, Minshall S. Polymorphism of Iron at High Pressure. J Appl Phys,1956; 27(3): 291-298
    3 Minao Kamegai. Two-phase equation of state and free-energy model for dynamic phase change in materials. J Appl Phys, 1975; 46(4): 1618-1624
    4 Jow-Lian Ding, Dennis Hayes. Phase Transformation Rate in Shock-Loaded KCL[J]. SHOCK COMPRESSION OF CONDENSED MATTER, 1999:633
    5 李大红,唐志平等.(111)轴向锑化铟单晶冲击相变研究.高压物理学报,1996;10(4):245-251
    6 Tang Z P, Gupta Y M, Bellamy P M. Impact response of the shorted quartz gauge to 40 kbar[J].Rev. Sci. Instrum. 59(7), July 1988:1189
    7 唐志平,Y.M.Gupta.冲击下c轴硫化镉单晶的相变特性.中国科学技术大学,1990;V.20 N.3
    8 Tang Z P, Gupta Y M. Shock induced phase transition in cadmium sulphide dispersed in an elastomer. J Appl Phys, 1988; 64(4): 1827-1837
    9 Knudson M D, Gupta Y M. Transformation kinetics for the shock wave induced phase transition in cadmium sulfide crystals. J Appl Phys, 2002; 91(12):9561-9571
    10 Birman V. Review of mechanics of shape memory alloy structures. Appl. Mech. Rev. 50, 1997,629-645
    11 Chen Y C, Lagoudas D C. Impact Induced Phase Transition in Shape Memory Alloys[J]. J Mech Phys Solids, 2000, 48(2): 275-300
    12 Bekker A, Jimenez-Victory J C, Popov P, et al. Impact Induced Propagation of Phase Transformation in a Shape Memory Alloy Rod[J]. Int J Plasticity, 2002, 18: 1447-1479
    13 Duvall G E, Graham R A. Phase transitions under shock-wave loading. Rev Modern Phys, 1977;49: 523-579
    14 唐志平.冲击相变基础.合肥:中国科学技术大学出版社,1992
    15 Goswami R, Sampath S, Herman H, etal. Shock synthesis of Nano-crystalline Si by thermal spaying. J Mater Res, 1999; 14(9):3489-3492
    16 Gupta, Satish C. Materials synthesis and phase transitions under shock waves. Indian Acad of Sciences, Bulletin of Materials Science, 1999; 22(3): 295-300
    17 Gupta Y M. The coupling between shock waves and condensed matter: Continuum mechanics to quantum mechanics. Shock Compression of Condensed Matter-2001, Proceedings Aip Conference Proceedings 620, Pts 1 And 2,2002:3-10,
    18 Belonoshko A B. Atomistic simulation of shock wave-induced melting in argon. Science, 1997;(275)14:955-957
    19 特鲁宁PΦ,韩钧万译.高压高温下凝聚物质的性质.中国工程物理研究院流体物理研究所科协,1996。
    20 Hongliang He, T Sekine, T Kobayashi etal. Shock-induced phase transition of β -Si3N4 to c-Si3N4. Physical Review B, 2000; 62(17):11412-11417
    21 经福谦等.《实验物态方程导引》.第二版,科学出版社,1999
    22 胡绍楼.激光干涉测速技术.北京:国防工业出版社,2001
    23 王金贵.气体炮原理及技术.北京:国防工业出版社,2001
    24 Barker L M, Hollenbach R E. Laser interferometer for measuring high velocities of any reflecting surface. J Appl Phys, 1972,43(11): 4669-4675
    25 Amery B T. Wide range velocity interferometer. Proc. of the 6th symposium on detonation,AC-R-221, Office of Navy Research, Dept. of the Navy, Arlington,VA,1976: 673-681
    26 Hemsing W F. Velocity sensing interferometer (VISAR) modification. Rev Sci Instrum, 1979;50(1):73-78
    27 Sweatt W C, Stanton P L, Crump O B. Simplified VISAR system. SAND-90-2149C, 1990
    28 张江跃,谭华,虞吉林.双屈服法测定93W合金的屈服强度.高压物理学报,1997;11(4):254-259
    29 张江跃,谭华,虞吉林.动高压下拉格朗日声速的测定及其应用.高压物理学报.1999;13(1):42-49
    30 华劲松.高温高压下钨合金的本构方程研究.博士论文,中国工程物理研究院,1999
    31 胡绍楼,汪小松,贾路峰等.用于激光干涉仪的新型光纤探头.光子学报,1999;28:177-180
    32 马云,胡绍楼,汪小松,陈宏,李加波.样品-窗口界面运动速度的VISAR测试技术.高压物理学报,2003;17(4):290-294
    33 宋萍.无氧铜的高压卸载研究.硕士论文,中国工程物理研究院,2003
    34 刘高旻,谭华,袁万宗等.冲击加载下PZT95/5陶瓷铁电-反铁电相变实验研究.高压物理学报,2002;16(3):231-235
    35 刘高旻,PZT95/5陶瓷冲击相变压力实验研究.硕士论文,中国工程物理研究院,2002
    36 谭华.实验冲击波物理引导,北京,国防科技出版社,2007
    37 McQueen R G, Fritz J N, Morris C E. The velocity of sound behind strong shock waves in 2024 Al. in Shock waves in condensed matter-1983, ed. by Asay J R, Graham R A, Straub G K. 1984:95-98
    38 Brown J M, Shaner J W. Rarefaction Velocities in Shocked Tantalum and The High Pressure Melting Point. in Shock Waves in Condensed Matter-1983, ed. by Asay J R,Graham R A, Straub GK. 1984:91-94
    39 Duffy T S, Ahrens T J. Compressional Sound Velocity, Equation of State, and Constitutive Response of Shock-Compressed Magnesium Oxide. J Geophys Res, 1995; 100(B1): 529-542
    40 Ahrens T J. Equation of state. In: Asay J R, Shahinpoor M, eds, High-pressure shock compression of solids, New York: Springer-Verlag, 1992
    41 胡建波.经退火处理的LY12铝在强动载荷下的剪切模量和屈服强度.硕士学位论文,中国工程物理研究院,2005
    42 俞宇颖.强冲击载荷作用下LY12铝合金的准弹性卸载特性及层裂研究.博士论文,中国工程物理研究院,2006
    1 王金贵.气体炮原理及技术.北京:国防工业出版社,2001
    2 Marsh S P. LASL shock Hugoniot data. University of California press, Berkeley, CA, 1980
    3 Meyers M A. Dynamic behavior of materials. New York: John Wiley & Sons, Inc., 1994
    4 Wise J L, Chhabildas L C. Window material studies for shock-wave experiments. Bul Amer Phys Soc, 1980; 25(4): 866-867
    5 Barker L M and R E Hollenbach. Shock-Wave Studies of PMMA, Fused Silica, and Sapphire[J]. J.Appl.Phys., 1970; 41(10): 4208-4226
    6 R E Setchell. Index of refraction of shock-compressed fused silica and sapphire[J].J.Appl.Phys., 1979; 50(12): 8186-8192
    7 马云.冲击载荷下LiF晶体折射率研究.硕士论文,中国工程物理研究院,2003
    8 马云.私人通讯
    9 胡绍楼,汪小松,贾路峰等.用于激光干涉仪的新型光纤探头.光子学报,1999;28:177-180
    10 马云,胡绍楼,汪小松,陈宏,李加波.样品-窗口界面运动速度的VISAR测试技术.高压物理学报,2003;17(4):290-294
    11 宋萍.无氧铜的高压卸载研究.硕士论文,中国工程物理研究院,2003
    12 胡建波.经退火处理的LY12铝在强动载荷下的剪切模量和屈服强度.硕士学位论文,中国工程物理研究院,2005
    13 俞宇颖.强冲击载荷作用下LY12铝合金的准弹性卸载特性及层裂研究.博士论文,中国工程物理研究院,2006
    14 谭华.实验冲击波物理导引,北京,国防工业出版社,2007
    15 王永令.PZT(Nb-I)相变铁电陶瓷材料研制报告.中科院上海硅酸盐研究所,鉴定会技术总结报告,1985
    16 R E Setchell. Shock wave compression of the ferroelectric ceramic Pb_(0.99)(Zr_(0.95Ti_(0.05))_(0.98)Nb_(0.02)O_3 : Hugoniot states and constitutive mechanical properties. J. Appl. Phys, 2003; 94(1):573-588
    17 Barker L M, Hollenbach R E. Laser interferometer for measuring high velocities of any reflecting surface. J Appl Phys, 1972, 43(11): 4669-4675
    1 王永令.PZT(Nb-I)相变铁电陶瓷材料研制报告.中科院上海硅酸盐研究所,鉴定会技术总结报告,1985
    2 李翰如.电介质物理导论,成都科技大学出版社,1990
    3 岑孝良.《电子陶瓷》,电子科技大学出版社,1993
    4 蒋冬冬.冲击波作用下锆锡钛酸铅铁电陶瓷放电性能研究.硕士学位论文.西安交通大学,2008
    5 刘雨生.不同加载压力下PZT 95/5铁电陶瓷放电特性研究.压电与声光,2008
    6 杜金梅,张毅,张福平等.冲击加载下PZT 95/5铁电陶瓷的脉冲大电流输出特性[J].物理学报,2006;55(5):2584-2588
    7 刘高旻,张毅,杜金梅等.PZT 95/5-2Nb铁电陶瓷脉冲换能电输出研究[J].功能材料与器件学报,2007;13(4):371-374
    1 Minal Kamegai. Two-phase equation of state and free-energy model for dynamic phase change in materials[J]. J Appl Phys, 1975; 46(4): 1618-1624
    2 Abeyaratne R, Knowles J K. On a Shock-Induced Martensitic Phase TransitionfJ]. J Appl Phys,2000; 87(3): 1123-1134
    3 Chen Y C, Lagoudas D C. Impact Induced Phase Transition in Shape Memory Alloys[J]. J Mech Phys Solids, 2000,48(2): 275-300
    4 Bekker A, Jimenez-Victory J C, Popov P, et al. Impact Induced Propagation of Phase Transformation in a Shape Memory Alloy Rod[J]. Int J Plasticity, 2002, 18: 1447-1479
    5 Wang W Q, Tang Z P. Propagtion of Macroscopic Phase Boundary under Shock Loading[J].Explosion and Shock Waves, 2000,20(1): 25-31. (in Chinese)
    6 王文强,唐志平.冲击下宏观相边界的传播[J].爆炸与冲击,2000;20(1):25-31
    7 Tang Z P, Gupta Y M. Shock Induced Phase Transition in Cadmium Sulphide Dispersed in an Elastomer[J]. J Appl Phys, 1988,64(?): 1827-1837
    8 Tang Z P, Gupta Y M. Phase Transition in Cadmium Sulphide Single Crystals Shocked along the c Axis[J]. J Appl Phys, 1997, 81(11): 7203-7212
    9 Dai X Y, Tang Z P, Xu S L, et al. Propagation of Macroscopic Phase Boundaries under Impact Loading[J]. Int J Impact Eng, 2004, 30: 385-401.
    10 徐薇薇,唐志平,张兴华.有限杆中不可逆相边界的传播规律及其应用[J].高压物理学报,2006;20(4):365-371
    11 R E Setchell. Shock wave compression of the ferroelectric ceramic Pb_(0.99)(Zr_(0.95)Ti_(0.05))_(0.98)Nb_(0.02)O_3:Hugoniot states and constitutive mechanical properties. J Appl Phys, 2003; 94(1): 573-588
    12 M Avdeev, J D Jorgensen, S Short, et al. Pressure-induced ferroelectric to antiferroelectric phase transition in Pb_(0.99)(Zr_(0.95)Ti_(0.05))_(0.08)Nb_(0.2)O_3. Phys Rev B, 2006; 73: 064105
    13 经福谦.实验物态方程导引[M].第二版.北京:科学出版社,1999
    14 Wang L L. Foundation of Stress Waves(2nd ed)[M]. Beijing: National Defence Industry Press,2005;(in Chinese)
    15 王礼立.压力波基础(第二版)[M].北京:国防工业出版社,2005.
    16 谭华.实验冲击波物理导引.国防工业出版社[M],2007:147-148
    17 Bruno O, Vaynblat D. Two-wave structures in shock-induced martensitic phase transitions.Mathematical and Computer Modelling 2001, 34(12-13), p.1261-1271
    18 Barker L M and R E Hollenbach. Shock-Wave Studies of PMMA, Fused Silica, and Sapphire[J]. J.Appl.Phys., 1970; 41(10): 4208-4226
    19 Furnish M D, Chhabildas L C, Setchell R E, et al. Dynamic electromechanical characterization of axially poled PZT 95/5. In:M D Furnish,L C Chhabildas, R S Hixson,ed.Shock compression of condensed matter-1999, 2000: 975-978
    20 Brannon R M, Montgomery S T, Aidun J B, et al. Macro- and meso-scale modeling of PZT ferroelectric ceramics. In:M D Furnish, N N Thadhani, Y Horie,ed.Shock compression of condensed matter-2001, 2002: 197-200
    21 Montgomery S T. Analysis of transitions between ferroelectric and antiferroelectric states under conditions of uniaxial strain. In:Y M Gupta,ed.Shock Waves in condensed matter-1985, 1986:179-184
    22 Montgomery S T. Analysis of transitions between ferroelectric and antiferroelectric states under conditions of uniaxial strain. SAND-85-0554C,1985
    23 Chhabildas L C, Carr M J, Kunz S C,et al. SHOCK-RECOVERY EXPERIMENTS ON PZT 95/5.In: Y M Gupta, ed. Shock Waves in condensed matter-1985,1986: 785-790
    24 刘高旻,王志刚,王海晏等.PZT 95/5铁电陶瓷的声速及力学参数研究.中国材料科技与设备,2007;4(4):67-69
    25 蒋冬冬.冲击波作用下锆锡钛酸铅铁电陶瓷放电性能研究.硕士学位论文.西安交通大学,2008
    26 刘雨生,刘高旻,张福平等.不同加载压力下 PZT-95/5铁电陶瓷放电特性研究.压电与声光,2008;30(1):58-60
    27 M. U. Anderson, R. E. Setchell, and D. E. Cox, in Shock Compression of S. T. Montgomery and J. D. Keck, presented at the APS Topical Conference on Shock Compression of Condensed Matter, illiamsburg, VA, 1991 (unpublished)
    28 R E Setchell. Shock wave compression of the ferroelectric ceramic Pb_(0.99)(Zr_(0.95)Ti_(0.05))_(0.98)Nb_(0.02)O_3Depoling currents. J Appl Phys, 2005; 97: 01350701-01350716
    1 P Yang, Moore R H, Lockwood S J, et al. Chem-Prep PZT 95/5 for Neutron Generator Applications: The Effect of Pore Former Type and Density on the Depoling Behavior of Chemically Prepared PZT 95/5 Ceramics. Sandia Report 2003-3866, Sandia National Laboratories, 2003; 14-15
    2 刘高旻,王志刚,王海晏等.PZT 95/5铁电陶瓷的声速及力学参数研究.中国材料科技与设备,2007;4(4):67-69
    3 Setchell R E. Shock wave compression of the ferroelectric ceramic Pb_(0.99)(Zr_(0.95Ti_(0.05))_(0.98)Nb_(0.02)O_3;Hugoniot states and constitutive mechanical properties. J Appl Phys, 2003; 94(1): 573-588
    1.Bruno O, Vaynblat D. Two-wave structures in shock-induced martensitic phase transitions.Mathematical and Computer Modelling 2001, 34(12-13), p.1261-1271
    2.Tang Z P, Gupta Y M. Phase Transition in Cadmium Sulphide Single Crystals Shocked along the c Axis[J]. J Appl Phys, 1997, 81(11): 7203-7212

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700