二氧化铈纳米材料的可控制备及其高压结构相变的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当物质的尺寸减小到纳米尺度范围内,由于限域效应和表面效应,物质将出现许多新颖的物理和化学性质。研究发现:纳米材料的物理化学性质紧紧依赖其本身的尺寸和形貌,因此,实现纳米材料尺寸和形貌的可控制备成为当今材料领域具有重大意义的研究热点。
     高压物理学是一门以材料物理学、地球物理学以及天文物理学为背景发展起来的交叉学科。在高压下,物质内部分子之间、原子之间距离会发生变化,导致宏观上物质的力学、热学、光学、电学和磁学性质发生改变。近年来,随着纳米技术的飞速发展,纳米材料与高压手段相结合,出现一些非常有趣的新现象、新结构和新规律,因此,纳米材料的高压研究吸引了研究者极大的研究热情。
     CeO_2作为一种典型的功能型稀土氧化物,具有较高的抛光精度、高度的化学稳定性、卓越的紫外吸收能力、独特的储放氧功能、优异的离子导电特性和较高的介电常数,因而广泛地应用于微电子电路化学机械抛光、电化学、紫外涂层和催化等技术领域。纳米CeO_2由于具有许多优异于体材料的物理化学性质,近年来受到研究者的广泛关注,关于其尺寸和形貌可控制备的研究已经成为合成领域一个具有重大科学意义的研究课题。同时,具有不同尺寸、形貌的CeO_2纳米材料在高压下的结构相变也是全面认识CeO_2纳米材料物理化学性质的新课题。
     本文以CeO_2纳米材料作为研究对象,利用水热法和溶剂热法成功制备出不同尺寸、形貌的CeO_2纳米材料,包括:零维纳米颗粒、一维纳米棒、二维纳米片、三维八面体形貌和自组装球形纳米结构。系统地研究了水热和溶剂热过程中,反应温度、反应时间、添加物的浓度、溶液的pH值和表面活性剂等因素对CeO_2纳米材料的尺寸、形貌和结晶度的重要影响,探索了不同尺寸、形貌的CeO_2纳米材料的生长机制,并对其光学性质进行了深入探索。同时,利用原位高压同步辐射X光衍射和高压Raman方法,对不同尺寸、形貌的CeO_2纳米材料的高压结构相变进行了系统的研究,揭示出CeO_2纳米材料本身的性质(包括尺寸和形貌)以及高压研究中静水性条件对其高压结构相变的重要影响。
     系统地研究了水热法中反应温度、反应时间、溶液的pH值和表面活性剂对CeO_2纳米材料结晶度、形貌和尺寸的调制作用。成功制备了具有不同尺寸、形貌的CeO_2纳米晶体,包括:一维纳米棒,二维纳米片和三维纳米八面体以及自组装纳米球。在CeO_2一维纳米晶体的水热制备中,首次获得了[100]择优生长的一维纳米棒;研究发现,沉淀剂NaOH对CeO_2纳米晶体的形貌具有重要的调制作用,通过提高pH值,可以实现由零维颗粒状→三维立方体→一维棒状形貌的可控制备,碱性物质起到了结构导向的重要作用,抑制了其它晶面的生长。在CeO_2二维纳米晶体的制备中,首次合成了具有(110)暴露面的CeO_2纳米片;在CeO_2纳米片的制备过程中首次发现氨水对片状形貌的形成具有重要的影响:既作为矿化剂,同时又充当了结构导向剂。在CeO_2三维纳米晶体的制备中,揭示了具有(111)暴露面的CeO_2纳米八面体的形貌演化过程;此外,还利用表面活性剂PVP,成功获得了CeO_2自组装纳米球,阐明了PVP较大的空间位效应导致自组装纳米球的生成。探索了不同尺寸、形貌的CeO_2纳米晶体的光学性质,研究表明CeO_2纳米片、纳米八面体和自组装纳米球的光学带隙分别为3.45 eV,3.42 eV和3.51 eV,与体材料(3.19 eV)相比,紫外吸收边发生明显的蓝移,这是由于CeO_2纳米材料的量子尺寸效应。
     利用简单的溶剂热法成功制备出单分散的CeO_2自组装纳米球,发现正丁醇对CeO_2纳米自组装球的形貌具有重要的调制作用,不仅充当了反应溶剂,而且起到了表面活性剂的重要作用。通过进一步添加碱性沉淀剂,还成功获得了10 nm以下的单分散CeO_2超精细纳米晶体。该方法不需要其他有机添加剂的辅助,避免了煅烧工艺,是一种简单、高效、节能的一步制备方法。CeO_2单分散自组装纳米球和超精细纳米颗粒的光学研究表明,它们具有更加优异的紫外吸收能力,与体材料相比,带隙宽度分别蓝移约10%和13%,这种较大的蓝移是由于最小组成晶粒的尺寸与CeO_2的玻尔激子半径十分接近。
     在高达55GPa的压力范围内,利用原位高压同步辐射X光衍射和高压Raman方法系统地研究了尺寸为150 nm、具有(111)暴露面的CeO_2纳米八面体的高压相变行为,发现其发生了由立方萤石型结构向正交α-PbCl_2型的结构相变,相变压力和相变弛豫过程均高于体材料和12 nmCeO_2球形纳米颗粒,该相变是可逆相变,体弹模量略高于体材料。详细地分析了内部缺陷、表面能和内聚能对其相变行为的影响,阐明其新奇的高压相变行为归因于自身特殊的几何形貌。还进一步揭示出暴露的(111)晶面的难压缩性最终导致CeO_2纳米八面体表现出独特的高压相变行为。卸压后的样品仍然保持原始八面体形貌。
     在最高压力为34 GPa的压力范围内,利用原位高压Raman方法对由最小组成单元尺寸小于其玻尔激子半径、5 nm的颗粒组成的CeO_2自组装纳米球进行了高压结构相变的研究,发现:在整个压力范围内,样品没有发生结构相变,与体材料在31 GPa就发生结构相变的结果截然不同,这种反常的高压相变行为可能是由于其较小的晶粒尺寸导致表面能大大提高。
     利用原位高压同步辐射X光衍射和Raman方法,系统地研究了具有相同尺寸(平均尺寸为12 nm)、不同相貌的CeO_2纳米材料(包括纳米颗粒、纳米棒和纳米片)在不同静水压条件下的高压结构相变行为。首次发现:在静水条件下,CeO_2纳米颗粒在51 GPa压力范围内、纳米棒在45.5 GPa压力范围内、纳米片在高达71.5 GPa压力范围内均保持立方萤石型结构,没有发生在12 nm和15 nmCeO_2纳米颗粒以及体材料中所经历的压致结构相变。然而,在非静水压条件下,这些纳米晶体高压相变行为与前人报道的体材料和纳米颗粒的高压相变十分相似。对卸压后的样品进行HRTEM分析发现,晶界处有正交α-PbCl_2相存在,表明在非静水压条件下,晶界处存在较大的应力,从而使CeO_2纳米晶体在晶界处极易形成高压相成核点,导致相变的发生。表明以往人们在小尺寸CeO_2纳米材料所观察到的压致结构相变是非静水压导致的,揭示出结构稳定性提高才是小尺寸纳米效应的本质特征。
It is well known naomaterials exhibit various novel physical and chemical properties compared with their bulk counterparts. The differences between namomaterials and bulk materials are usually attributed to the confinement effect and surface effect owing to the decrease of the particle size and the enlargement of surface-area/particle-size ratio. In order to clearly reveal the nano-effects, many works have been carried out around this topic and made effective progresses. And the researches confirm the properties of nanomaterials such as optical and electrical properties, mechanical stability and phase-transition mechanics are sensitive dependency on size, shape and structure. Thus, tailoring the size, shape and structure of nanostructure becomes a hot topic.
     High pressure physics is a novel cross-disciplinary, which bases on Material physics, Geophysics and Astronomy. High pressure can effectively change the distances between molecules and atoms. The changes of structure will do strong effects on the properties of materials. Measurements of the high-pressure properties not only directly characterize the physical properties of material, but also indirectly reveal its corresponding intrinsic characteristics. Thus, high-pressure technology is an important and effective route for us to understand the structures, properties and even their relationship. In recent years, nanotechnology develops rapidly. Nanotechnology combines with high-pressure technology, and it will reveal many attractive and novel phenomena, structures and mechanics.
     As a well-known functional rare earth material, CeO_2 has a wide range of applications including ultraviolet (UV) blockers, abrasives, catalysts and solid oxide fuel cells. Nanostructured CeO_2 possesses the superior physical and chemical properties compared with its bulk counterparts. Thus, many progresses have been made in the study of the synthesis of CeO_2 nanomaterials and in the investigation of their corresponding novel properties. In the past decades, extensive research efforts have been devoted to the design and preparation of CeO_2 nanomaterials with different shapes/sizes due to their particular shape/size-dependent properties. Up to now, well-defined CeO_2 nanostructures with various morphologies including nanoparticles, nanorods, nanoflowers, and hollow structures have been successfully fabricated. At the same time, high pressure study on CeO_2 nanomaterials with various sizes and shapes have attracted much energy, and it provides a new perspective to understand CeO_2 nanomaterials, comprehensively.
     CeO_2 nanomaterials with different morphologies were successfully synthesized by a facile hydrothermal/solvothermal process. We systematically researched the impacts of experimental environments including reaction time, reaction temperature, reactant concentration, pH value and surfactant on the size, shape and structure of CeO_2 nanomaterials. The growth mechanics of different morphologies were seriously investigated. Moreover, high pressure studies on CeO_2 nanomaterials with different size and shape were carried out through in-situ X-ray diffraction and Raman techniques. Additionally, the effects of experimental conditions’on high pressure behaviors of CeO_2 nanomaterials were also illustrated. We have found both the properties of nano-CeO_2 itself and hydrostatic condition do a strong impact on the high-pressure behaviors of CeO_2 nanomaterials.
     In a hydrothermal process, nano-CeO_2 with different morphologies were obtained. It was found (100)-terminated CeO_2 nanorods can be prepared by modified reactant concentration. The diameter of CeO_2 nanorods is about 10 nm, with the length of more than 100 nm. It was revealed the growth mechanism from nanoparticles to nanocubes and then to nanorods. In the formation of nanorods, NaOH plays an important role. (110)-dominated CeO_2 nanosheets was obtained for the first time using a facile one-step hydrothermal method. The average size of CeO_2 nanosheets is 15 nm. In the typical hydrothermal process, NH_3·H_2O plays a critical role in tailoring the surface structure of the CeO_2 nanocrystals without the assistance of any surfactant or template. The key function of the NH_3·H_2O on tailoring the morphology of CeO_2 nanocrystals was investigated. The results show that the NH3·H2O not only serves as the precipitant, but also acts as the structural direction agent in the formation of (110)-dominated CeO_2 nanosheets. In the synthesis process, NH3·H2O was used to tailor the surface structure of the sample without any surfactants or requiring any precursor. It is a one-step process without using organic additives. Hence, it is an environmentally friendly method for making advanced nanomaterials and devices. In order to further confirm the indispensable function of NH_3·H_2O on tailoring the morphology of CeO_2 nanocrystals, some comparative experiments were performed. In the comparative experiments, NH3·H2O was substituted by NaOH or Na2CO3, while other synthetic parameters were kept the same as those in the typical synthesis. When NaOH or Na2CO3 was used instead of NH3·H2O, no regular morphologies could be observed and the resulting products agglomerate randomly. Thus, NH3·H2O is irreplaceable. With addition of Na3PO4, (111)-dominated CeO_2 octahedron with the size of 150 nm was obtained. On this basis, with the assistant of surfactant PVP, ultrafine CeO_2 nanoparticles were successfully synthesized. The size of nanoparticles is 80-100 nm. It was found that the larger steric effect of PVP led to the formation of self-assembled nanospheres. Optical research revealed the optical band gap for CeO_2 nanosheets nano-octahedra and naospheres were 3.45 eV, 3.42 eV and 3.51 eV, respectively. Compared to bulk CeO_2 (3.19 eV), they exhibited lager blue shift and their blue-shifting exceeded 7.5%, 8% and 13 %. This large blue shift is due to quantum size effect of CeO_2 nano-materials.
     Monodisperse CeO_2 nanospheres with the average size of 40 nm, self-assembled by well-crystalline CeO_2 ultrafine nanoparticles were synthesized through a facile solvothermal route using n-butanol as solvent in the absence of any surfactant or template. The formation process of the monodisperse self-assembly CeO_2 nanospheres is briefly discussed. The key function of n-butanol is investigated by comparative experiments. It is found that n-butanol not only serves as solvent, but also acts as surfactant in the formation of monodisperse self-assembly CeO_2 nanospheres. With the modification and steric effect of n-butanol, CeO_2 nanoparticles aggregated to highly compacted nanospheres. Interestingly, addition NH_3·H_2O or other Alkaline substances, ultrafine CeO_2 nanoparticles with size of 5-8 nm were prepared. We investigated their optical properties, and obtained the optical band gap were 3.51 eV and 3.60 eV. Compared with bulk counterpart, the blue-shifting was about 10% and 13%, respectively.
     In situ high-pressure X-ray diffraction and Raman spectroscopy have been performed on well-shaped CeO_2 nano-octahedrons enclosed by eight (111) planes. The CeO_2 nano-octahedrons are shown to be more stable than their bulk counterparts and some other reported CeO_2 nanocrystals of smaller size. The transition pressure from cubic to orthorhombic phase is approximately 12 GPa higher than that of 12 nm CeO_2 nanocrystals even though they have similar volume expansion at ambient conditions. Additionally, the phase transition toα-PbCl_2 phase is very sluggish and uncompleted even up to 55 GPa. TEM image of the sample after decompression from 55 GPa clearly shows that the nano-octahedrons preserve the starting shape. Such distinct high-pressure behaviors in CeO_2 nano-octahedrons have been discussed in terms of their special exposure surface. Further analysis shows that the lower compressibility of the exposed (111) planes in the nano-octahedrons is believed to be the major factor to the elevation of phase-transition pressure and the sluggishness of the transition.
     High-pressure Raman study under quasi-hydrostatic condition has been performed on CeO_2 nanospheres self-assembled by 5 nm CeO_2 nanoparticles at room temperature. Surprisingly, as the pressure elevate to 34 GPa, the CeO_2 nanospheres still retain the cubic fluorite-type structure, indicating the sample is more stable than the bulk counterpart. Whereas, previous high-pressure studies show the phase transition at 22.3/26.5 GPa for 12 nm CeO_2 nanoparticles, which is less stable than the bulk materials. The enhancement of phase stability might be attributed to the increase of surface energy of CeO_2 nanospheres as the size of the building units decrease.
     CeO_2 nanocrystals with similar grain size which have particle, rod and sheet morphologies have been studied by in situ high-pressure X-ray diffraction studies under quasi-hydrostatic condition and non-hydrostatic condition. It is found under quasi-hydrostatic condition, all the samples maintain their fluorite-type structure in the whole compression processes. This indicates phase transition pressures for CeO_2 nanoparticles, nanorods and nanosheets are much higher than the bulk counterpart, which could transform toα-PbCl_2-type structure at about 31 GPa. However, all samples exhibited phase transition pressures at 31 GPa, while compressed at non-hydrostatic condition, which similar to bulk-CeO_2. TEM image of CeO_2 nanosheets after decompression from 58 GPa under non-hydrostatic condition clearly shows that obvious regrowth occurred in the interface of grains. This indicates larger strain exists in grain boundaries, which is much higher than that applied by anvils. The larger strain could be stronger enough to lead to occurrence of phase transitions. Thus, hydrostatic condition has an important effect on the high-pressure behaviors of CeO_2 nanomaterials.
引文
[1] Gürel T, Eryi(?)it R. Ab initio pressure-dependent vibrational and dielectric properties of CeO_2 [J]. Phys. Rev. B, 2006, 74: 014302-1-5.
    [2] Feng X D, Sayle D C, Wang Z L, et al. Converting Ceria polyhedral nanoparticles into single-crystal nanospheres [J]. Science, 2006, 312:1504-1507.
    [3] Inoue M, Kimura M, Inui T. Transparent colloidal solution of 2 nm ceria particles [J]. Chem. Commun., 1999, 11: 957-958.
    [4] Guo Z Y, Du F L, Li G C, et al. Synthesis and characterization of single-crystal Ce(OH)CO3 and CeO_2 triangular microplates [J]. Inorg. Chem., 2006, 45: 4167-4169.
    [5] Steele B C H. Fuel-cell technology running on natural gas [J]. Nature, 400: 619-621.
    [6] Li Z X, Li L L, Yuan Q, et al. Sustainable and facile route to nearly monodisperse spherical aggregates of CeO_2 nanocrystals with ionic liquids and their catalytic activities for CO oxidation [J]. J. Phys. Chem. C, 2008, 112: 18405-18411.
    [7] Mehrotra S, Sharma P, Rajagopalan M, et al. High pressure phase transition and band structures of different phases in CeO_2 [J]. Solid. State. Commun., 2006, 140: 313-317.
    [8] Wang Y L, Jiang X C, Herricks T, et al. Single crystalline nanowires of Lead: large-scale synthesis, mechanistic studies, and transport measurements [J]. J. Phys. Chem. B., 2004, 108: 8631-8640.
    [9] Jiang C L, Zhang W Q, Zou G F, et al. Synthesis and characterization of ZnSe hollow nanospheres via a hydrothermalroute [J]. Nanotechnology, 2005, 16: 551-554.
    [10] Liu Z P, Liang J B, Li S, et al. Synthesis and growth mechanism of Bi2S3 nanoribbons [J]. Chem. Eur. J., 2004, 10: 634 -640.
    [11] Zhao A W, Xu L Q, Luo T, et al. Synthesis of Nickel selenide nanocables andnanotubes [J]. Chem. Let., 2005, 34: 136-137.
    [12] Xie B, Jiang Y, Yuan S W, et al. Synthesis of NiS nanowhiskers via surfactant-aid hydrothermal reaction [J]. Chem. Let., 2002, 31: 254-255.
    [13] Xi G C, Peng Y Y, Yu W C, et al. Synthesis, characterization, and growth mechanism of Tellurium nanotubes [J]. Cryst. Growth Des., 2005, 5: 325-328.
    [14] Xiong S L, Xi B J, Wang W Z, et al. The fabrication and characterization of single-crystalline Selenium nanoneedles [J]. Cryst. Growth Des., 2006, 6: 1711-1716.
    [15] Chan Y F, Duan X F, Chan S K, et al. ZnSe nanowires epitaxially grown on GaP.111. substrates by molecular-beam epitaxy [J]. Appl. Phys. Lett., 2003, 83: 2665-2667.
    [16] Tang Q, Zhou W J, Shen J M, et al. A template-free aqueous route to ZnO nanorod arrays with high optical property [J]. Chem. Commun., 2004, 6: 712 -713.
    [17] Xia Y N, Yang P D, Sun Y G, et al. One-dimensional nanostructurals: synthesis, characteraziton and applications [J]. Adv. mater., 2003, 15: 353-389.
    [18] Lv R T, Cao C B, Zhai H Z, et al. Growth and characterization of single-crystal ZnSe nanorods via surfactant soft-template method [J]. Solid State Commun., 2004, 130: 241-245.
    [19] Du J, Gao Y Q, Chai L L, et al. Hausmannite Mn3O4 nanorods: synthesis, characterization and magnetic properties [J]. Nanotechnology, 2006, 17: 4923-4928.
    [20] Ru1hle S, L. Vugt van K, Li H Y, et al. Nature of sub-band gap luminescent eigenmodes in a ZnO nanowire [J]. Nano Lett., 2008, 8: 119-123.
    [21] Tang Q, Shen J M, Zhou W J, et al. Preparation, characterization and optical properties of terbium oxide nanotubes [J]. J. Mater. Chem., 2003, 13: 3103-3106.
    [22] Li Z Q, Ding Y, Xiong Y J, et al. Rational Growth of Various r-MnO2 Hierarchical Structures and a-MnO2 Nanorods via a Homogeneous Catalytic Route [J]. Cryst. Growth Des., 2005, 5: 1953-1958.
    [23] Sammalkorpi M, Karttunen M, Haataja M. Micelle Fission through SurfaceInstability and Formation of an Interdigitating Stalk [J]. J. Am. Chem. Soc., 2008, 130:17977-17980.
    [24] Khanal A, Inoue Y, Yada M, et al. Synthesis of Silica hollow nanoparticles templated by polymeric micelle with core-shell-corona structure [J]. J. Am. Chem. Soc., 2007, 129: 1534-1535.
    [25] Hu G, O’Hare D. Unique layered double hydroxide morphologies using reverse microemulsion synthesis [J]. J. Am. Chem. Soc., 2005, 127: 17808-17813.
    [26] Chiu Y W, Huang M H. Formation of hexabranched GeO2 nanoparticles via a reverse micelle system [J]. J. Phys. Chem. C, 2009, 113: 6056-6060.
    [27] Wu H P, Liu J F, Ge M Y, et al. Preparation of monodisperse GeO2 nanocubes in a reverse micelle system [J]. Chem. Mater., 2006, 18: 1817-1820.
    [28] Liu D X, Yates M Z. Formation of rod-shaped calcite crystals by microemulsion-based synthesis [J]. Langmuir, 2006, 22: 5566-5569.
    [29] Sacanna S, Koenderink G H, Philipse A P. Microemulsion synthesis of fluorinated latex spheres [J]. Langmuir, 2004, 20: 8398-8400.
    [30] Sarraguca J M G, Pais A A C C, Linse P. Structure of microemulsion-aba triblock copolymer networks [J]. Langmuir, 2008, 24: 11153-11163.
    [31] Masui T, Fujiwara K, Machida K-I. Characterization of cerium(IV) oxide ultrafine particles prepared using reversed micelles [J]. Chem. Mater., 1997, 9: 2197-2204.
    [32] Hench, L L, West J K. The sol-gel process [J]. Chem. Rev., 1990, 90: 33-72.
    [33] Abbaspour A, Ghaffarinejad A. Method for Preparation of a sol-gel-derived carbon ceramic electrode using microwave irradiation [J]. Anal. Chem., 2009, 81: 3660-3664.
    [34] Armelao L D, Barreca D, Bottaro G, et al. Au/TiO2 nanosystems: a combined rf-sputtering/sol-gel approach [J]. Chem. Mater., 2004, 16: 3331-3338.
    [35] Gavalas V G, Andrews R, Bhattacharyya D, et al. Carbon nanotube sol-gel composite materials [J]. Nano Lett., 2001, 1: 719-721.
    [36] Lei S, Zhang J, Wang, J R, et al. Self-catalytic sol-gel synergetic replication of uniform silica nanotubes using an amino acid amphiphile dynamically growingfibers as template [J]. Langmuir, 2010, 26: 4288–4295.
    [37] Xiao H Y, Ai Z H, Zhang L Z. Nonaqueous sol-gel synthesized hierarchical CeO_2 nanocrystal microspheres as noveladsorbents for wastewater treatment [J]. J. Phys. Chem. C, 2009, 113: 16625-16630.
    [38] Nolan N T, Seery M K, Pillai S C. Crystallization and phase-transition characteristics of sol-gel-synthesized zinc titanates [J]. Chem. Mater., 2011, 23: 1496-1504.
    [39] Guo H, Qiao Y M. Preparation, structural and photoluminescent propertiesof CeO_2:Eu3+ films derived by Pechini sol-gel process [J]. Appl Surf Sci, 2008, 254: 1961-1965.
    [40] Lopez T L , Espinoza K A, Kozina A, et al. Influence of water/alkoxide ratio in the synthesis of nanosized sol-gel titania on the release of phenytoin [J]. Langmuir, 2011, 27:4004-4009.
    [41] Chai B, Peng T Y, Zeng P, et al. Template-free hydrothermal synthesis of ZnIn2S4 floriated microsphere as an efficient photocatalyst for H2 production under visible-light irradiation [J]. J. Phys. Chem. C, 2011, 115: 6149-6155.
    [42] Kibombo H S, Zhao D, Gonshorowski A, et al. Cosolvent-induced gelation and the hydrothermal enhancement of the crystallinity of titania-silica mixed oxides for the photocatalytic remediation of organic pollutants [J]. J. Phys. Chem. C, 2011, 115: 6126-6135.
    [43] Ge M, Li Y F, Liu L, et al. Bi2O3-Bi2WO6 composite microspheres: hydrothermal synthesis and photocatalytic performances [J]. J. Phys. Chem. C, 2011, 115: 5220-5225.
    [44] Esteban B F, Zaldo C, Cascales C. Hydrothermal Tm3+-Lu2O3 nanorods with highly efficient 2μm emission [J]. Inorg. Chem., 2011, 50: 2836-2843.
    [45] Cao T P, Li Y J, Wang C H, et al. A facile in situ hydrothermal method to SrTiO3/TiO2 nanofiber heterostructures with high photocatalytic activity [J]. Langmuir, 2011, 27: 2946-2952.
    [46] Wang X J, Zhang Q L, Wan Q, et al. Controllable ZnO architectures by ethanolamine-assisted hydrothermal reaction for enhanced photocatalytic activity[J]. J. Phys. Chem. C, 2011, 115: 2769-2775.
    [47] Han H, Francesco G D, Maye M M. Size control and photophysical properties of quantum dots prepared via a novel tunable hydrothermal route [J]. J. Phys. Chem. C, 2010, 114: 19270-19277.
    [48] Huang Y J, You H P, Jia G, et al. Hydrothermal synthesis, cubic structure, and luminescence properties of BaYF5:Re (Re = Eu, Ce, Tb) nanocrystals [J]. J. Phys. Chem. C, 2010, 114: 18051-18058.
    [49] Chen R G, Bi J H, Wu L, et al. Template-free hydrothermal synthesis and photocatalytic performances of novel Bi2SiO5 nanosheets [J]. Inorg. Chem., 2009, 48: 9072-9076.
    [50] Liu X M, He J H. One-Step hydrothermal creation of hierarchical microstructures toward superhydrophilic and superhydrophobic surfaces [J]. Langmuir, 2009, 25: 11822-11826.
    [51] Titirici M M, Antonietti M, Thomas A. A generalized synthesis of metal oxide hollow spheres using a hydrothermal approach [J]. Chem. Mater., 2006, 18: 3808-3812.
    [52] Yang S W, Gao L. Controlled synthesis and self-assembly of CeO_2 nanocubes [J]. J. Am. Chem. Soc. 2006, 128: 9330-9331.
    [53] Zhou K, Wang X, Sun X M, et al. Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes [J]. J. Catal., 2005, 229: 206-212.
    [54] Sun C W, Li H, Chen L Q. Study of flowerlike CeO_2 microspheres used as catalyst supports for CO oxidation reaction [J]. J. Physics Chem. Solids, 2007, 68: 1785-1790.
    [55] Lu X W, Li X Z, Chen F, et al. Hydrothermal synthesis of prism-like mesocrystal CeO_2 [J]. J. Alloys Compd., 2009, 479: 958-962.
    [56] Guo Z Y, Du F L, Cui Z L, et al. Hydrothermal synthesis of single-crystalline CeCO3OH flower-like nanostructures and their thermal conversion to CeO_2 [J]. Mater. Chem. Phys., 2009, 113: 53-56.
    [57] Ta N, Zhang M L, Li J, et al. Facile synthesis of CeO_2 nanospheres [J]. Chin J Catal, 2008, 29: 1070-1072.
    [58] Yan L, Yu R B, Chen J, et al. Template-free hydrothermal synthesis of CeO_2 nano-octahedrons and nanorods: investigation of the morphology evolution [J]. Cryst. Growth Des., 2008, 8: 1474-1477.
    [59] Mai H X, Sun L D, Zhang Y W, et al. Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes [J]. J. Phys. Chem. B, 2005, 109: 24380-24385.
    [60] Zhang Y J, Hu Q X, Fang Z Y, et al. Self-assemblage of single/multiwall hollow CeO_2 microspheres through hydrothermal method [J]. Chem. Lett., 2006, 35: 944-945.
    [61] Yu R B, Yan L, Zheng P, et al. Controlled synthesis of CeO_2 flower-like and well-aligned nanorod hierarchical architectures by a phosphate-assisted hydrothermal route [J]. J. Phys. Chem. C, 2008, 112: 19896-19900.
    [62] Lu J, Qi P F, Peng Y Y, et al. Metastable MnS crystallites through solvothermal synthesis [J]. Chem. Mater., 2001, 13: 2169-2172.
    [63] Xu J, Ge J P, Li Y D. Solvothermal synthesis of monodisperse PbSe nanocrystals [J]. J. Phys. Chem. B, 2006, 110: 2497-2501.
    [64] Kunjara S, Ayudhya N, Tonto, P. Solvothermal synthesis of ZnO with various aspect ratios using organic solvents [J]. Cryst. Growth Des., 2006, 6: 2446-2450.
    [65] Yang J, Zeng J H, Yu S H, et al. Formation process of CdS nanorods via solvothermal route [J]. Chem. Mater., 2000, 12: 3259-3263.
    [66] Cao M H, Wu X L, He X Y, et al. Microemulsion-mediated solvothermal synthesis of SrCO3 nanostructures [J]. Langmuir, 2005, 21: 6093-6096.
    [67] Zhang Z T, Blom D A, Gai Z, et al. High-yield solvothermal formation of magnetic CoPt alloy nanowires [J]. J. Am. Chem. Soc. 2003, 125: 7528-7529.
    [68] Yang J, Li C X, Quan Z W, et al. One-step aqueous solvothermal synthesis of In2O3 nanocrystals [J]. Cryst. Growth Des., 2008, 8: 695-699.
    [69] Wang H L, Robinson J T, Li X L, et al. Solvothermal reduction of chemically exfoliated graphene sheets [J]. J. Am. Chem. Soc. 2009, 131: 9910-9911.
    [70] Deng D H, Pan X L, Yu L, et al. Toward N-doped graphene via solvothermal synthesis [J]. Chem. Mater., 2011, 23:1188-1193.
    [71] Tang B, Zhuo L H, Ge J H, et al. A surfactant-free route to single-crystalline CeO_2 nanowires [J]. Chem. Commun., 2005, 28: 3565-3567.
    [72] Sun C W, Li H, Zhang H R, et al. Controlled synthesis of CeO_2 nanorods by a solvothermal method [J]. Nanotechnology, 2005, 16: 1454-1463.
    [73] Liu B, Liu B B, Li Q J, et al. Solvothermal synthesis of monodisperse self-assembly CeO_2 nanospheres and their enhanced blue-shifting in ultraviolet absorption [J]. J. Alloys Compd., 2010, 503: 519-524.
    [74] Yang Z J, Han D Q, Ma D L, et al. Fabrication of Monodisperse CeO_2 Hollow Spheres Assembled by Nano-octahedra [J]. Cryst. Growth Des., 2010, 10: 291-295.
    [75] Yan L, Xing X R, Yu R B, et al. Facile alcohothermal synthesis of large-scale ceria nanowires with organic surfactant assistance [J]. Physica B, 2007, 390: 59-64.
    [76] Zhang Y W, Si R, Liao C S, et al. Facile alcohothermal synthesis, size-dependent ultraviolet absorption, and enhanced CO conversion activity of ceria nanocrystals [J]. J. Phys. Chem. B, 2003, 107: 10159-10167.
    [77] Sun C W, Xie Z, Xia C R, et al. Investigations of mesoporous CeO_2-Ru as a reforming catalyst layer for solid oxide fuel cells [J]. Electrochem. Commun., 2006, 8: 833-838.
    [78] Tao Y, Gong F H, Wang H, et al. Microwave-assisted preparation of cerium dioxide nanocubes [J]. Mater. Chem. Phys., 2008, 112: 973-976.
    [79] Zhang, Y J, Cheng T, Hu Q X, et al. Study of the preparation and properties of CeO_2 single/multiwall hollow microspheres [J]. J. Mater. Res., 2007, 22: 1472-1478.
    [80] Chen G Z, Xu C X, Song X Y,et al. Template-free synthesis of single-crystalline-like CeO_2 hollow nanocubes [J]. Cryst. Growth Des., 2008, 8: 4449-4453.
    [81] Jongh P E D, Vanmaekelbergh D, Kelly J J. Cu2O: electrodeposition and characterization [J]. Chem. Mater., 1999, 11: 3512-3517.
    [82] Mosby J M, Prieto A L. Direct electrodeposition of Cu2Sb for lithium-ion batteryanodes [J]. J. Am. Chem. Soc., 2008, 130: 10656-10661.
    [83] Zhao L Y, Siu A C, Leung K T. Anomalous electrodeposition of metallic Mn nanostructured films on H-terminated Si (100) at anodic potential [J]. Chem. Mater., 2007, 19: 6414-6420.
    [84] Pullini D, Mataix D. B. Electrodeposition efficiency of Co and Cu in the fabrication of multilayer nanowires by polymeric track-etched templates [J]. Appl. Mater. Interfaces, 2011, 3: 759-764.
    [85] Carim A I, Gu J S, Maldonado S. Overlayer Surface-enhanced Raman spectroscopy for studying the electrodeposition and interfacial chemistry of ultrathin Ge on a nanostructured support [J]. ACSNANO, 2011, 5: 1818-1830.
    [86] Herman D J, Goldberger J E, Chao S, et al. Orienting periodic organic-inorganic nanoscale domains through one-step electrodeposition [J]. ACSNANO, 2011, 5: 565-573.
    [87] Rauber M, Bro¨tz J, Duan J L, et al. Segmented all-platinum nanowires with controlled morphology through manipulation of the local electrolyte distribution in fluidic nanochannels during electrodeposition [J]. J. Phys. Chem. C, 2010, 114: 22502-22507.
    [88] Xu L F, Chen Q W, Xu D S. Hierarchical ZnO nanostructures obtained by electrodeposition [J]. J. Phys. Chem. C, 2007, 111: 11560-11565.
    [89] Kwak W C, Han S H, Kim T G, et al. Electrodeposition of Cu(In, Ga)Se2 crystals on high-density CdS nanowire arrays for photovoltaic applications [J]. Cryst. Growth Des., 2010, 10: 5297-5301.
    [90] Singh K V, Martinez -Morales A A, Andavan G T S, et al. A simple way of synthesizing single-crystalline semiconducting copper sulfide nanorods by using ultrasonication during template-assisted electrodeposition [J]. Chem. Mater., 2007, 19: 2446-2454.
    [91] Yamaguchi I, Watanabe M, Shinagawa T, et al. Preparation of core/shell and hollow nanostructures of cerium oxide by electrodeposition on a polystyrene sphere template [J]. Appl. Matter Inter., 2009, 1: 1070-1075.
    [92] Li G R, Qu D L, Yu X L, et al. Microstructural evolution of CeO_2 from porousstructures to clusters of nanosheet arrays assisted by gas bubbles via electrodeposition [J]. Langmuir, 2008, 24: 4254-4259.
    [93] Gonza′lez-Rovira L, Sa′nchez-Amaya J, Lo′pez-Haro M, et al. Single-step process to prepare CeO_2 nanotubes with improved catalytic activity [J]. Nano Lett., 2009, 9: 1395-1400.
    [94] Zhong L S, Hu J S, Cao A M, et al. 3D flowerlike ceria micro/nanocomposite structure and its napplication for water treatment and CO removal [J]. Chem. Mater., 2007, 19:1648-1655.
    [95] Lu X M, Ziegler K J, Ghezelbash A, et al. Synthesis of germanium nanocrystals in high temperature supercritical fluid solvents [J]. Nano Lett., 2004, 4: 969-974.
    [96] Cassaignon S, Koelsch M, Jolivet E P. Selective synthesis of brookite, anatase and rutile nanoparticles: thermolysis of TiCl4 in aqueous nitric acid [J]. J Mater Sci, 2007, 42: 6689-6695.
    [97] Chen Y H, Lin A, Gan F X. Preparation of nano-TiO2 from TiCl4 by dialysis hydrolysis [J]. Powder Technology, 2006, 167: 109-116.
    [98] Alivisatos A P. Semiconductor clusters, nanocrystals, and quantum dots. [J]. Science, 1996, 271: 933-934.
    [99] Wang W S, Zhen L , Xu C Y, et al. Room temperature synthesis, growth mechanism, photocatalytic and photoluminescence properties of cadmium molybdate core-shell microspheres [J]. Cryst. Growth Des., 2009, 9: 1558-1568.
    [100] Li C X, Yang J, Yang P P, et al. Hydrothermal Synthesis of Lanthanide Fluorides LnF3 (Ln ) La to Lu) Nano-/Microcrystals with Multiform Structures and Morphologies [J]. Chem. Mater., 2008, 20: 4317-4326.
    [101] Wang Z L, Quan Z W, Lin J, et al. Remarkable changes in the optical properties of CeO_2 nanocrystals induced by lanthanide ions doping [J]. Inorg. Chem., 2007, 46: 5237-5242.
    [102] Zhou K B, Wang X, Sun X M, et al. Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes [J]. J. Catal., 2005, 229: 206-212.
    [103] Yamashita m, Kameyama K, Yabe S, et al. Synthesis and microstructure ofcalcia doped ceria as UV filters [J]. J. Mater Sci, 2002, 37: 683-687.
    [104] Robinson R D, Jonathan E S, Zhang F, et al. Visible thermal emission from sub-band-gap laser excited cerium dioxide particles [J]. J. Appl. Phys.,2002, 92: 1936-1941.
    [105] Shimonosono T, Hirata Y, Sameshima S, et al. Electronic conductivity of La-doped ceria ceramics [J]. J. Am. Ceram. Soc., 2005, 88: 2114-2120.
    [106] Du J X, Su J X, Wan X Y, Ning X, et al. Material removal characteristic of silicon wafers in chemical mechanical polishing [J]. Journal of University of Science and Technology Beijing, 2009, 31: 608-611.
    [107] Yang W P, Wu Y B. Method of measurement material micro-remove rate of silicon wafer edge treatment by chemical-mechanical polishing [J]. Tool Engineering, 2010, 44: 109-110.
    [108] Li X Z, Chen Y, Chen Z G, et al. Preparation of CeO_2 nanoparicles and their chemical mechanical polishing as abrasives [J]. Tribology, 2007, 27: 1-5.
    [109] Xiu S D, Ni Z J, Chen M J. Advancement of chemical mechanical polishing [J]. Mechanical research & application, 2008, 21: 10-13.
    [110] Chen Y, Chen Z G, Chen A L. Chemical effect mechanism in chemical mechanical polishing silicon wafer using nano-sized CeO_2 abrasives [J]. Lubrication engineering, 2006, 3: 67-72.
    [111] He Q M, Ye L L. Nanocatalytic techniques for the purification of automobile exhaust gases [J].广州化工, 2006, 34: 14-16.
    [112] Zheng L M, Liu Z M, Zhu Q C, et al. Pt/La-Ba-Al2O3/H-ZSM-5 catalyst for treating hydrogen-powered vehicle exhaust [J]. Chinese Journal of Catalysis, 2009, 30: 381-383.
    [113] Tan K, Kang H Y, Dong X J. Research on treatment of motor exhaust gas by plasma technology in low temperature [J]. China Environmental Protection Industry, 2011, 2: 27-29.
    [114] Kas(I|¨)par J, Fornasiero P, Graziani M. Use of CeO_2-based oxides in the three-way catalysis [J]. Catal Today, 1999, 50: 285-298.
    [115] Borchert H, Frolova Y V, Kaichev V V, et al. Electronic and chemicalproperties of nanostructured cerium dioxide doped with praseodymium [J]. J. Phys. Chem. B, 2005, 109: 5728-5738.
    [116] Han Q F, Yang X J, W X. Development and application of rare earth catalyst for automotic exhaust gas purification [J]. Environmental Protection, 2002, 7: 4-5.
    [117] Ho C M, Yu J C, Kwong T, et al. Morphology-controllable synthesis of mesoporous CeO_2 nano- and microstructures [J]. Chem. Mater., 2005, 17: 4514-4522.
    [118] Jing Z, Ohara S, Umetsu M, et al. Colloidal ceria nanocrystals: atailor-made crystal morphology in supercritical water [J]. Adv. Mater., 2007, 19: 203-206.
    [119] Z Y Guo, F F Jian, F L Du. A simple method to controlled synthesis of CeO_2 hollow microspheres [J]. Scripta Materialia, 2009, 61: 48-51.
    [120] Liang X, Wang X, Zhuang Y, et al. Formation of CeO_2-ZrO2 solid solution nanocages with controllable structures via kirkendall effect [J]. J. Am. Chem. Soc., 2008, 130: 2736-2737.
    [121] Zhan Z L, Wen T L, Tu H Y, et al. AC impedance investigation of samarium-doped ceria [J]. J. Electrochem Soc, 2001, 148: A427-A432.
    [122] Moore J. Hydrogen fuel cells: The long road to commercialization [J]. Fuel Cells Bulletin, 2009, 1: 12-14.
    [123] Corre G, Kim G, Cassidy M, et al. Activation and ripening of impregnated manganese containing perovskite SOFC electrodes under redox cycling [J]. Chem. Mater., 2009, 21: 1077–1084.
    [124] Shen Y, Liu M N, He T M, et al. A potential interconnect material for solid oxide fuel cells: Nd0.75Ca0.25Cr0.98O3-δ[J]. J. Power Sources, 195 (2010) 977-983.
    [125] Ding H P, Xue X J. BaZr0.1Ce0.7Y0.1Yb0.1O3-δelectrolyte-based solid oxide fuel cells with cobalt-free PrBaFe2O5+δlayered perovskite cathode [J]. J. Power Sources, 2010, 195: 7038-7041.
    [126] Ding H P, Xue X J. Cobalt-free layered perovskite GdBaFe2O5+δas a novel cathode for intermediate temperature solid oxide fuel cells [J]. J. Power Sources, 2010, 195: 4718-4721.
    [127] Xue J F, Shen Y, Zhou Q J, et al. Combustion synthesis and properties ofhighly phase-pure perovskite electrolyte Co-doped La0.9Sr0.1Ga0.8Mg0.2O2.85 for IT-SOFCs [J]. Int. J. Hydrogen Energ., 2010, 35: 294-300.
    [128] Tarancon A, Skinner S J, Chater R J, et al. Layered perovskites as promising cathodes for intermediate temperature solid oxide fuel cells [J]. J. Mater. Chem., 2007, 17: 3175-3181.
    [129] Ding H P, Xue X J. A novel cobalt-free layered GdBaFe2O5+δcathode for proton conducting solid oxide fuel cells [J]. J. Power Sources, 2010, 195: 4139-4142.
    [130] Karen P, Woodward P M. Synthesis and structural investigations of the double perovskites REBaFe2O5+δ(RE=Nd, Sm) [J]. J. Mater. Chem., 1999, 9: 789-797.
    [131] Tsunekawal S, Sahara R, Kawazoe Y, et al. Origin of the blue shift in ultraviolet absorption spectra of nanocrystalline CeO_2-x particles [J]. Mater Trans, JIM, 2000, 41: 1104-1107.
    [132] Tsunekawa S, Fukuda T, Kasuya A. Blue shift in ultraviolet absorption spectra of monodisperse CeO_2-x nanoparticles [J]. J. Appl. Phys., 2000, 87: 1318-1321.
    [133] Masui T, Machida K, Sakata T, et al. Preparation and characterization of cerium oxide ultrafine particles dispersed in polymer thin films [J]. J. Alloys Compd., 1997, 256: 97-101.
    [134] Huang X S, Sun H, Wang L C, et al. Morphology effects of nanoscale ceria on the activity of Au/CeO_2 catalysts for low-temperature CO oxidation [J]. Appl Catal B-Environ, 2009,
    [135] Xiao X L, Luan Q F, Yao X, et al. Single-crystal CeO_2 nanocubes used for the direct electron transfer and electrocatalysis of horseradish peroxidase [J]. Biosensors and Bioelectronics, 2009, 24: 2447-2451.
    [136] Zhou F, Zhao X M, Xu H, et al. CeO_2 spherical crystallites: synthesis, formation mechanism, size control, and electrochemical property study [J]. J. Phys. Chem. C, 2007, 111: 1651-1657.
    [137] Kim S, Lee J S, Mitterbauer C, et al. Anomalous electrical conductivity ofnanosheaves of CeO_2 [J]. Chem. Mater., 2009, 21: 1182-1186.
    [138] Yue L, Zhang X M. Preparation of highly dispersed CeO_2/TiO2 core-shell nanoparticles [J]. Mater. Lett., 2008, 62: 3764-3766.
    [139] Shchukin D G, Caruso R A. Template synthesis and photocatalytic properties of porous metal oxide spheres formed by nanoparticle [J]. Chem. Mater., 2004, 16: 2287-2292.
    [140] Mlondo S N., Thomas P J, O’Brien Paul. Facile deposition of nanodimensional ceria particles and their assembly into conformal films at liquid-liquid interface with a phase transfer catalyst [J]. J. Am. Chem. Soc., 2009, 131: 6072-6073.
    [141] Kessler J R, Monberg E, Nicolt M. Studies of fluorite an related divalent fluoride systems at high pressure by Raman spectroscopy [J]. J. Chem. Phys., 1974, 60: 5057-5065.
    [142] Duclos S J, Vohra Y K, Ruoff A L. High-pressure x-ray diffraction study of CeO_2 to 70 GPa and pressure-induced phase transformation from the fluorite structure [J]. Phys. Rev. B, 1988, 38: 7755-7758.
    [143] Kourouklis G A, Jayaraman A, Espinosa G P. High-pressure Raman study of CeO_2 to 35 GPa and pressure-induced phase transformation from the fluorite structure [J]. Phys. Rev. B, 1988, 37: 4251-4254.
    [144] Wang Z W, Saxena S K, Pischedda V, et al. In situ x-ray diffraction study of the pressure-induced phase transformation in nanocrystalline CeO_2 [J]. Phys. Rev. B, 2001, 64: 012102-1-4.
    [145] Rekhi S, Saxena S K, Lazor. High-pressure Raman study on nanocrystalline CeO_2 [J]. J. Appl. Phys., 2001, 89: 2968-2971.
    [146] Sayle T X T, Parker S C, Catlow C R A. The role of oxygen vacancies on ceria surfaces in the oxidation of carbon monoxide [J]. Surf Sci, 1994: 316: 329-336.
    [147] Ge M Y, Fang Y Z, Wang H, et al. Anomalous compressive behavior in CeO_2 nanocubes under high pressure [J]. New J. Phys, 2008 10: 123016-123027.
    [148] Spanier J E, Robinson R D, Zhang F, et al. Size-dependent properties ofCeO_2-y nanoparticles as studied by Raman scattering [J]. Phys. Rev. B, 2001, 64: 245407-1-7.
    [149] Phokaa S, Laokula P, Swatsitanga E, et al. Synthesis, structural and optical properties of CeO_2 nanoparticles synthesized by a simple polyvinyl pyrrolidone (PVP) solution route [J]. Mater. Chem. Phys., 2009, 115: 423-428.
    [150] Wu S Y, Hsueh H S, Huang M H, et al. Spin-Coated Periodic Mesoporous organosilica thin films with molecular-scale order within the organosilica wall [J]. Chem. Mater. 2007, 19: 5986-5990.
    [151] Zhang Y J, Yao Q, Zhang Y, et al. Solvothermal Synthesis of Magnetic Chains Self-Assembled by Flowerlike Cobalt Submicrospheres [J]. Cryst. Growth Des., 2008, 8: 3206-3212.
    [152] Saitzek S, Blach J F, Villain S, et al. Nanostructured ceria: a comparative study from X-ray diffraction, Raman spectroscopy and BET specific surface measurements [J]. phys. stat. sol. (a), 2008, 205: 1534-1539.
    [153] He CY, Gao C X, Liu B G, et al. Electrical properties and phase transition of CdTe under high pressure [J]. J. Phys.: Condens. Matter, 19 (2007) 425223-1-8.
    [154] Shen X, Shen J, You S J, et al. Phase transition of Zn2SnO4 nanowires under high pressure [J]. J. Appl. Phys., 2009, 106: 113523-1-5.
    [155] Hou Y Y, Liu B B, Wang L, et al. Photoluminescence properties of high-pressure-polymerized C60 nanorods in the orthorhombic and tetragonal phases [J]. Appl. Phys. Lett., 2006, 89: 181925-1-3.
    [156] He Y, Liu J F, Chen W, et al. High-pressure behavior of SnO2 nanocrystals [J]. Phys. Rev. B, 2005, 72: 212102-1-4.
    [157] Swamy V, Kuznetsov A Y, Dubrovinsky L S, et al. Unusual compression behavior of anatase TiO2 nanocrystals [J]. Phys. Rev. Lett, 2009, 103: 075505-1-4.
    [158] Wang Z W, Guo Q X. Size-dependent structural stability and tuning mechanism: a case of zinc sulfide [J]. J. Phys. Chem. C 2009, 113: 4286-4295.
    [159] Jiang J Z, Olsen J S, Gerward L, et al. Structural stability in nanocrystalline ZnO [J]. Europhys. Lett., 2000, 50: 48-53.
    [160] Jacobs K, Wickham J, Alivisatos A P, et al. Threshold size for ambientmetastability of rocksalt CdSe nanocrystals [J]. J. Phys. Chem. B, 2002, 106: 3759-3762.
    [161] Wang L, Yang W G, Ding Y, et al. Size-dependent amorphization of nanoscale Y2O3 at high pressure [J]. Phys. Rev. Lett, 2010, 105: 095701-1-4.
    [162] Wang Z W, Daemen L L, Zhao Y S, et al. Morphology-tuned wurtzite-type ZnS nanobelts [J]. Nature Materials, 2005, 4: 922-927.
    [163] Guo Q X, Zhao Y S, Mao W L, et al. Cubic to tetragonal phase transformation in cold-compressed Pd nanocubes [J]. Nano Lett., 2008, 8: 972-975.
    [164] Xiao W S, Tan D Y, Li Y C, et al. The effects of high temperature on the high-pressure behavior of CeO_2 [J]. J. Phys.: Condens. Matter, 2007, 19: 425213-1-9.
    [165] Wang Z W, Tait K, Zhao Y S, et al. Size-induced reduction of transition pressure and enhancement of bulk modulus of AlN nanocrystals [J]. J. Phys. Chem. B, 2004, 108: 11506-11508.
    [166] Wang Z L. Transmission electron microscopy of shape-controlled nanocrystals and their assemblies [J]. J. Phys. Chem. B, 2000, 104: 1153-1175.
    [167] Yang C C, Li S. Investigation of cohesive energy effects on size-dependent physical and chemical properties of nanocrystals [J]. Phys. Rev. B, 2007, 75: 165413-1-5.
    [168] Garzella C, Comini E, Tempesti E, et al. TiO2 thin films by a novel sol–gel processing for gas sensor applications [J]. Sensor Actuat B-Chem, 2000, 68: 189-196.
    [169] Jiang J Z, Gerward L, Secco R, et al. Phase transformation and conductivity in nanocrystal PbS under pressure [J]. J. Appl. Phys., 2000, 87: 2658-2660.
    [170] Chen S J, Liu Y C, Shao C L, et al. Photoluminescence of wurtzite ZnO under hydrostatic pressure [J]. J. Appl. Phys., 2006, 99: 066102-1-3.
    [171] Gatta G D, Kantor I, Ballaran T B, et al. Effect of non-hydrostatic conditions on the elastic behavior of magnetite: an in situ single-crystal X-ray diffraction study [J]. Phys Chem Minerals, 2007, 34: 627-635.
    [172] Longhurst M J, Quirke N. Pressure dependence of the radial breathing mode of carbon nanotubes: the effect of fluid adsorption [J]. Phys. Rev. Lett, 2007, 98: 145503-1-4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700