CO_2跨临界循环膨胀机理与转子式膨胀机—压缩机研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环境问题的凸现,使自然工质CO2作为传统工质的替代物重新回到制冷空调领域。本文的主要研究目的就是努力提高CO2跨临界循环系统的性能,使之达到与传统工质相应的COP,促使CO2空调热泵系统早日走向实际有效应用,为传统工质的替代提供最终解决方案,实现空调热泵技术的可持续发展。
    本文根据对目前国内外对自然工质CO2跨临界循环系统的理论和实验研究现状的分析,以提高系统效率为目标,对CO2热泵系统的性能提升潜力进行了理论分析,并且以CO2跨临界循环性能提高最具价值的膨胀机-压缩机技术研究为核心,为CO2空调热泵技术走向实际有效应用提供理论依据和技术支持。
    CO2跨临界循环的特点为系统压力较高、简单循环运行效率较低。本文针对其高压特点,分析了系统的安全性及其最优压力对系统性能的影响。为提高CO2跨临界循环系统的性能,对简单蒸气压缩制冷循环进行的主要技术改进方案可分为两类:减小节流损失;减小放热过程不可逆损失,使放热过程向等温放热过程逼近。通过引入回热器、喷射器、经济器、膨胀机等辅助制冷部件来缩小实际循环与卡诺循环的差别。在热力学理论的指导下,对于各种新型循环方式的系统性能提高潜力进行评价。
    本文根据热力学理论,对超临界CO2降压、闪蒸过程膨胀做功与能量输出特性方面进行理论上的探讨。对气液相变中的亚稳平衡特性进行研究,分析影响相变延迟的因素。建立膨胀机膨胀过程中CO2过热液的成核长大热力学模型,计算CO2气化核心的临界半径和临界势垒。通过CO2过热液中能量涨落值与其临界势垒值的对比,分析非平衡相变发生的条件。探讨通过干扰降低膨胀过程生成气化核心的能量势垒,促进相变发生的机理与可行性。
    采用膨胀机对于提高CO2跨临界循环系统性能具有特殊重要的意义。为减小能量转换和储存损失,尽量提高系统效率,膨胀机所产生的机械功应该被直接利用,可使膨胀机和压缩机同轴联接。研制CO2膨胀机-压缩机是推动CO2走向有效应用的重要途径。以摆动转子式膨胀机-压缩机为开发对象,采用新型的轴向进气控制方案并根据系统容量计算出设计参数。运用摩擦学系统分析影响CO2膨胀机-压缩机润滑性能的因素。对用于CO2跨临界循环系统的四类合成润滑油POE、PAG、PAO、AN/AB的主要性能如混合性、流动性、可溶性、粘温特性、稳定性和润滑性进行分析比较。
    以膨胀机-压缩机的工作过程(吸气、压缩、排气;进气、膨胀、排气)为研究对象,综合考虑各种因素,建立起工作过程的数学模型并进行数值求解。求出膨胀机-压缩机中工质的主要热力参数(如压力、温度、比容),以及其它特性(如泄漏
CO_2 is under serious consideration worldwide as a replacement for conventionalrefrigerants because the severe environmental problems. The objective of this dissertationis to develop a CO_2 transcritical cycle that has comparable or better performance whencompared to a cycle with conventional refrigerants. Therefore this research will try topush the CO_2 transcritical cycle into practice application that may be benefit to thesustainable development in the refrigeration and air-conditioning field.
    Based on the existing theoretical and experimental research on CO_2 transcriticalcycle of other talent researchers worldwide, this dissertation takes the performanceimprovement of CO_2 transcritical cycle as the main target and focuses on the developmentof rotary expander-compressor in theory analysis and experimentation.
    The typical characteristics of CO_2 transcritical cycle may be somewhat higheroperating pressure and lower performance in baseline system when compared with asystem using conventional refrigerants. The safety problem and the effects of theoptimism high pressure to its performance are analyzed toward its high operating pressure.In principle, a large number of modifications to the basic CO_2 transcritical cyle arepossible. Those potential improvements of components and advance cycles withadditional components such as IHX, ejector, economizer and expander etc. are analyzedtheoretically. The technology modification can be approximately divided into two classes:reducing the pressure drop power loss and reducing the irreversible loss of heat rejectionprocess.
    It is investigated on the characteristics of the supercritical CO_2 expansion power inthe process of decompression and flashing process theoretically adopting thermodynamics.Gas-liquid phase change hysteresis in the meta-stable state is investigated and theaffecting factors are proposed. The irreversible thermodynamic model about the bubblenucleation in the CO_2 superheated liquid in the expansion process of expander is founded.The critical radius and the critical potential barrier of CO_2 nucleation are calculated. TheCO_2 energy fluctuation of meta-stable CO_2 liquid is calculated with the statisticthermodynamic method. Therefore the theories about adopting disturbance factors such asforeign substance and ultrasonic to accelerate the nucleation and the bubble growth areproposed.
    Employing an expander is paramount important to improve the performance of the
    CO2 transcritical cycle. Integrating an expander and a compressor together will be good toutilize the recovered power directly since the transmission loss is expected to be small.The design parameters of the swing piston type rotary expander-compressor adopting thenewly designed inlet control method are calculated according to the heat pump systemcapacity. The lubrication of the prototype is analyzed with tribology. Those four kind ofsynthetic lubricants: POE, PAG, PAO and AN/AB are compared and valued on their maincharacteristics such as miscibility, fluidity, solubility, viscosity-temperature character,long-term stability and lubricity.The model on the swing piston type rotary expander-compressor is founded tosimulate the operating process e.g. suction, compression and discharge for compressorand inlet, expansion and discharge for expander. The main thermodynamic parameterssuch as pressure, temperature and density of the refrigerant in the unit and othercharacteristics such as internal leakage loss, friction loss and etc. are numerical calculated.The expander-compressor potential can be well estimated and optimization geometricparameters can be gotten through the comprehensive analysis on the simulation results.The CO2 transcritical cycle water-water heat pump test rig was founded to test theperformance of the expander-compressor unit. The experiments indicated that theexpander had obvious improvement effects on the heat pump performance, COP of thesystem can be increased about 20%~40% which are favorable results. However, theinternal leak rates were still too high and both an optimized design and improvedmachining accuracy are required to fabricate and operate a CO2 expander at acceptableperformance levels. The disturbance action of minor non-condensation gas NC-1 totrigger the phase change in expander is tested. The result shows the disturbance isfavorable to improve the efficiency of expander. But further research in experiment andtheory is still needed to investigate the mechanism of disturbance to expansion process.
引文
[1] 卢文芸. 人与自然的协调发展与可持续发展[J]. 贵州民族学院学报(哲学社会科学版), April, 2004, 2:1-3
    [2] 黄寰. 保护环境, 实现可持续发展.科技与管理[J], 2003, 3: 20-22.
    [3] 2004 年 国 际 臭 氧 层 保 护 日 [ED/OL]. http://www.rzhb.gov.cn/news2/list.asp?id=1975. 2005.2.
    [4] The Montreal Protocol on Substances that Deplete the Ozone Layer [ED/OL]. http://www.unep.org/ozone/Montreal-Protocol/Montreal-Protocol2000.shtml. 2005.2.
    [5] The United Nations Framework Convention on Climate Change [ED/OL]. http://unfccc.int/essential_background/convention/items/2627.php. 2005.2
    [6] 关 于 消 耗 臭 氧 层 物 质 的 蒙 特 利 尔 议 定 书 及 修 正 案 简 介 [N]. http://www.cccap.org.cn/webpagec/lm6/ktzs/06.htm[ED/OL]. 2005.2.
    [7] 韩昭庆《.京都议定书》的背景及其相关问题分析[J]. 复旦学报(社会科学版), 2002.Vol(2): 100-104.
    [8] 洪紫萍. 氯氟烃的削减和蒙特利尔议定书.环境污染与防治[J]. Feb,1990, Vol.12(1): 16-21.
    [9] Montreal Protocol On Substances that Deplete the Ozone Layer-2002 Assessment [R], UNEP Nairobi, Ozone Secretariat, 2003.1: 173.
    [10] J.Pettersen, A,Hafner, G.Skargen. Development of compact heat exchangers for CO_2 air-conditioning systems[J]. International Journal of Refrigeration, 1998,21(3): 180-193.
    [11] Bodinus W S. The rise and fall of carbon dioxide systems[C]. In: The first century of air conditioning. Atlanta, GA: ASHRAE, 1999: 147-63.
    [12] Thevenot R. A history of refrigeration throughout the world[R]. Paris: IIR, 1979.
    [13] Samer Sawalha. CO_2 and Transcritical Cycle[R]. KTH Energy Institute.
    [14] Lorentzen G. Transcritical vapor compression cycle device [P]. International Patent Publication WO 90/07683, 1990.
    [15] Lorentzen G, Pettersen J. New possibilities for non-CFC refrigeration[C]. IIR International Symposium on Refrigeration, Energy and Environment, Trondheim, Norway. 1992. 147-163.
    [16] Man-Hoe Kim, Jostein Pettersen, Clark W. Bullard. Fundamental process and system design issues in CO_2 vapor compression systems[J]. Progress in energy and combustion science, 2004, 30: 119-174.
    [17] Lorentzen G. The use of natural refrigerants: a complete solution to the CFC/HCFC predicament [J]. Int. J.Refrig, 1995, Vol.18(3): 190 -197.
    [18] K.Kusakari. Innovate hot water supply technology conductive to arresting global warming-Development and significance of CO_2 heat pump water heater[C]. In:7th International Energy Agency Heat Pump Conference. Beijing, China, May, 2002: 101-111.
    [19] Advances in heat pump water heater. http://www.heatpumpcentre.org/2003.12.18.
    [20] M.Saikawa,K.Hashimoto,K.Kusakari,etc.. Development of prototype of CO_2 heat pump water heater for residential use[C]. In: 4th IIR Gustav Lorentzen conference on natural working fluids, Purdue University, USA. 2000: 51-57.
    [21] Hiroshi Mukaiyama, etc. Development of CO_2 compressor and its application system[C]. In:7th International Energy Agency Heat Pump Conference. Beijing, China, May, 2002: 137-1146.
    [22] Hiroshi Mukaiyama, etc. Experimental results and evaluation of residential CO_2 heat pump water heater[C]. In: 4th IIR Gustav Lorentzen conference on natural working fluids, Purdue University, USA. 2000: 67-73.
    [23] Hihara E. R&D on heat pumps with natural working fluids in Japan[C]. In: 7th International Energy Agency Heat Pump Conference. Beijing, China, May, 2002: 272-279.
    [24] Eiji Hihara. Research and development of natural refrigerant technology in Japan[R]. International Seminar on Natural Refrigerants, Heat Pump and Thermal Storage Technology Center of Japan. The University of Tokyo, Japan. February, 2004: 55-56
    [25] Trends of CO_2 heat pump water heaters in Japan. , May, 2004.
    [26] Pettersen J. An efficient new automobile air-conditioning system based on CO_2 vapor compression [J]. ASHRAE Transactions 1994, Vol.100(2):657–65.
    [27] 孙奉仲. 换热器的可靠性与故障分析导论[M]. 北京: 中国标准出版社, 1998.
    [28] Kohler J, Sonnekalb M, Kaise H. Carbon dioxide as a refrigerant for vehicle air-conditioning with application to bus air-conditioning[C]. Proceedings of International CFC and Halon Alternatives Conference. Washington, USA, 1995: 376-385.
    [29] Gentner H. Passenger car air conditioning using carbon dioxide as refrigerant[C]. In Proceedings of the IIR-Gustav Lorentzen Conference on Natural Working Fluids,Oslo, Norway,1998: 303-13.
    [30] Copressor world trends [N], JARN, Refrigeration & Air conditioning compressor. 2003.5.25: No.409-S.
    [31] Host J. Test rig for CO_2 automotive air conditioning compressor. International Conference CFCs[C]. Meeting of IIR Commission B1, B2, E1, E2. Arhus, Denmark, 1996.
    [32] Preissner M, Cutler B. Comparison of automotive air-conditioning systems operating with CO_2 and R134a[C]. Proceeding of the 4th IIR-Gustav Lorentzen Conference on Natural Working Fluids, Purdue University, USA. July 2000: 279-284.
    [33] Preissner M,Cut ler B,Rad ermacher R,Zha ng CA. Suction line heat exchanger for R134a automotive air-conditioning system[C]. In Proceedings of 2000 International Refrigeration Conference at Purdue, West Lafayette, Indiana, 2000, 289–94.
    [34] Brown J.S, Yana-Motta S.F, Domanski P.A. Comparitive analysis of an automotive air conditioning systems operating with CO_2 and R134a[J]. International Journal of Refrigeration, 2002, Vol.25: 19-32.
    [35] 丁国良, 黄冬平, 张春路. 跨临界CO_2汽车空调稳态仿真[J]. 工程热物理学报, 2001,Vol.22(3): 272-274.
    [36] 梁潜贞, 黄冬平, 张春路, 丁国良. 二氧化碳汽车空调器仿真与优化[J]. 制冷空调新技术进展. 上海交通大学出版社(王如竹,丁国良主编).November, 2002: 146-150.
    [37] Sintef Vedleggsrapport til STF11 A93051 Brukeroversikt-Kuldemedier i Norge, SINTEF report No. STF11 F93058, Trondheim, Norway;1993.
    [38] Veiby OJ. Internal records, documentation in the ICA supermarket chain in Norway 2003. Oslo, Norway.
    [39] Neksa P, Rekstad H. CO_2-heat pump water heater: characteristics, system design and experimental results[J]. Int. J. Refrig, 1998, Vol.21(3):172-179.
    [40] Neksa P, Pettersen J, Skaugen G. CO_2 refrigeration, air conditioning and heat pump technology[R]. http://www.centrogalileo.it/nuovaPA, 2004.3.1.
    [41] S.D.White, M.G.Yarrall. Modelling the performance of a transcritical CO_2 heat pump for high temperature heating[J]. Int. J. Refrig., 2002, Vol.25: 479-486.
    [42] S D White,D J Cleland. A heat pump for simultaneous refrigeration and water heating [J]. IPENZ Transactions, Vol. 24(1), 1997: 36-43.
    [43] Hermann Halozan, Rene Rieberer. CO_2 As refrigerant-Possible applications[C]. In: 4th IIR Gustav Lorentzen conference on natural working fluids, Purdue University, USA. 2000: 43-50
    [44] G.Reza Zakeri, Neks? P etc. Results and experiences with the first commercial pilot plant CO_2 heat pump water heater[C]. In: 4th IIR Gustav Lorentzen conference on natural working fluids, Purdue University, USA. 2000: 59-65
    [45] Jorn Stene. Investigation of a residential brine-to-water CO_2 heat pump for combined low-temperature space heating and hot water preparation[C]. In: 5th IIR Gustav Lorentzen conference on natural working fluids, Guangzhou, China. 2002: 268-275.
    [46] E.L.Schmidt, K.Klocker, N.Flacke and F.Steimle. Applying the transcritical CO_2 process to a drying heat pump[C]. Int. J. Refrig, 1998,Vol.21: 202-211.
    [47] K.Klocker, E.L.Schmidt, F.Steimle. Carbon dioxide as a working fluid in drying heat pump[C]. Int. J. Refrig, 2001,Vol.24: 100-107.
    [48] Petter Neksa. CO_2 heat pump systems[C]. Int. J. Refrig., 2002, Vol. 25: 421-427.
    [49] Ortiz T M, Groll E A. Simulation of a 3-ton residential CO_2 air conditioner[C]. In: 5th IIR Gustav Lorentzen conference on natural working fluids, Guangzhou, China. 2002: 39-49.
    [50] Sergio Girottoa, Silvia Minettoa, Petter Neksa. Commercial refrigeration system using CO_2 as the refrigerant[J]. International Journal of Refrigeration, 2004, Vol.27: 717–723.
    [51] 王侃宏. CO_2跨临界循环的理论分析和实验研究 [D], 天津: 天津大学, 2000.
    [52] 马一太, 王侃宏, 杨昭. 带膨胀机的CO_2跨(超)临界逆循环的热力学分析[J]. 工程热物理学报, Nov. 1999, Vol.20(6): 661-665.
    [53] Fagerli B., CO_2 compressor development, Presentation on the CO_2 workshop[R], Trondheim,1997.http://www.obrist.at/productsandservices/co2components/index.html 2004.3.
    [54] Jurgen Sub, Horst Kruse. Efficiency of the indicated process of CO_2-compressor [J]. Int. J. Refrig, 1998, Vol.21(3): 194-201.
    [55] Tadashi Yanagisawa, Mitsuhiro Fukuta. Basic operating characteristics of reciprocating compressor for CO_2 cycle[C]. Proceedings of the 4th IIR-Gustav Lorentzen conference on natural working fluids at Purdue University, USA, 2000: 355-362.
    [56] Casini. CO_2 compressors and equipment, use and availablity[R]. http://www.eurocooling.com, May, 6, 2003.
    [57] Neksa.P, et al. Development of two stage semi-hermetic CO_2 compressors[C]. 4th IIR Gustav Lorentzen conference on natural working fluids, Purdue University, USA. 2000: 355-362.
    [58] Baumann H. Small oil free CO_2 compressor[R]. http://www.egi.kth.se, 2003.
    [59] Masaya Tadano, Toshiyuki Ebara, et al. Development of the CO_2 hermetic compressor[C]. Proceedings of the 4th IIR-Gustav Lorentzen Conference on Natural Working Fluids at Purdue, USA, 2000: 323-330.
    [60] Hiroshi Mukaiyama, Tetsuya Masuda, et al. Development of CO_2 Compressor and Its Application Systems[C]. 7th International Energy Agency Heat Pump Conference, Beijing, China, 2002:137-146.
    [61] B. Hubacher, E. A. Groll. Performance measurements of a hermetic carbon dioxide compressor[C]. International Conference of Refrigeration, Washington, USA: ICR0029.
    [62] 侩皮武史, 大川刚义, 熊仓英二. CO_2冷媒跨临界压缩机性能评价[C]. 平成12 年度日本冷冻空调学术讲演论文集, 札幌, 日本.
    [63] CO_2 scroll compressor [ED-OL]. http://ww.jsme.or.jp/English/awardsn26.html
    [64] Tomoyasu Adachi, Takayuki Hagita. Automobile air conditioner using CO_2[C], 冷冻 2003, Vol.77(893): 8-13.
    [65] Hiroshi Hasegawa, Mitsuhiro Ikoma, et al. Experimental and theoretical study of hermetic CO_2 scroll compressor[C]. Proceedings of the 4th IIR-Gustav Lorentzen Conference on Natural Working Fluids at Purdue University, USA, 2000: 347-353.
    [66] Akira Hiwata, Noboru Iida, et al. Performance investigation with oil-injection to compression chambers on CO_2-scroll compressor[C]. C18-4.
    [67] Sakuda, A., Sawai, K., Iida, et al. Performance improvement of scroll compressor with new sealing-oil supply mechanism[C]. International Conference on Compressors and their Systems, City Univeristy, UK, 2001: 465-474.
    [68] Mitsuhiro Fukuta, R. Radermacher. Performance of a vane compressor for CO_2 cycle[C]. Proceedings of the 4th IIR-Gustav Lorentzen Conference on Natural Working Fluids at Purdue University, USA, 2000: 339-346.
    [69] New technology on compressor with natural refrigerants [ED/OL]. http://www.mycomj.co.jp.
    [70] Casini. CO_2 compressors and equipment, use and availablity[ED/OL]. http://www.eurocooling.com/articledorin.doc May, 6, 2003.
    [71] Torahide Takahashi. Development of carbon dioxide applied refrigeration system[ED/OL]. Calsonic Kansei Corporation, 2000.
    [72] Heyl P. Free piston expander-compressor for CO_2 design, applications and results[R]. http://www.tu-dresden.de/mw/iem/kkt/mitarbeiter/lib. 2003.5.
    [73] Nickl J, Will G, Kraus W E and Quack H. Design considerations for a second generation CO_2-expander[C]. Preliminary proceedings of the 5th IIR-Gustav Lorentzen conference on natural working fluids at Guangzhou. Guangzhou, China, 2002: 189-196.
    [74] Nickl J, Will G. Third generation CO2 expander[C]. http://www.icr2003.org/, 2003.9.
    [75] Denso公司. 一种往复式CO2膨胀压缩机[P]. 日本专利: DE10010864 A1, 1999.
    [76] Ronald W. Applications for the hinge-vane positive displacement compressor-expander[R]. http://www.egi.kth.se/users/thermo/samer/, 2003.
    [77] 马国远, 李红旗. 旋转压缩机[M]. 北京: 机械工业出版社, 2001: 183-185.
    [78] Fukuta M, Yanagisawa T. Cycle performance of CO2 cycle with vane compressor-expander combination[C]. City university,London,UK: International conference on compressors and their systems.2001. 315-324.
    [79] Stosic N, Smith I K. A twin screw combined compressors and expanders for CO2 refrigeration systems[C]. The Proceeding of the sixteenth international compressor engineering conference at Purdue. Purdue, USA. 2002.
    [80] Bjφrn F. Feasibility study of using centrifugal compressor and expander in a car conditioner working with carbon dioxide as refrigerant[R], ACRC CR-23. http://acrc.me.uiuc.edu/publications.asp?type=contract&page=2
    [81] Huff H J., Radermacher R, Preissner M. Experimental investigation of a scroll expander in carbon dioxide air-conditioning system[C]. International Congress of Refrigeration, Washington, D.C. USA, 2003: ICR0485.
    [82] Reihard R. CO2 compressor-expander analysis[R]. ARTI 21-CR Research Project 611-10060. http://www.arti-21cr.org/research/ongoing/611-10060.pdf ,2003.
    [83] Petter Neksa, Sergio Girotto. CO2 as refrigerant within commercial refrigeration-Theoretical consideration and experimental results [C]. Preliminary proceedings of the 5th IIR-Gustav Lorentzen conference on natural working fluids at Guangzhou. Guangzhou, China, 2002. 221-228.
    [84] Pettersen J. Experimental results of carbon dioxide in compression system[C]. ASHRAE/NIST Conference Refrigerants for the 21st Century. Gaithersburg, MD, 1997: 27-37.
    [85] Fagerli B. CO2 compressor development[C]. IEA/IIR Workshop on CO2 Technologies in Refrigeration, Heat Pump and Air Conditioning Systems, Trondheim, Norway, 1997: 13-14.
    [86] NIOSH. US National Institute for Occupational Safety and Health[ED/OL]. http://www.cdc.gov.niosh/idlh/124389.html.1996.
    [87] Amin J, Dienhart B. Safety aspects of an A/C system with carbon dioxide as refrigerant[C]. The SAE Automotive Alternate Refrigerants Systems Symposium. Scottsdale, AZ;1999.
    [88] Kim E, Reid R. The rapid depressurization of hot, high pressure liquids or supercritical fluids[J]. Chemical engineering at supercritical fluid conditions, Michigan: Ann Arbor Science, 1983.
    [89] Pettersen J, Hakenjos J. Boiling liquid expanding vapor explosions (BLEVE) in CO_2 vessels: initial experiments[C]. Proceedings of the 5th IIR-Gustav Lorentzen conference on natural working fluids at Guangzhou. Guangzhou, China, 2002, 209-216.
    [90] Inokuty H. Graphical method of finding compression pressure of CO_2 refrigerating machine for maximum coefficient of performance[C]. The fifth international congress of refrigeration, Rome: 1928,185-192.
    [91] S.M.Liao, T.S.Zhao, A.Jakobsen. A correlation of optimal heat rejection pressures in transcritical carbon dioxide cycles [J]. Applied Thermal Engineering, 2000,Vol.20: 834-841
    [92] Friedrich Kauf. Determination of the optimum high pressure for transcritical CO_2-refrigeration cycles[J]. Int. J. Therm. Sci., 1999, Vol.38: 325-330.
    [93] Man-Hoe Kim, Jostein Pettersen, Clark W. Bullard. Fundamental process and system design issues in CO_2 vapor compression systems[J]. Progress in energy and combustion science, 2004, Vol.30: 119-174.
    [94] Sakamoto S., Giese,P. Sanden Luk Cooperation on CO_2 compressors[C]. Proceedings of Phoenix Alternate Refrigerant Symposium, Phoenix, July, 2000.
    [95] Marcus Preissner. Carbon Dioxide Vapor Compression Cycle Improvements with Focus on Scroll Expanders [D]. Maryland University, USA, 2001.
    [96] 李敏霞. 二氧化碳跨临界循环转子式膨胀机的分析与实验研究[D]. 天津: 天津大学. 2003.
    [97] 范晓伟, 阴建民, 陈钟欣. 新型压缩/喷射制冷循环系统的实验研究[J]. 西安交通大学学报, 1997, Vol.31(5): 6-9.
    [98] 吴江涛, 刘志刚等. 新型蒸气压缩/喷射制冷循环的热力学分析[J]. 流体机械, 2000,Vol.28(8): 47-49.
    [99] 苏跃红, 葛新石.双温冰箱压缩/喷射式混合制冷循环的设计和实验研究[J]. 中国科学技术大学学报,1998,Vol.28(1): 115-121.
    [100]DA-WEN SUN. Evaluation of a combined ejector-vapor-compression refrigeration system[J]. International Journal of Energy Research, 1998, 22:333-342.
    [101]K.Cizungu, A.Mani, M. Groll. Performance comparison of vapor jet refrigeration system with environment friendly working fluids[J]. Applied Thermal Engineering, 1998, Vol.21: 585-598.
    [102]A.Selvaraju, A.Mani. Analysis of an ejector with environment friendly refrigerants[J]. Applied Thermal Engineering, 2004, Vol.24: 827-838.
    [103]L Fu, G L Ding. Steady-state simulation of screw liquid chillers[J]. Applied thermal engineering, 2002, Vol.22: 1731-1748.
    [104]G Y Ma, Q H Chai. Characteristics of an improved heat-pump cycle for cold regions[J]. Applied Energy, 2004, Vol.77: 235-247.
    [105]郇中杰, 马一太. 滑片式压缩机经济器系统的理论分析[J]. 流体机械, 1998, 26(12): 51-54.
    [106]Dorantes R, Lallemand A. Prediction of performance of a jet cooling system operating with pure refrigerants or non-azeotropic mixtures[J]. Int. J. Refrig, 1995, Vol.18(1): 21-30.
    [107]冯长根. 热爆炸理论[M]. 北京: 科学出版社, 1992.
    [108]王侃宏. CO_2跨临界循环的理论分析与实验研究[D].天津: 天津大学, 2000.
    [109]高秋生. 对液体空化机理的进一步探讨. 河海大学学报, 1999,Vol.27(5): 63-67.
    [110]童景山. 分子聚集理论及其应用[M], 科学出版社, 1999.2.
    [111]赵凯华, 罗蔚茵. 热学[M], 北京: 高等教育出版社, 1998, 2.
    [112]高执隶, 郭国霖. 统计热力学导论[M], 北京: 北京大学出版社, 2004.6: 362-372.
    [113]魏东. 二氧化碳跨临界循环换热与膨胀机理的研究[D]. 天津: 天津大学, 2002.5.
    [114]邱信立, 廉乐明, 李力能. 工程热力学[M]. 北京:中国建筑工业出版社, 1998.
    [115]曾丹苓. 汽液相变中成核的热力学理论[J]. 重庆大学学报, Vol.18(2): 1-8.
    [116]刘朝, 曾丹苓, 快速降压下过热液中气泡的生长, 工程热物理学报, Jan, 1998, Vol.19(1):1-4.
    [117]陈宏芳, 杜建华. 高等工程热力学[M]. 北京: 清华大学出版社, 2002-3.1.
    [118]苏长荪. 高等工程热力学[M], 高等教育出版社, 1987.10.
    [119]周少祥, 胡三高, 宋之平. 流体亚稳定状态和理论极限过热温度[J]. 工程热物理学报, Nov, 2003, Vol.24(6): 917-919.
    [120]章熙民, 任泽霈, 梅飞鸣. 传热学[M], 北京: 中国建筑工业出版社, 1998, 180-181.
    [121]Joseph Kestin. A course in thermodynamics[M]. New York: McGraw-Hill,1979: 303-314.
    [122]汪志诚. 热力学.统计物理[M]. 北京: 高等教育出版社, 1996.
    [123]鲁钟琪. 两相流与沸腾传热[M]. 北京:清华大学出版社, 2002.1: 126-160.
    [124]王萍辉. 超声空化影响因素[J]. 河北理工学院学报, 2003, Vol.25(4): 154-161.
    [125]王阳恩, 程衍寓, 凌向虎. 超声波在调油输送中的应用[J]. 油气储运, 1999:10-11.
    [126]郭志超, 李鸿, 王静康. 超声波对结晶过程的作用及机理[J]. 天津化工, 2003, Vol.17(3):1-4.
    [127]孙始财, 樊栓狮, 梁德青. 气体水合物超声结晶实验[J]. 制冷学报, 2004(4): 10-14.
    [128]胡亮光, 庞风彪. 中低温全流发电螺杆膨胀机的性能及实验研究[J], 工程热物理学报, 1989, 4: 353-356.
    [129]戴雄杰. 摩擦学基础[M]. 上海: 上海科学技术出版社, 1984.
    [130]林复生. 简明摩擦学[M]. 重庆: 重庆大学出版社,1987.
    [131]王德涛. 润滑技术手册[M]. 北京: 机械工业出版社,1998.
    [132]韩廷水. Ni-Si3N4 复合镀层制备工艺与磨损性能研究[MD]. 天津: 天津大学, 2004.12.
    [133]乔宗亮, 熊则男. 涡旋压缩机中滑动轴承的特性[J]. 压缩机技术, 1994, Vol.128: 34-37.
    [134]H.Li,T.E.Rajewski.Experimental study of lubricant candidates for the CO_2 refrigeration system[C]. 4thIIR-Gustav Lorentzen conference on natural working fluids at Purdue University, 2000: 409-414.
    [135]Chris Seeton, Jorg Fahl, David Henderson. Solubility, viscosity, boundary lubrication and miscibility of CO_2 and synthetic lubricants[C]. 4th IIR-Gustav Lorentzen conference on natural working fluids at Purdue, Purdue University: 2000: 417-424.
    [136]俞炳丰. 制冷与空调应用新技术[M]. 北京: 化学工业出版社, 2002.10.
    [137]颜志光. 润滑材料与润滑技术[M]. 北京: 中国石化出版社.2000.
    [138]Hesse,U., H.O.Spauschus. Lubricants for Carbon dioxide[C], Proceedings of the 2thInternational conference on the Non-Artificial Substances. Aarhus: 1996.14.7-14.8.
    [139]Fagerli, B.E. Development and Experiences with a hermetic CO_2 compressor[C], Proceedings of 1996 International Refrigeration Conference at Purdue, Purdue University:1996. 15.6-15.11.
    [140]CO_2空调系统OCR的即时测定方法 尾崎幸克 Denso技术报, Vol.8(2), 2003.
    [141]Hauk A., Weidner E., Thermodynamic and Fluid-Dynamic Properties of CO_2 with Different Lubricants in Cooling Circuits for Automobile Applications. Ind. Eng. Chem. Res, 2000Vol.39: 4646-4651.
    [142]晏刚, 马贞俊, 周晋. 滚动转子式压缩机得间隙泄漏模型. 压缩机技术, 2003, 2: 1-4.
    [143]成莉, 吴建华. 转子径向间隙对滚动转子式变频压缩机性能的影响[J]: 流体机械, 2002, Vol.30(5): 49-51.
    [144]Fukuta M., Lee B.C.,Yanagisawa T. A study on the Leakage characteristics of tip seal mechanism in the scroll compressor[C]. Proceedings of the International Compressor Conference at Purdue, West Lafayette, IN, 2002.
    [145]章熙民, 任泽霈, 梅飞鸣. 传热学[M]. 北京: 中国建筑工业出版社, 1998.11: 107-180..
    [146]Marcus Preissner. Carbon Dioixde Vapor Compression Cycle Improvements With Focus On Scroll Expanders [D]. USA, University of Maryland, 2001.
    [147]Fox, R.W., McDonald, A. Introduction to Fluid Mechanics[M], John Wiley & Sons Inc. USA,1992.
    [148]查世彤. 二氧化碳跨临界循环膨胀机的研究与开发[D].天津: 天津大学, 2002.12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700