用户名: 密码: 验证码:
空气源热泵除霜用相变蓄能换热器的模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空气源热泵蓄能热气除霜系统( A Thermal Energy Storage Based Hot Gas Defrosting System for Air Source Heat Pump )是将空气源热泵除霜技术和蓄热技术有机结合起来的一种新系统。它采用蓄能相变材料将空气源热泵高效制热运行时的部分余热贮存起来,在除霜工况运行时又将其作为热泵热气除霜时的低位热源,通过相变材料的相变放热,向系统提供除霜所需的热量。这彻底解决了传统空气源热泵除霜时由于无外部热源、融霜能量主要来自压缩机做功等所引起机组运行的不稳定和可靠性差的问题。
     本文在分析空气源热泵蓄能热气除霜系统的形式和特点的基础上,给出了该系统不同运行模式流程,并对适合于蓄能除霜的相变材料(Phase Change Material,简称PCM)进行分析和选取;同时给出相变蓄热器的物理模型。以文献提供的除霜耗能数据为基础,对使用不同蓄能材料的某空气源热泵机组除霜用蓄能换热器进行了初步的结构设计。
     基于焓法对蓄热器中相变材料的传热过程建立数学模型,采用有限差分方法对模型方程进行离散,并采用交替方向隐式格式和逐线迭代的方法对离散方程组进行求解,以Na_2SO_4·10H_2O作为相变材料,不考虑散热损失的理想工况下对此蓄热器蓄热和释热过程进行模拟研究。
     最后本文从热媒体和相变材料两个方面,详细分析了制冷剂的入口温度、流速、入口干度,蓄热器的结构、不同PCM(RT31、A32、癸酸、Na_2SO_4·10H_2O、CaCl_2·6H_2O)等多种主要因素对蓄热器蓄热和放热特性的影响,并利用模拟结果对蓄热器参数进行了优化设计。
     本研究成果为空气源热泵蓄能除霜新系统的关键部件蓄能换热器的优化设计及系统各参数间的合理匹配提供了有益的参考,并为该系统的推广与应用提供了理论支持与技术储备。
A Thermal Energy Storage Based Hot Gas Defrosting System for Air Source Heat Pump is a new system combinding technology of Defrosting System for Air Source Heat Pump with energy storage. An energy storage equipment of phase change is added to the system to store surplus heat when heap pump runs in high efficiency and the heat is used as low grade energy for defrost. Then the energy in the PCM is discharged in the hot gas defrost process. So the problems of the energy lacking for defrost or from mostly compressor are thoroughly solved.
     Firstly, the paper presents different mode flow of new system on basis of analyzing the characteristic of Defrosting System for Air Source Heat Pump (DSASHP). Then it supplies a physical model of phase change heat accumulator by analyzing and choosing PCM, and discusses energy consumption problem for DSASHP, then designes heat accumulator equipment with different PCM on basis of experiment data of defrosting energy consumption.
     Secondly, a mathematic model for heat-transfer process of phase change material in heat accumulator was developed based on enthalpy method and discreted with finite difference method, and solved by alternating direction implicit method and iteration method. Taking Na_2SO_4·10H_2O as phase change material, without regarding to heat dissipation, the process of thermal storage and release in heat accumulator was simulated.
     Eventually, the influence of inlet temperature, dryness fraction of the refrigerant, the configuration of heat accumulator and PCM on heat charge and discharge were analysed. Then heat accumulator was optimzed using the results.
     This paper gives reference to the matching of the parameters and the optimal design of the system, and supplies theory support and technology accumulation for its popularization and application.
引文
1.李先瑞,郎四维.热泵的现状与展望.暖通空调新技术. 1999, 1(1): 1~4
    2.周凤起. 21世纪中国能源工业面临的挑战.暖通空调. 2000, (4): 23~25
    3.龙惟定.试论我国暖通空调业的可持续发展.暖通空调, 1999, 29(3): 25~30
    4.马最良,姚杨.浅议热泵定义.暖通空调. 2002, 32(3): 33
    5. Halozan, Hermann, et al. 18th World Energy Congress Heat Pumps for Different World Regions-Now and in the Futur. Institute of Thermal Engineering. 2001
    6.周子成. 2000年世界房间空调器的生产与发展.制冷与空调. 2001, 1(6): 8~10
    7.钟婷,龙惟定.风冷热泵在若干城市制热运行的调研与分析. 2002年全国暖通空调制冷学术年会论文集: 410~413
    8.陈则邵.相变储热材料的热物性及石蜡的增量与对容积的增量关系.太阳能学报, 1983, 4(1): 9~15
    9.陈则邵.求解凝固相变传热传导问题的简便方法-热阻法.中国科学技术大学学报, 1991, 21(3): 69~77
    10. Y.W.Song, X.S.Ge. Experiment and Analytical Investigation of the Heat Condution with Phase. Heat Transfer. 1982, (2): 75~80
    11.张寅平.相变储能-理论及运用.中国科学技术大学出版社, 1996
    12.陈长琦,方应翠,朱武等.二氧化钒相变分析及应用. VACUUM. 2001, 12(6): 9~14
    13.黄志光,梅绍华.金属相变热能贮存技术的展望.太阳能学报, 2002, 23(1): 10~13
    14.阮德水.相变贮能材料的DSC研究.太阳能学报, 1994, 15(1): 40~45
    15.徐伟亮.水合乙酸钠相变蓄热研究.科技通报, 1999, 15(4): 288~291
    16.王岐东,张学义,康惠宝.复合相变储能材料的选择.北京轻工业学院学报, 1997, 15(1): 61~65
    17.林怡辉,张正国,王世平.一种新型相变蓄热材料的实验研究.江汉石油学院学报, 2001, 23(4): 81~83
    18.陈文振,陈尚模.矩形腔内相变材料接触熔化的分析.太阳能学报,1993, 14(3): 202~208
    19.陈文振,陈尚模,罗臻.水平椭圆管内相变材料接触熔化的分析.太阳能学报, 1995, 16(1): 68~71
    20.邢登清,迟广山.多元醇二元体系固-固相变贮热的研究.太阳能学报, 1995, 16(2): 133~137
    21. A.Sari, K.Kaygusuz. Some Fatty Acids Used for Latent Heat Storage: Thermal Stability and Corrosion of Metals with Respect to Thermal Cycling. Renewable Energy, 2003, 28: 939~948
    22. A.Sari, H.Sari, A.Onal. Thermal Properities and Thermal Reliability of Eutectic Mixtures of Some Fatty Acids as Latent Heat Storage Materials. Energy Conversion and management, 2004, 45: 365~376
    23. G.Baran, A.Sari. Phase Change and Heat Transfer Characteristics of a Eutectic Mixture of Palmitic and Stearic Acids as PCM in a Latent Heat Storage System. Energy Conversion and Management. 2003, (44): 3227~3246
    24. H.Inaba. New Challenge in Advanced Thermal Energy Transportation using functionally Thermal Fluids. Int.J.Therm.Sci. 2000, 39: 991~1003
    25.管建春,朱华.储冰球相变传热数值计算及分析.浙江大学学报, 1999, 33(1): 85~89
    26.贺友多.处理相变传热的一个数学模型.包头钢铁学院学报, 1999, 18(2): 94~97
    27.李海梅,顾元宪.平面相变传导问题等效热融法的有限元解.大连理工大学学报, 2000, 40(1): 45~49
    28. K.A.R.Ismail, C.L.F.Alves, M.S.Modesto. Numerical and Experimental Study on the Solidification of PCM around a Vertical axially Finned Isothermal Cylinder.Applied Thermal Engineering, 2001, (21): 53~77
    29. E.M.Sparrow, R.R.Schmidt, J.W.Ramsey. Experiments on the Role of Natural Convection in the Melting of Solids. Heat Transfer, 1978, (100): 11~16
    30. A.G.Bathelt, R.Viskanta, W.Leidenfrost. An Experimental Investigation of Natural Convection in the Melted Region around a Heated Horizontal Cylinder. J.Fluid Mech, 1979, ( 90): 227~239
    31.王志峰.二元固液相变过程的三维非稳态数值研究.太阳能学报, 2000,21(1): 7~14
    32.柯秀芳,张仁元.圆柱形金属储热体凝固过程的传热研究.新能源, 2000, 20(2): 5~8
    33. K.A.R.Ismail, M.M.Abugderah. Performance of a Thermal Storage System of the Vertical Tube type. Energy Conversion and Management, 2000, (41): 1165~1190
    34. M.Giangi. Phase Change Problems with Free Convection: Fixed Gird Numerical Simulation. Comput Visual Sci, 1999, (2): 123~130
    35.江邑,张寅平.平板式相变储换热器的储换热性能实验研究.太阳能学报, 2000, 21(4): 358~363
    36.余晚福,张正国,王世平.固-液相变储热强化传热的实验研究.新能源, 2000, 22(2): 34~45
    37. Y.W.Zhang, A.Faghri. Heat Transfer Enhancement in Latent Heat Thermal Energy Storage System by Using the Internally Finned Tube. Int. J. Heat Mass Transfer, 1996, 39(15): 3165~3173.
    38. L.C.Chow, J.K.Zhong, J.E.Beam. Thermal Conductivity Enhancement for Phase Change Storage Media. Int. Comm. Heat Mass Transfer, 1996, 23(1): 91~100
    39. I.M.Bugaje. Enhancing the Thermal Response of Latent Heat Storage Systems.Int. J. Enemy Research, 1997, 21: 759~766
    40. Z.X.Gong, S.Devahastin, A.S.Mujumdar. Enhanced Heat Transfer in Free Convection-Dominated Melting in a Rectangular Cavity with an Isothermal Vertical Wall. Applied Thermal Eng, 1999, 19: 1273~1251
    41. H.E.S.Fath. Thermal Performance of a Simple Design Solar Air Heater with Built-in Thermal Energy Storage System. Energy Convers Mgmi. 1995(36): 989~997
    42. J.Banaszek, R.D.ski, M.Rebow, et al. Experimental Study of Solid-Liquid Phase Change in a Spiral Thermal Energy Storage Unit Applied Thermal Engineering. 1999(19): 1253~1277
    43.邢玉明,崔海亭,袁秀干.高温融盐相变蓄热系统的数值模拟.航空动力学报, 2002, 28(3): 295~298
    44.邢玉明,袁修干.空间站高温固液相变蓄热容器的实验研究.航空动力学报, 2001, 16(1): 75~81
    45.陈颖,邓先和.圆柱形相变蓄热器放热性能的工业实验研究.广东工业大学学报, 2002, 19(2): 41~46
    46.侯欣宾,袁修干,崔海亭.太阳能热动力系统吸热/蓄热器能量分析.航空动力学报, 2002, 17(3): 331~335
    47. I.Dincer. On Thermal Energy Storage Systems and Applications in Buidings. Energy and Buidings. 2002, (4): 377~388
    48. M.A.Rosen. Second-law Analysis of Aquifer Thermal Energy Storage Systems.Energy. 1999, (2): 167~182
    49. B.Zalba, J.M.Marin et al. Review on Thermal Energy Storage Heat with Phase Change: Materials, HeatTransfer Analysis and Applications. Thermal Engineering. 2003, 23, 251~283
    50. A.Sharma, D.L.Won, D.Buddhi et al. Numerical Heat Transfer Studies of Fatty Acids for Different Heat Exchanger Materials on the Performance of a Latent Heat Storage System. Renewable Energy, 2005, 30: 2179~2187
    51. V.D.Baxter, J.C.Moyers. Field-measured Cycling, Frost and Defrosting Losses for a High Efficiency Air Source Heat Pump. ASHRAE Trans, 1985, 91(2B-2): 537~554.
    52. W.F.Stoecker, J.Lux, R.J.Kooy. Energy Considerations in Hot Gas Defrosting of Industrial Refrigeration Coils. ASHRAE Trans, 1983, 89(2A): 549~573
    53. D.H.Niderer. Frost and Defrosting Effects on Coil Heat Transfer. ASHRAE Trans. 1976, 82(1): 467~473
    54. H.G.Kerschbaumer. Analysis of the Influence of Frost Formation on Evaporators and of the Defrost Cycles on Performance and Power Consumption of Refrigeration Systems. InⅧinternational congress of refrigeration, WashtonD.C. 1971: 30~38
    55. R.A.Coley. The Cost of Frost. ASHRAE Journal, 1983, 4: 29~31
    56. R.A.Cole. Refrigeration Loads in a Freezer due to Hot Gas Defrost and their Associated Costs. ASHRAE Trans, 1989, 95(1): 1149~1154
    57. N.K.Al-Mutawa, S.A.Sherif. An Analytical Model for Hot Gas Defrosting of a Cylindrical Coil Cooler. ASHRAE Tras, 1998, 106(1): 1722~1737
    58.刘志强.空气源热泵机组动态特性及性能改进研究.西安交通大学博士学位论文, 2003: 43~44
    59. N.Shamsundar, E.M.Sparrow. Analysis of Multidimentional Condition Phase Change Via the Enthalpy Model.Journal of Heat Transfer. 1975, 333~340
    60.姚杨.空气源热泵冷热水机组冬季结霜工况的模拟与分析.哈尔滨工业大学博士学位论文, 2002: 33~34
    61.李俊梅,李炎锋,贾衡等.直接蒸发冰盘管蓄冷系统结冰过程的计算模拟及实验研究.制冷, 1999(4): 7~11
    62.陶文铨.计算传热学的近代进展.科学出版社, 2000: 238~240
    63.郭宽良.数值计算传热学.安徽科学技术出版社, 1987: 83~89

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700