CMnAl-TRIP钢组织性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
TRIP钢由于TRIP效应使钢板在获得高强度的同时又不损失塑性,这种强化机制使其具有优异的性能,在汽车业中应用可节能减重、降低成本而又不失安全性,应用前景广阔。传统CMnSi-TRIP钢用硅元素来稳定残余奥氏体,但硅含量高于1%时钢板表面易产生稳定的氧化物,使钢板涂镀能力变差。用铝替代硅可减少氧化物提高钢板涂镀能力和表面质量,易于实现热镀锌退火生产。CMnAl-TRIP钢作为新钢种,对其进行系统研究具有重要的理论意义和实用价值。
     本文设计了三种不同成分的CMnAl-TRIP钢,利用热膨胀模拟、X射线衍射、扫描电镜、透射电镜和光学电镜、拉伸试验等测试方法,较为系统的研究了试验钢的组织性能,发现了最佳的热处理参数,讨论了热处理工艺参数和化学成分等因素对组织性能影响的原因,研究了残余奥氏体的力学稳定性。实验结果表明,铝替代硅后使CMnAl-TRIP钢的Ac_1、Ac_3温度升高,0.05P钢Ac_1为750℃,0.1P和0.1PSi两种钢Ac_1都为757℃,三种试验钢加热至1100℃也未获得单一奥氏体区;在冷却至贝氏体区等温前会发生先共析铁素体的生成,使双相区奥氏体数量减少,剩余奥氏体的碳含量升高,并且高双相区退火温度更有利于先共析铁素体的形成。
     热模拟试验发现0.05P钢在770℃双相区退火时奥氏体及其碳含量分别为25%和0.54%,在820℃时分别为35%和0.40%,在870℃分别达到45%和0.31%。但双相区退火温度对残余奥氏体及其碳含量的影响并不呈单调变化趋势,在820℃双相区退火试样的残余奥氏体含量为14%,碳含量为1.36%,都为最高值;热模拟数据显示相变动力随贝氏体等温温度的升高而升高,但奥氏体向贝氏体转变的数量却呈下降趋势。0.05P钢420℃等温时和450℃等温时贝氏体相变动力学差异不大,500℃等温时在30s热膨胀曲线有一明显的下降过程,推断为奥氏体发生了渗碳体的分解;0.05P钢在680℃和720℃退火时的Avrami指数n分别为1.011和0.77,低于理想的Avrami指数(2~4)。
     通过不同双相区退火温度试验发现三种试验钢在不同退火温度下都含有大于10%的残余奥氏体,残余奥氏体含量在800℃至890℃呈上升趋势;铁素体含量随双相区退火温度的升高而降低,贝氏体含量则随双相区退火温度的升高而升高;抗拉强度随双相区退火温度的变化同残余奥氏体的变化相似,屈服强度随双相区退火温度的升高而升高;延伸率则相反;研究发现选择双相区退火温度使铁素体和奥氏体比为65%∶35%时可获得最佳的力学性能,0.05P钢在820℃有最高值39.3%,0.1 P钢和0.1 PSi钢分别在820℃和770℃有最高值36.1%和36.6%,强塑积都高于22000 MPa%,颈缩时的刀值都大于0.2。
     通过贝氏体等温试验发现在贝氏体较少时间保温组织中会形成马氏体,残余奥氏体含量较少;随贝氏体保温时间的延长,贝氏体转变充分,马氏体含量减少而残余奥氏体及其碳含量增加;450℃等温300s时发现渗碳体的析出,而在高温500℃时30s就已发生奥氏体的分解,造成残余奥氏体及其碳含量的降低;试样抗拉强度随贝氏体保温时间的延长而下降,延伸率和屈服强度则随保温时间的延长而升高;450℃等温时试样力学性能优于其它温度,强塑积最高,0.05P钢在450℃保温60s时抗拉强度为646.5MPa,延伸率达到39.3%,强塑积为25400MPa%,和传统CMnSi-TRIP钢相当,能满足使用要求。实际生产中可围绕820℃等温2min和450℃保温60s来设计热镀锌退火生产线的热处理工艺参数和板速等其它相关参数。
     对比合金成分对组织性能的影响发现磷、硅、铜的添加使0.1P钢和0.1PSi钢具有高的抗拉强度、屈服强度和低的延伸率,抗拉强度的提高是磷固溶强化和TRIP效应综合作用的结果;磷的添加提高了奥氏体的淬透性,在冷却至贝氏体等温时减少了先共析铁素体的生成,使残余奥氏体含量升高,残余奥氏体碳含量降低,降低了残余奥氏体的力学稳定性,使应变后期瞬时n值降低,导致延伸率的降低;由于钢中铝含量较高,试验中磷、硅含量对贝氏体转变的影响很小。铜元素提高了残余奥氏体含量,但使其碳含量降低。含铜钢抗拉强度的提高是由于TRIP效应、铜的固溶强化作用以及更多的贝氏体组织共同作用的结果。
     分析瞬时n值和残余奥氏体的稳定性发现瞬时n值特征与TRIP效应有关,不同化学成分、热处理工艺参数下试样的瞬时n值特征都取决于残余奥氏体的力学稳定性;残余奥氏体的力学稳定性低时,应变初期发生较快的马氏体相变,对应较强的TRIP效应和高的瞬时n值;应变后期由于较少的马氏体相变,TRIP效应弱,瞬时n值低,导致均匀延伸率和延伸率的降低;而残余奥氏体力学稳定性高时在整个应变阶段都可持续地发生马氏体相变,特别是在应变后期能够保证TRIP效应,维持较高的瞬时n值,使试样具有高的延伸率;研究TRIP钢性能特点时,不仅要考虑残余奥氏体的含量,更为重要的是要考虑残余奥氏体的稳定性。
     分析不同热处理工艺参数和化学成分对残余奥氏体力学稳定性的影响,发现残余奥氏体碳含量是决定其力学稳定性的主要因素,不同贝氏体等温温度和保温时间下贝氏体转变程度不同,造成残余奥氏体中碳含量的差异而影响其稳定性;同时残余奥氏体的晶粒细化作用也能提高其力学稳定性;在应力作用下残余奥氏体向马氏体的相变受材料层错能的影响,铝元素能提高材料的层错能,减少马氏体形核率,使残余奥氏体力学稳定性提高。结合试验数据,给出了CMnAl-TRIP钢残余奥氏体碳含量和马氏体形核率α之间的估算公式。
In order to meet the automobile industry's need for weight reduction and safety improvement, the application of advanced high strength steel sheets such as TRIP steel have been examined for suspension and structural part. TRIP steel is the most beneficial steel for increasing the strength of steel without deteriorating the strength and elongation balance. Generally, TRIP steel can reduce the weight and save the fuel without losing the safety. However, the steel containing high silicon elements can not be applied automotive parts due to low surface condition. In this study, aims to promote the surface quality substitute silicon by aluminum base on 0.15C-1.5 Mn-1.5Al-TRIP steel, the effects of alloying elements, heat treatment condition, such as intercritical annealing(IA)and isothermal bainitic transformation(IBT) parameters on microstructure and mechanical properties were investigated, by means of X-ray diffraction(XRD), dilatometric simulation, scanning electron microcopy (SEM), transmission electron microcopy (TEM), optical microstructure (OM) and tensile testing.
     The experimental results show that the three steels have higher Ac_1 Ac_3 temperature than conventional TRIP steels, with 750℃of Ac_1 for 0.05P steel and 757℃for the others. The Ac_3 is not found for the steels until heating up to 1100℃. Before cooling to the IBT zone, the pro-eutectoid ferrite is found and it affects the volume fraction and carbon content of the austenite which formed in the intercritical zone, the higher IA temperature is favor the formation of pro-eutectoid ferrite.
     Through dilatometric simulation, we find that 0.05P steel has volume fraction and carbon content of the retained austenite of 25% and 0.54% at 770℃, 35% and 0.40% at 820℃, 45% and 0.31% at 870℃, respectively. But the tendency is not monotony with the IA temperature, the volume fraction and carbon content of the retained austenite arrives the highest at 820℃, with the number of 14% and 1.36%, respectively. The bainite transformation kinetics is increase with the increase of IBT temperature, which the cementite is found at 500℃holding for 30s. The 0.05P steel had the Avrami content of 1.011 at 680℃and 0.77 at 720℃, which are lower than the ideal Avrami content around 2-4.
     The three steels have more than 10% volume fraction of retained austenite, with the lowest amount at 800℃and the highest at 770℃, showing the increase tendency during 800℃to 890℃. The volume fraction of ferrite decreases with the increase of IA temperature, while the bainite shows the reverse tendency. The tensile strength is similar to the tendency of retained austenite; yield strength is increase and elongation were decrease with the increase of IA temperature. The IA temperature gives ferrite and austenite fraction of 65%:35% is the best selection, in which the 0.05P and 0.1P steel have the elongation of 39.3% and 36.1% at 820℃. The product of tensile strength and elongation were greater than 22000 MPa%, with the n value greater than 0.2 at necking.
     The martensite is founded at shorter IBT holding time, at the same time, the volume fraction of retained austenite was little. During the IBT holding, the retained austenite is carbon enriched through the bainitic transformation and can resist the following cooling, then the martensite is diminished and retained austenite is increased. The cementite is founded at 450℃for 300s, while it appears at 30s for 500℃.The cementite appears reduced the volume fraction of retained austenite and its carbon content, which would harm the mechanical properties. All the samples show the highest of the product of tensile strength and elongation at 450℃, and 0.05P steel with the tensile strength of 646.5MPa, elongation of 39.3% and product of tensile strength and elongation of 25400 MPa % at 450℃for 60s, respectively. In industrial manufacture, the IBT parameters of 450℃for 60s can be selected for the continual galvannealing lines and the galvanizing rigs.
     P and Cu can increase the volume fraction of retained austenite but low its carbon content. The retained austenite fraction is increased by the increment of P content from 0.05wt% to 0.1 wt%. The volume fraction of retained austenite fraction reaches 13% for 0.05P steel and 15% for 0.1P steel after isothermal holding for 60 seconds at IBT temperature. The increase of tensile strength by the increment of P content is ascribed to the higher fraction of strain-induced transformed martensite as well as the solid-solution hardening effect of P. Despite of the increase of retained austenite fraction, the elongation of TRIP-aided steel is deteriorated by the increment of P content. It originates from the lower mechanical stability of retained austenite in 0.1P steel, which brings about rapid strain-induced martensite transformation and thus inhibits persistent work hardening during deformation.
     Compared with the instantaneous n value and the mechanical stability of retained austenite, there are all affected by the TRIP effect. If the mechanical stability of retained austenite is low, most transforms to martensite at early stage of deform and shows the stronger TRIP effect and higher instantaneous n value; the TRIP effect is weak at the late stage of deform and shows lower instantaneous n value, together with low uniform and total elongation. When the mechanical stability of retained austenite is high, it can continually transform to martensite with high instantaneous n value during whole deform. Not only the volume fraction of retained austenite, but also the mechanical stability is considered for TRIP steel.
     The carbon content of retained austenite is the mainly factor influence its mechanical stability, the heat treatment parameters and the alloying affect the mechanical stability through the carbon content of the retained austenite, the refined retained austenite grain size also increases the stability. The instinct stacking-fault energy affects the nucleation of martesite as well as the retained austenite transforms during deform, aluminum increases the instinct stacking-fault energy and promotes the stability of retained austenite.
引文
[1] Zackay V. F., Parker E. R., Dfahr D., et al. The enhancement of ductility on high strength steels[J]. Trans of ASM, 1967, 60(2): 252-259.
    [2] De Cooman B. C.. Structure-properties relationship in TRIP steels containing carbidefree bainite[J]. Current Opinion in Solid State and Materials Science, 2004, 8(3-4): 285-303.
    [3] Matsumura O., Sakuma Y., Takechi H.. Retained austenite in 0.4C-Si-1.3Mn steel sheet intercritically heated and austempered[J]. ISIJ Int., 1987, 27(9): 570-579.
    [4] Matsumura O., Sakuma Y., Takechi H.. TRIP and its kinetics aspects in austempered 0.4C-1.5Si-0.8Mn steel[J]. Scripta Metallurgica, 1987, 21(10): 1301-1306.
    [5] Matsumura O., Sakuma Y., Takechi H.. Enhancement of elongation by retained austenite in intercritically annealed 0.4C-1.5Si-0.8Mn steel[J].Trans. ISIJ,1992, 32(9):1014-1020.
    [6] Jacques P. J..Transformation-induced plasticity for high strength formable steels[J]. Current Opinion in Solid State and Materials Science, 2004, 8(3-4): 259-265.
    [7] Bleck W.. Using the TRIP effect-the dawn of a promising group of cold formable steels [A]. De Cooman B. C.. Int. Conf. on TRIP-Aided High Strength Ferrous Alloys[C]. Aachen, Germany: WMG, 2002: 13-23.
    [8] Li Y. X., Lin Z. Q., Jiang A. Q., et al. Use of high strength steel sheet for lightweight and crashworthy car body[J]. Materials and Design, 2003, 24(3): 177-182.
    [9] 张议中,邱伍华.汽车零部件用高强度钢材的进展[J].上海金属,2000,22(4):8-15.
    [10] Mehrkens M., Frber J..Modern multi-phase steels in the BIW of the Porsche Cayenne [J]. Steel Grips, 2003, 1(4):249-251.
    [11] Kim S. J., Lee C.G., Choi I., Lee S.. Effects of heat treatment and alloying elements on the microstructure and mechanical properties of 0.15 wt pct C transformation-induced plasticity-aided coldrolled steel sheet[J]. Metallurgical and Materials Transactions A, 2001, 32A: 505-514.
    [12] Kim S. J., Lee C. G., Jeong W. C., et al. Effects of copper addition on mechanical properties of 0.15C-1.5Mn-1.5Si TRIP-aided multiphase cold-rolled steel sheets[J]. ISIJ Int., 2002, 42(12): 1452-1456.
    
    [13] Hashimoto S., Ikeda S., Sugimoto K., et al. Effects of Nb and Mo addition to 0.2%C- 1.5%Si-1.5%Mn steel on mechanical properties of hot rolled TRIP-aided steel sheets[J]. ISIJ Int., 2004, 44(9): 1590-1598.
    
    [14] Kim S. J., Lee C. G, Jeong W. C, et al. Microstructures and mechanical properties of the 0.15 % C TRIP-aided cold-rolled steels containing Cu, Ni and Cr[A]. De Cooman B C. Int. Conf. on TRIP-Aided High Strength Ferrous Alloys[C]. Aachen, Germany: WMG 2002:165-169.
    
    [15] Lee C. G, Kim S. J., Oh C. S., et al. Effects of heat treatment and Si addition on the mechanical properties of 0.1 wt% C TRIP-aided cold-rolled steels[J]. ISIJ Int., 2002, 42(10):1162-1168.
    
    [16] Jacques P. J., Girault E., Harlet P., et al. The development of cold rolled TRIP-assisted multiphase steels. Low silicon TRIPassisted multi-phase steels[J]. ISIJ Int., 2001, 41 (9):1061-1067.
    
    [17] Jacques P. J., Girault E., Mertens A., et al. The development of cold rolled TRIP- assisted multiphase steels Al-alloyed TRIP-assisted multi-phase steels[J].ISIJ Int., 2001, 41 (9): 1068-1074.
    
    [18] Girault E., Mertens A., Jacques P.,et al. Comparison of the effects of silicon and aluminium on the tensile behaviour of multiphase TRIP-assisted steels[J]. Scripta Materialia, 2001, 44(6):885-892.
    
    [19] Jacques P., Girault E., Catlin T., et al. Bainite transformation of low carbon Mn-Si TPIP-assisted multiphase steels: influence of silicon content on cementite precipitation and austenite retention[J]. Materials Science and Engineering A, 1999, A273 -275:475- 479.
    
    [20] Choi I. D., Bruse D. M., Kim S. J., et al. Deformation behavior of low carbon TRIP sheet steels at high strain rates[J]. ISIJ Int., 2002, 42(12): 1483-1489.
    [21] Sugimoto K., Kanda A., Kikuchi R., et al.Ductility and formability of newly developed high strength low alloy TRIP-aided sheet steels with annealed martensite matrix [J]. ISIJ Int., 2002, 42(8):910-915.
    [22] Sugimoto K., Usai N., Kobayashi M., et al. Effects of volume fraction and stability of retained austenite on ductility of TRIP-aided dual-phase steels[J]. ISIJ Int., 1992, 32 (12):1311-1318.
    [23] Zarei H. A., Hodgson P. D., Yue S.. Hot deformation characteristics of Si-Mn TRIP steels with and without Nb microalloy additions[J]. ISIJ Int., 1995, 35 (3):324-331.
    [24] Sakuma Y., Matsumara O., Akisue O.. Influence of C content and annealing temperature on microstructure and mechanical properties of 400°C transformed steel containing retained austenite[J]. ISIJ Int., 1991, 31 (11):1348-1353.
    [25] Deardo A. J.. Multi-phase microstructures and their properties in high strength low carbon steels[J]. ISIJ Int., 1995, 35 (8):946-954.
    [26] De Meyer M., Vanderschueren D., De Cooman B. C. The influence of the substitution of Si by Al on the properties of cold rolled C-Mn-Si TRIP steels[J]. ISIJ Int., 1999, 39 (8):813-822.
    [27] Kim S. J., Lee C. G., Lee T. H., et al.Effect of Cu, Cr and Ni on mechanical properties of 0.15 wt.% C TRIP-aided cold rolled steels[J]. Scripta Materialia, 2003, 48(5): 539 - 544.
    [28] Bae J. H., Park S. J., Oh K. H., et al. Prediction of mechanical properties of TRIP steels by FEM and micromechanics[J]. Key Engineering Materials, 2000, 177-180(2): 449-454.
    [29]Wei X.C., Li L., Fu R.Y., et al. On the tensile mechanical property of Si-Mn TRIP steels at high strain rate[J]. Acta Metallurgica Sinica (English Letters), 2002, 15(3):285-294.
    [30] De Cooman B.C., Barbe L., Mahieu J., et al. Mechanical properties of low alloy intercritically annealed cold rolled trip sheet steel containing retained austenite [J]. Canadian Metallurgical Quarterly, 2004, 43(1):13-24.
    [31] Bleck, W.,Ohlert, J., Papamantellos, K.. Sheet metal forming behaviour and mechanical properties of TRIP steels[J]. Steel Research, 1999, 7(11):472-497.
    [32] Srivastava A., Jha G.,Gope N.,et al. Effect of heat treatment on microstructure and mechanical properties of cold rolled C-Mn-Si TRIP-aided steel[J]. Materials Characterization, 2006, 57(2):127-135.
    [33] Iung T., Azuma M., Bouaziz O., et al. A model for the prediction of microstructure and mechanical properties in cold rolled and annealed TRIP steels[J]. Materials Science Forum, 2003, 426-432(5):3849-3854.
    [34] Kruijver S.O., Zhao, L., Sietsma J., et al. In situ observations on the mechanical stability of austenite in TRIP-steel[J]. Journal De Physique, 2003,104(4):499- 502.
    [35] Vasilakos A. N., Ohlert J., Giasla, K., et al. Low-alloy TRIP steels: A correlation between mechanical properties and the retained austenite stability[J].Steel Research, 2002, 73(6-7):249-252.
    [36] Iung T., Driller, J., Couturier A., et al. Detailed study of the transformation mechanisms in ferrous TRIP aided steels[J]. Steel Research, 2002, 73(6-7):218-224.
    [37] Van der Zwaag, S., Wang J.. A discussion on the atomic mechanism of the bainitic reaction in TRIP steels[J]. Scripta Materialia, 2002, 47(3): 169-173.
    [38] Petrov R., Restens L., Houbaert Y.. Recrystallization of a cold rolled trip-assisted steel during reheating for intercritical annealling[J]. ISIJ Int., 2001, 41 (8):883-890.
    [39] Zarei H. A., Yue S.. Ferrite formation characteristics in Si-Mn TRIP steels ISIJ Int., 1997, 37(6): 583-589.
    [40] Kim S. J., Lee C. G., Lee T. H., et al. Effects of coiling temperature on microstructure and mechanical properties of high-strength hot-rolled steel plates containing Cu, Cr and Ni[J]. ISIJ Int., 2000, 40(7): 692-698.
    [41] Luo H. W.,Zhao L., Kruijver S.O., et al. Effect of intercritical deformation on bainite formation in Al-containing TRIP Steel[J]. ISIJ Int., 2003, 43(8): 1219-1227.
    [42] Tsuchida N, Tomota Y. A micromechanic modeling for transformation induced plasticity in steels[J]. Materials Science and Engineering A, 2000, A285(1-2): 345-352.
    [43] Minote T., Torizuka S., Ogawa A., et al.Modeling of transformation behavior and compositional partitioning in TRIP steel[J]. ISIJ Int., 1996, 36(2): 201-207.
    [44] 王四根,花礼先,王绪,等.低碳硅锰系冷轧相变诱发塑性钢研究[J].钢铁,1995,30(6):48-51.
    [45] 王四根,花礼先,王绪.硅、锰系TRIP钢成分及热处理工艺的优化[J].北京科技大学学报,1994,16(4):325-329.
    [46] 康永林,王波.TRIP钢板的组织、性能与工艺控制[J].钢铁研究学报,1999,11(03): 62-66.
    [47] 韦习成,李麟,符仁钰.TRIP钢显微组织与性能关系的评述[J].钢铁研究学报,2001,13(5):71-76.
    [48] 李麟,符仁钰,张梅,等。相变诱发塑性钢的研究进展[J].上海金属,2000,22(2):3-8.
    [49] 关小军,周家娟,王作成.一种新型汽车用钢-相变诱发塑性钢[J].特殊钢,2000,21(2):27-30.
    [50] 景财年,王作成.TRIP-相变诱发塑性钢的研究进展[J].特殊钢,2004,25(4):1-5.
    [51] 赵金福,明旭光,欧立晋.残留奥氏体的相变诱导塑性研究[J].机械工程材料,1993,17(2):14-17.
    [52] 邹宏辉,符仁钰,李麟.Si-Mn系TRIP钢显微组织研究[J].机械工程材料,2002,26(3):12-15.
    [53] 李壮,吴迪.热处理工艺对低碳硅锰TRIP钢力学性能的影响[J].材料热处理学报,2004,25(4):23-27.
    [54] 余海燕,陈关龙,林忠钦,等.TRIP高强度钢板组织与成形性能的实验研究[J].塑性工程学报,2005,12(1):10-14.
    [55] 张迎晖,康永林,于浩,等.C-Si-Mn系TRIP钢连续冷却过程相变研究[J].机械工程材料,2005,29(12):4-6.
    [56] 王作成,景财年,肖宁宁,等.添加0.5%铜及贝氏体化对0.2C-1.5Mn-1.5si形变诱发塑性(TRIP)钢板组织和力学性能的影响[J].金属热处理,2006,31(11):38-41.
    [57] Fischer ED., Reisner G., Werner E., et al. A new view on transformation induced plasticity (TRIP)[J]. International Journal of Plasticity, 2000, 16(7-8):723-748.
    [58] Cherkaoui M., Berveiller M., Lemoine X..Couplings between plasticity and martensitic phase transformation: overall behavior of polycrystalline TRIP steels[J]. International Journal of Plasticity, 2000, 16(10-11): 1215-1241.
    [59] Godet S., Harlet P., Delannay F., et al. Effect of hot-rolling conditions on the tensile properties of multiphase steels exhibiting a TRIP effect[A]. De Cooman B. C.. Int. Conf. on TRIP-Aided High Strength Ferrous Alloys[C]. Aachen, Germany: WMG,, 2002:135-140.
    [60] Li Z., Wu D., Hu R.. Austempering of Hot Rolled Si-Mn TRIP Steels[J]. Journal of Iron and Steel Research, International, 2006, 13(5): 41-46.
    [61] 张迎晖,康永林,于浩,等.薄板坯连铸连轧工艺制备TRIP钢的力学性能与组织[J].北京科技大学学报,2005,27(06):688-691.
    [62] Pereloma E. V., Timokhina I. B., Hodgson P. D.. Transformation behaviour in thermomechanically processed C-Mn-Si TRIP steels with and without Nb[J]. Materials Science and Engineering A. 1999, A273-275: 448-452.
    [63] Mahieu J., Claessens S., De Cooman B. C.. Galvanizability of highstrength steels for automotive applications[J]. Metallurgical and Materials Transactions A 2001, 32A: 2905-2907.
    [64] Covarrubias O., Guerrero M. P., Colas R., et al. Transformation behaviour of Si and Mn bearing low carbon steels [A]. De Cooman B C. Int. Conf. on TRIP-Aided High Strength Ferrous Alloys[C]. Aachen, Germany: WMG, 2002: 227-230.
    [65] Sugimoto K., Nagasaka A., Kobayashi M., et al. Effects of retained austenite parameters on warm stretch-flange-ability in TRIP-aided dual phase sheet steels[J]. ISIJ Int., 1999, 39(1): 56-63.
    [66] Sakuma Y., Matsumura O., Takechi, H.. Mechanical properties and retained austenite in intercritically heat-treated bainitetransformed steel and their variation with Si and Mn additions[J]. Metallurgical Transactions A, 1991, 22A(2):489-498.
    [67] Mintz B.. The influence of aluminum on the strength and impact properties of steel[A]. De Cooman B C Int. Conf. on TRIP-Aided High Strength Ferrous Alloys [C]. Aachen, Germany: WMG, 2002: 379-382.
    [68] Ilana B., Timokhina, Peter D., et al. Effect of alloying elements on the microstructureproperty relationship in thermomechanically processed C-Mn-Si TRIP steels[A]. De Cooman B C.Int. Conf. on TRIP-Aided High Strength Ferrous Alloys [C]. Aachen, Germany: WMG, 2002: 153-157.
    [69] Mahieu J., Dooren D. V., Barbe L., et al. Influence of Al, Si and P on the kinetics of intercritical annealing of TRIP-aided steels: thermodynamical prediction and experimental verification[A]. De Cooman B C. Int. Conf. on TRIP-Aided High Strength Ferrous Alloys[C]. Aachen, Germany: WMG, 2002: 159-164.
    [70] Barbe L., Verbeken K., Wettinck E.. Effect of the addition of P on the mechanical properties of low alloyed TRIP steels[J].ISIJ Int., 2006, 46(8): 1251-1257.
    [71] Krizan D., BarbeL., De Cooman B. C.The influence of micro-alloying elements on the of cold rolled C-Mn-Al-Si-P TRIP steels[A]. Militzer M., Poole W. J., Essadiqi E.. International Symposium on Transformation and Deformation Mechanisms in Advanced High-strength Steels[C]. Vancouver, BC, Canada: 2003, CIM:395-409.
    [72] Lucas A., Herman J. C, Schmitz A.. Cu-containing TRIP steels[A]. De Cooman B. C. Int. Conf. on TRIP-Aided High Strength Ferrous Alloys[C].Aachen, Germany: WMG, 2002:231-236.
    [73] Nagayama K., Terasaki T., Tanaka K.,et al. Mechanical properties of a Cr-Ni-Mo-Al-Ti maraging steel in the process of martensitic transformation[J].Materials Science and Engineering A. 2001, 308: 25-37.
    [74] Baik S. C, Park S. U., Kwon O., et al. Effects of nitrogen on the mechanical properties of cold rolled TRIP steel sheets[A]. De Cooman BC.. Int. Conf. on TRIP-Aided High Strength Ferrous Alloys [C]. Aachen, Germany: WMG, 2002:303-309.
    [75] ULSAB Advance Vehicle Concepts, Technical Transfer Dispatch #6[M]. ISIJ, Brussels, 2001:16.
    [76] Sugimoto K., Kikuchi R.,Hashimoto S. I.. Development of high strength low alloy TRIP-aided steels with annealed martensite matrix[A]. De Cooman B. C. Int. Conf. on TRIP-Aided High Streng-th Ferrous Alloys[C]. Aachen, Germany: WMG, 2002:46-50.
    [77] Sugimoto K., Sakaguchi J., Iida T., et al. Stretch-flangeability of a high-strength TRIP type bainitic sheet steel[J]. ISIJ Int., 2000, 40(9):920-926.
    [78] Sugimoto K., Nagasaka A., Kobayashi M., et al. Warm stretch-formability of TRIP-aided dual-phase sheet steels[J]. ISIJ Int., 1995, 35(11):1407-1414.
    [79] Girault E., Jacques P., Harlet P., et al. Metallographic methods for revealing the multiphase microstructure of TRIP-assisted steels[J]. Materials Characterization, 1998, 40(2): 111 -118.
    [80] Ray A., Dhua S. K. Microstructural manifestations in color: some applications for steels[J]. Materials Characterization, 1996, 37(1):1-8.
    [81] Jeong W. C, Matlock D. K.., Krauss G.. Observation of deformation and transformation behavior of retained austenite in a 0.14C-1.2Si-1.5Mn steel with ferrite-bainite-austenite structure[J]. Materials Science and Engineering A, 1993, 165(1):1-8.
    [82] Jeong W. C, Matlock D. K.., Krauss C..Effects of tensile-testing temperature on deformation and transformation behavior of retained austenite in a 0.14C-1.2Si-1.5Mn steel with ferrite-bainite-austenite structure [J]. Materials Science and Engineering A, 1993, 165(1):9-18.
    [83] Basuki A., Aernoudt E.. Effect of deformation in the intercritical area on the grain refinement of retained austenite of 0.4C trip steel[J]. Scripta Materialia, 1999, 40(9): 1003-1008.
    [84] Jacques P., Cornet X., Harlet P., et al. Enhancement of the mechanical properties of a low-carbon, low-silicon steel by formation of a multiphased microstructure containing retained austenite[J]. Metallurgical and Materials Transactions A, 1998, 29A(9):2383- 2393.
    [85] Bleck W., Hulka K., Papamentellos K.. Effect of niobium on the mechanical properties of TRIP steels[J]. Materials Science Forum, 1998, 284-286:327-334.
    [86] Zhao 1., Dijk N. H. V., Bruck E., et al. Magnetic and X-ray diffraction measurements for the determination of retained austenite in TRIP steels[J]. Materials Science and Engineering A, 2001, 313(1-2):145-152.
    [87] Wirthl E., Pichler A., Angerer R., et al. Determination of the volume fraction of retained austenite and ferrite in small specimen by magnetic measurements[A]. De Cooman B. C. Int. Conf. on TRIP-Aided High Streng-th Ferrous Alloys[C]. Aachen, Germany: WMG, 2002:61-64.
    [88] Zrnik J., Muransky O., Lukas P., et al. Retained austenite stability investigation in TRIP steel using neutron diffraction[J]. Materials Science and Engineering A, 2006,437(1):114-119.
    
    [89] Tomota Y., Tokuda H., Adachi Y., et al.Tensile behavior of TRIP-aided multi-phase steels studied by in situ neutron diffraction[J]. Acta Materialia, 2004, 52(20): 5737- 5745.
    [90] Van Dijk N. H., Zhao L., Rekveldt M. Th., et al. Neutron depolarisation study of the austenite grain size in TRIP steels[J]. Physica B: Condensed Matter, 2004, 350 (1-3), Supplement 1: E463-E466.
    [91] Seong B. S., Shin E. J., Han Y. S., et al. Effect of retained austenite and solute carbon on the mechanical properties in TRIP steels[J]. Physica B: Condensed Matter, 2004, 350(1-3), Supplement 1:E467-E469.
    [92] Ladriere J. H., He X. J.. Mossbauer study on retained austenite in an Fe-Mn-C dual-phase steel[J]. Materials Science and Engineering, 1986, 77:133-138.
    [93] Chen S.C., Tomota Y., Shiota Y., et al. Measurements of volume fraction and carbon concentration of the retained austenite by neutron diffraction[J].Tetsu-To-Hagane, 2006, 92(9):557-561.
    [94] Streicher A. M., Speer J. G., Matlock D. K.. Forming response of retained austenite in a C-Si-Mn high strength TRIP sheet steel[A]. De Cooman B. C. Int. Conf. on TRIP- Aided High Streng-th Ferrous Alloys[C]. Aachen, Germany: WMG, 2002: 359-365.
    [95] Zaefferer S., Ohlert J., Bleck W.. A study of microstructure, transformation mechanisms and correlation between microstructure and mechanical properties of a low alloyed TRIP steel[J]. Acta Materialia, 2004, 52(9):2765-2778.
    [96] R Berrahmoune M., Berveiller S., Inal K., et al. Analysis of the martensitic transformation at various scales in TRIP steel[J]. Materials Science and Engineering A, 2004, 378(1-2):304-307.
    [97] Lee C. G, Kim S. J., Lee T. H., et al.Effects of volume fraction and stability of retained austenite on formability in a 0.1C-1.5Si-1.5Mn-0.5Cu TRIP-aided cold-rolled steel sheet[J]. Materials Science and Engineering A, 2004, 371(1-2):16-23.
    [98] Sugimoto K., Muramatsu T., Hashimoto S., et al. Formability of Nb bearing ultra high- strength TRIP-aided sheet steels[J]. Journal of Materials Processing Technology, 2006, 177(1-3):390-395.
    [99] Srivastava A. K., Jha G, Gope N. et al. Effect of heat treatment on microstructure and mechanical properties of cold rolled C-Mn-Si TRIP-aided steel[J]. Materials Characterization, 2006, 57(2):127-135.
    [100] Dyson D. J., Holmes B.. Effect of alloying additions on the lattice parameter of austenite[J]. Journal of Iron Steel Institute, 1970, 208(5):469-474.
    [101] Cullity B.D.. Elements of X-Ray Diffraction[M]. 2nd Ed., Boston, Addison-Wesley, 1978:508.
    [102] Nishiyama Z.. Martensite Transformation[M]. Tokyo, Maruzen , 1979:13.
    [103] Onink M., Brakman C. M., Tichelaar F. D., et al.The lattice parameters of austenite and ferrite in Fe-C alloys as functions of carbon concentration and temperature[J]. Scripta Metallurgica et Materialia, 1993, 29(8) :1011-1016.
    [104] Scott C, Drillet J.. Quantitative analysis of local carbon concentrations in TRIP steels[A]. De Cooman B. C. Int. Conf. on TRIP-Aided High Strength Ferrous Alloys[C]. Aachen, Germany: WMG, 2002:97-102.
    [105] Scott C.P., Drillet J..A study of the carbon distribution in retained austenite[J]. Scripta Materialia, 2007, 56(6):489-492.
    
    [106] Wang J., Van der Zwaag S..Stabilization mechanisms of retained austenite in transformation-induced plasticity steel[J]. Metallurgical and Materials Transactions A, 2001, 32(6):1527-1539.
    [107] Sugimoto k I, Iida T, Sakaguchi J, et al. Retained austenite characteristics and tensile properties in a TRIP type bainitic sheet steel[J]. ISIJ Int., 2000, 40(9): 902-908.
    [108] Thierry I., Josee D., Audrey C, et al. Detailed study of the transformation mechanisms in ferrous TRIP aided steels[A]. De Cooman B. C. Int. Conf. on TRIP- Aided High Strength Ferrous Alloys[C]. Aachen, Germany: WMG, 2002:31-38.
    [109] Ilana B, Timokhina, Peter D, et al. Effect of strain and morphology of the bainitic microstructure on the retained austenite stability and mechanical properties of thermomechanically processed C-Mn-Si(-Nb) TRIP steels[A]. De Cooman B.C.. Int. Conf. on TRIP- Aided High Strength Ferrous Alloys[C]. Aachen, Germany: WMG, 2002:181- 185.
    [110] Kruijver S., Zhao, L., SietsmaJ., et al. In situ observations on the austenite stability in TRIP-steel during tensile testing[J]. Steel Research, 2002, 73(6-7):236-24.
    [111] Igor Y., Pychmintsev R. A., Savrai B., et al. High strain rate behaviour of TRIP-aided automotive steels[A]. De Cooman B. C. Int. Conf. on TRIP- Aided High Strength Ferrous Alloys[C]. Aachen, Germany: WMG, 2002:299-302.
    
    [112] Sugimoto K., Nakano K., Song S. M., et al. Retained austenite characteristics and stretch-flangeability of high strength low alloy TRIP type bainitic sheet steel[J]. ISIJ Int., 2002, 42(4): 450-456.
    [113] Sakuma Y, Matlock D K, Krauss G Intercritically annealed and isothermally transformed 0.15Pct C steel containing 1.2Pct Si-1.5Pct Mn and 4Pct Ni: Part II. Effect of testing temperature on stress-strain behavior and deformation-induced austenite transformation[J]. Metallurgical transactions, 1992, (42):1233-1241.
    [114] Van Dijk N. H., Butt A. M., Zhao L., et al.Thermal stability of retained austenite in TRIP steels studied by synchrotron X-ray diffraction during cooling[J]. Acta Materialia, 2005, 53(20):5439-5447.
    [115] Zhao L, Moreno J, Kruijver S, et al. Influence of intercritical annealing temperature on phase transformations in a high aluminium TRIP steel[A]. De Cooman B. C. Int. Conf. on TRIP- Aided High Strength Ferrous Alloys[C]. Aachen, Germany: WMG, 2002:141-145.
    [116] Hanzaki A. Zarei., Hodgson P. D., Yue S.. Retained austenite characteristics in thermomechanically processed Si-Mn transformation-induced plasticity steels[J]. Metallurgical and Materials Transactions A, 1997, 28A(11):2405-2414.
    [117] Olson G. B., Cohen M.. Kinetics of strain-induced martensitic nucleation[J]. Metallurgical Transactions A, 1975, 6A(4):791-795.
    [118] Park K. K., Oh S. T., Baeck S. M., et al. In situ deformation behavior of retained austenite in TRIP steel[J]. Materials Science Forum, 2002, 408-412(1):571-576.
    [119] Shin H. C, HaT. K., Chang Y. W..Kinetics of deformation induced martensitic transformation in a 304 stainless steel[J]. Scripta Materialia, 2001, 45(7):823-829.
    [120] Jacques P. J., Ladriere J., Delannay F..On the influence of interactions between phases on the mechanical stability of retained austenite in transformation-induced plasticity multiphase steels[J]. Metallurgical and Materials Transactions A, 2001, 32(11):2759-2768.
    [121]Guimaraes J. R. C. The deformation-induced martensitic reaction in polycrystalline Fe-30.7Ni-0.06C[J]. Scripta Metallurgica, 1972, 6(9):795-798.
    [122] Sugimoto K., Kobayashi M., Hashimoto S. I.. Ductility and strain-induced transformation in a high-strength transformation-induced plasticity-aided dual-phase steel[J]. Metallurgical Transactions A, 1992, 23A(ll):3085-3091.
    
    [123] Pychmintsev I.Y., Savrai R.A., De Cooman B. C, et al.High strain rate behaviour of TRIP-aided automotive steels[A]. De Cooman B. C. Int. Conf. on TRIP- Aided High Strength Ferrous Alloys[C]. Aachen, Germany: WMG, 2002:299-302.
    [124] Matsumura O., Sakuma Y., Takechi H..Trip and its kinetic aspects in austempered 0.4C-1.5Si-0.8Mn steel[J]. Scripta Metallurgica, 1987, 21(10):1301-1306.
    [125]Ludwigson D.C., Berger J.A.. Plastic behavior of metastable austenitic stainless steels[J]. Journal of the iron and steel institute, 1969, 207: 63-69.
    [126] Bode R., Meurer M., Schaumann T. W., et al. Selection and use of coated advanced high strength steels for automotive applications [A]. Baker M A.. 6th International Conference on Zinc and Zinc Alloy Coated Steel Sheet[C]. Chicago, USA, AIST, 2004:107-118.
    
    [127] Mahieu J., Claessens S., De Cooman B. C, et al. Surface and Subsurface Characterization of Si-, Al- and P Alloyed TRIP-aided steel[A]. Baker M A.. 6th International Conference on Zinc and Zinc Alloy Coated Steel Sheet[C]. Chicago, USA, AIST, 2004:529-538.
    
    [128] Grabke H. J., Leroy V., Viefhaus H.. Segregation of the surface of steels in heat treatment and oxidation[J]. ISIJ Int., 1995, 35(2):95-113.
    [129] Hertveldt I., De Cooman B.C., Claessens S.. Influence of annealing conditions on the galvanizability and galvannealing properties of TiNb interstitial-free steels, strengthened with phosphorous and manganese [J]. Metallurgical and Materials Transactions A, 2000, 31A(4):1225-1232.
    [130] Miller R.L.. A rapid X-ray method for the determination of retained austenite[J]. Trans ASM, 1964, 57:892-899.
    [131] Mahieu J., Van Dooren D., De Cooman B.C..Influence of Si, Al and P on the thermodynamics and kinetics of the phase transformations related to continuous galvanization of TRIP-aided steels[A]. Militzer M., Poole W. J., Essadiqi E.. International Symposium on Transformation and Deformation Mechanisms in Advanced High-strength Steels[C]. Vancouver, BC, Canada: 2003, CIM:21-35.
    [132] Ghosh G., Olson G.B.. Simulation of paraequilibrium growth in multicomponent systems[J]. Metallurgical and Materials Transactions A, 2001, 32(3): 455-467.
    [133] Garcia de A. C, Caballero F. G, Capdevila C, et al. Application of dilatometric analysis to the study of solid-solid phase transformations in steels[J]. Materials Characterization. 2002, 48(1): 101-111.
    [134] Emadoddin E., Akbarzadeh A., Daneshi G.. Effect of intercritical annealing on retained austenite characterization in textured TRIP-assisted steel sheet[J]. Materials Characterization. 2006, 57(4-5):408-413.
    [135] Huang J., Poole W. J., Militzer M..Study of ferrite recrystallization in a TRIP steel[A]. Militzer M., Poole W. J., Essadiqi E.. International Symposium on Transformation and Deformation Mechanisms in Advanced High-strength Steels[C]. Vancouver, BC, Canada: 2003, CIM: 37-47.
    [136] Johnson W. A., Mehl R. F.. Reaction kinetics in processes of nucleation and growth[J]. American Institute of Mining and Metallurgical Engineers—Transactions, 1939, 135: 416-442.
    [137] Avrami M.. Kinetics of Phase Change. Ⅰ: General Theory[J] . Journal of Chemical Physics, 1939, 7(12): 1103-1112.
    [138] Anderson W.A., Mehl R.F.. Recrystallization of aluminum in terms of rate of nucleation and rate of growth[J]. Metallurgia, 1945, 33(193): 45-46.
    [139] 景财年,王作成,金成俊,等.铜元素和退火温度对TRIP冷轧钢板组织和力学性能的影响[J].金属热处理,2004,29(9):19-22.
    [140] 史文,李麟,符仁珏,等.两相区退火温度对低碳低硅TRIP钢组织和性能的影响[J].钢铁,2004,39(8):108-111.
    [141] Pradhan R., Wise J. P.. Aluminum-Rich, TRIP-Aided Steels: Effects of Alloying Additions & Processing [A]. ISS. Materials Science and Technology 2003 Conference proceedings[C]. Chicago,USA: Omnipress, 2003:153-171.
    [142] Girault E., Jacques P., Ratchev P., et al. Study of the temperature dependence of the bainitic transformation rate in a multiphase TRIP-assisted steel[J]. Materials Science and Engineering A,1999, 273-275:471-474.
    [143] Rees, G.I., Bhadeshia, H.K.D.H.. Bainite transformation kinetics. Part 1. Modified model[J].Materials Science and Technology, 1992, 8(11): 985-993.
    [144] Meyer M D, J Mahieu, Cooman B C De. Empirical microstructure prediction method for combined intercritical annealing and bainitic transformation of TRIP steel[J]. Materials Science and Technology, 2002, 18(10): 1121-1132.
    [145] Krizan D., Antonissen J., Barbe L., et al. Properties of austenite in micro-alloyed C-Mn-Al-Si-P TRIP steels [A]. ISS. Materials Science and Technology 2003 Conference proceedings[C]. Chicago,USA: Omnipress, 2003: 437-448.
    [146] Jacques P. J., Petein A., Harlet P..Improvement of mechanical properties through concurrent deformation and transformation: new steels for the 21st century[A]. De Cooman B. C. Int. Conf. on TRIP- Aided High Strength Ferrous Alloys[C]. Aachen, Germany: WMG, 2002:281-285.
    [147] Pickering F. B.. Physical Metallurgy and the Design of Steels. Applied Science Publishers, Ltd., London, 1978: 69-72.
    [148] Chen H.C., Era H., Shimizu M.. Effect of phosphorus on the formation of retained austenite and mechanical properties in Si-containing low-carbon steel sheet[J]. Metallurgical Transactions A, 1989, 20A(3):437-445.
    [149] Itami A, Takahashi M, Usihioda K. Plastic stability of retained austenite in the cold-rolled 0.14%C- 1.9%Si- 1.7%Mn sheet steel[J]. ISIJ Int., 1995, 35: 1121-1127.
    [150] Haidemenopoulos G. N., Grujicic M., Olson G. B., et al. Thermodynamics-based alloy design criteria for austenite stabilization and transformation toughening in the Fe-Ni-Co system[J]. Journal of Alloys and Compounds, 1995, 220(1-2): 142-47.
    [151] Samek L., De Moor E., Penning J., et al. Influence of alloying elements on the kinetics of strain-induced martensitic nucleation in low-alloy, multiphase high-strength steels[J]. Metallurgical and Materials Transactions A, 2006, 37A: 106- 124.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700